Category Archives: Liver cancer

Paeoniflorin

Cancer: Hepatocellular carcinoma, colorectal, liver

Action: Radio-protective, ameliorated myelosuppression, MDR

Radio-protective

The radio-protective effect of paeoniflorin (PF), a main bioactive component in the traditional Chinese herb peony, on irradiated thymocytes and the possible mechanisms of protection have been investigated. Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS).

It was found 60Co γ-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pre-treatment of thymocytes with PF (50–200 µg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and up-regulate Bcl-2 and down-regulate Bax in 4 Gy-irradiated thymocytes, were determined.

Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase, were activated by 4 Gy irradiation, with their activation partly blocked by pre-treatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4 Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases (Li et al., 2007).

Liver Cancer

Prostaglandin E2 (PGE2) has been shown to play an important role in tumor development and progression. PGE2 mediates its biological activity by binding any one of four prostanoid receptors (EP1 through EP4). Paeoniflorin, a monoterpene glycoside, significantly inhibited the proliferation of HepG2 and SMMC-7721 cells stimulated by butaprost at multiple time points (24, 48, and 72 hours). Paeoniflorin induced apoptosis in HepG2 and SMMC-7721 cells, which was quantified by annexin-V and propidium iodide staining. Our results indicate that the expression of the EP2 receptor and Bcl-2 was significantly increased, whereas that of Bax and cleaved caspase-3 was decreased in HepG2 and SMMC-7721 cells.

Paeoniflorin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in hepatocellular carcinoma cells by down-regulating EP2 expression and also increased the Bax-to-Bcl-2 ratio, thus up-regulating the activation of caspase-3 (Hu et al., 2013).

Colorectal Cancer

Results showed that positive cells of Proliferating Cell Nuclear Antigen (PCNA) in paeoniflorin (PF) and docetaxel-treated group was decreased to 30% and 15% respectively, compared with control group of tumors. But apoptosis cells in docetaxel treated groups studied by TUNEL is increased to 40 ± 1.2% and 30 ± 1.5% respectively, compared with 24 ± 2.3% in negative control. Furthermore, the efficiency of tumor-bearing mice treated by PF was superior to docetaxel in vivo. Overall, PF may be an effective chemo-preventive agent against colorectal cancer HT29 (Wang et al., 2012).

Ameliorates Myelosuppression

The administration of paeoniflorin and albiflorin (CPA) extracted from Paeonia radix, significantly ameliorated myelosuppression in all cases. For the X-ray irradiated mice and the chemotherapy treated mice and rabbits, high dosages of CPA resulted in the recovery of, respectively, 94.4%, 95.3% and 97.7% of hemoglobin content; 67.7%, 92.0% and 94.3% of platelet numbers; 26.8%, 137.1% and 107.3% of white blood cell counts; as well as a reversal in the reduction of peripheral differential white blood cell counts.

There was also a recovery of 50.9%, 146.1% and 92.3%, respectively, in the animals' relative spleen weight. Additionally, a recovery of 35.7% and 87.2% respectively in the number of bone marrow nucleated cells was observed in the radio- and chemo -therapy-treated mice. Bone marrow white blood cell counts also resumed to normal levels (Xu et al., 2011).

MDR

Studies have shown that NF-κB activation may play an essential role in the development of chemotherapy resistance in carcinoma cells. Paeonißorin, a principal bioactive component of the root of Paeonia lactißora, has been reported to exhibit various pharmacological effects. In the present study, Fanh et al. (2012) reported for the first time that paeoniflorin at non-toxic concentrations may effectively modulate multi-drug resistance (MDR) of the human gastric cancer cell line SGC7901/vincristine (VCR) via the inhibition of NF-κB activation and, at least partly, by subsequently down-regulating its target genes MDR1, BCL-XL and BCL-2.

References

Fang S, Zhu W, Zhang Y, Shu Y, Liu P. (2012). Paeoniflorin modulates Multi-drug resistance of a human gastric cancer cell line via the inhibition of NF- κB activation. Mol Med Rep, 5(2):351-6. doi: 10.3892/mmr.2011.652.


Hu S, Sun W, Wei W, et al. (2013). Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anti-cancer Drugs, 24(2):140-9. doi: 10.1097/CAD.0b013e32835a4dac.


Li CR, Zhou Z, Zhu D, et al. (2007). Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases. The International Journal of Biochemistry & Cell Biology, 39(2):426–438


Wang H, Zhou H, Wang CX, et al. (2012). Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol, 50(5):1560-7. doi: 10.1016/j.fct.2012.01.035.


Xu W, Zhou L, Ma X, et al. (2011). Therapeutic effects of combination of paeoniflorin and albiflorin from Paeonia radix on radiation and chemotherapy-induced myelosuppression in mice and rabbits. Asian Pac J Cancer Prev, 12(8):2031-7.

Oxymatrine (Ku Shen)

Cancer:
Sarcoma, pancreatic, breast, liver, lung, oral, colorectal, stomach, gastric, adenoid cystic carcinoma

Action: Anti-angiogenesis, anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, immunotolerance, induces apoptosis, decreases side-effects of Intensity Modulated Radiation Therapy (IMRT), Transcatheter Hepatic Arterial Chemoembolization (TACE)

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012).

Angiogenesis

Oxymatrine has been found to inhibit angiogenesis when administered by injection. The tumor-inhibitory rate and the vascular density were tested in animal tumor model with experimental treatment. The expression of VEGF and bFGF were measured by immunistological methods. When high doses were used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group, and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

Immunotolerance

Matrine, a small molecule derived from the root of Sophora flavescens AIT, was demonstrated to be effective in inducing T cell anergy in human Jurkat cells. Induction of immunotolerance has become a new strategy for treating autoimmune conditions in recent decades. However, so far there is no ideal therapeutics available for clinical use. Medicinal herbs are a promising potential source of immunotolerance inducers. Bioactive compounds derived from medicinal plants were screened for inducing T cell anergy in comparison with the effect of well-known T cell anergy inducer, ionomycin.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells, could influence the ability of T cell anergy induction. The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy, when the cells were stimulated by antigens, anti-OKT3 plus anti-CD28. Mechanistic study showed that ionomycin and matrine could up-regulate the anergy-associated gene expressions of CD98 and Jumonji and activate nuclear factor of activated T-cells (NFAT) nuclear translocation in absence of cooperation of AP-1 in Jurkat cells. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Induces Apoptosis

The cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential ( Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit.

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Induces Apoptosis in Pancreatic Cancer

Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was up-regulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c, and activation of caspase-3 (Ling et al., 2011).

Decreases Side-effects of Intensity Modulated Radiation Therapy (IMRT)

The levels of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer were measured after treatment with the compound matrine, in combination with radiation. Eighty-four patients diagnosed with rectal carcinoma were randomly divided into two groups: therapeutic group and control group.

The patients in the therapeutic group were treated with compound matrine and intensity- modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT. The clinical effects and the levels of IL-8 and sIL-2R tested by ELISA pre-radiation and post-radiation were compared. In addition, 42 healthy people were singled out from the physical examination center in the People's Hospital of Yichun city, which were considered as healthy controls.

The clinical effect and survival rate in the therapeutic group was significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress, in the therapeutic group. However, the control group had 12 improvements, 14 stabilized, and 16 progress.

The quality of life in the therapeutic group was higher than tthat in the control group, by rank sum test. SIL-2R and IL-8 examination found that serum levels of sIL-2R and IL-8 were higher in rectal cancer patients before treatments than those in the healthy groups, by student test.

However, sIL-2R and IL-8 serum levels were found significantly lower in the 84 rectal cancer patients after radiotherapy. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post-radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post- therapy, according to the student test. Side-effects of hepatotoxicity (11.9%) and radiation proctitis (9.52%) were fewer in the therapeutic group.

Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

The clinical effect of matrine injection, combined with S-1 and cisplatin (SP), in the treatment of advanced gastric cancer was investigated. Seventy-six cases of advanced gastric cancer were randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively.

The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively. Therapeutic effect of the two groups of patients did not differ significantly. Occurrence rate of symptom indexes in the treatment group were lower than those of control group, with exception of nausea and vomiting, in which there was no significant difference.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

The effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells was investigated.

Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). IC50 of ACC-2 was 0.84 g/ml. Flow cytometry indicated that radix Sophorae flavescentis injection could arrest ACC-2 cells at the G0/G1 phase, with a gradual decrease of presence in the G2/M period and S phase. With an increase in dosage, ACC-2 cell apoptosis rate increased significantly (P < 0.05 or P < 0.01).

Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer Post-operative Chemotherapy

A retrospective analysis of oncological data of 70 post-operative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days to a cycle) were compared.

The objective remission rate of therapy group compared with that of control group was not statistically significant (P > 0.05), while the difference of the disease control rate in two groups was statistically significant (P < 0.05). The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An & Wu, 2012).

Lung Cancer Pleural Effusions

The therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected fufangkushen plus IL-2, fufangkushen plus α-tFN, and IL-2 plus α-IFN, respectively. The control group was divided into three groups and injected fufangkushen, IL-2 and α-IFN, respectively. Therapeutic efficiency and adverse reactions were observed after four weeks.

The effective rate of fufangkushen, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. In adverse reactions, the incidence of fever, chest pains, and the reaction of gastrointestinal tract in the treatment group were significantly less than in the matched group.

The effect of fufangkushen, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of fufangknshen plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Colorectal Cancer Immunologic Function

The effects of compound Kushen (Radix sophorae flavescentis) injection on the immunologic function of patients after colorectal cancer resection, were studied.

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mL·d-1 compound Kushen injection, for 10 days during chemotherapy.

In the control group the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells, NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

After chemotherapy, the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio were higher in the experimental group than in the control group (P0.05), while the number of CD8+T lymphocyte was similar between two groups. Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

Stage III and IV non-small-cell lung cancer (NSCLC)

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The chemotherapy was performed for 4 cycles of 3 weeks, and the therapeutic efficacy was evaluated every 2 weeks. The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference. (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group.

The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05). The serum lgA levels were not significantly different in the two groups.

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Suppression effects of different concentrations of matrine injection and matrine injection combined with anti-tumor drugs on lung cancer cells were measured by methyl thiazolyl tetrazolium (MTT) colorimetric assay.

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone.

Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Transcatheter Hepatic Arterial Chemoembolization (TACE)

The effect of composite Kushen injection combined with transcatheter hepatic arterial chemoembolization (TACE) on unresectable primary liver cancer, was studied.

Fifty-seven patients with unresectable primary liver cancer were randomly divided into two groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. The clinical curative effects were observed after treatment in both groups.

One-, 2-, and 3-year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

References

An AJ, An GW, Wu YC. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen G, Yu B, Yuan SJ, Yuan Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013) Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF- κ B-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan CX, Lin CL, Liang L, et al. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Hu DJ, Mei, XD. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α -IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Kong QZ, Huang DS, Huang T, et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Shi B, Xu H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012;2012:373219. doi: 10.1155/2012/373219.


Wang HM, Cheng XM. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin WH, Sheng JW, Xia HM, et al. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhu MY, Jiang ZH, Lu YW, Guo Y, Gan JJ. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Hispolon

Cancer: Bladder, breast, liver, gastric

Action: Anti-inflammatory, cytostatic, cytotoxic, pro-oxidative, anti-proliferative

Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have anti-oxidant, anti-inflammatory, and anti-cancer activities.

Liver Cancer

Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell-cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells.

These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell-cycle arrest and apoptosis in Hep3B cells (Huang et al., 2011).

Gastric Cancer, Breast Cancer, Bladder Cancer

Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. Hispolon has also been found to inhibit breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment.

Lu et al. (2009) also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126.

In conclusion, hispolon ubiquitinates and down-regulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

Gastric Cancer

The efficacy of hispolon in human gastric cancer cells and cell death mechanism was explored. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells.

The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione anti-oxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer.

These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anti-cancer agents (Chen et al., 2008).

Anti-proliferative Activity

Hispolon, which lacks one aromatic unit in relation to curcumin, exhibits enhanced anti-inflammatory and anti-proliferative activities. Dehydroxy hispolon was least potent for all three activities. Overall the results indicate that the substitution of a hydroxyl group for a methoxy group at the meta positions of the phenyl rings in curcumin significantly enhanced the anti-inflammatory activity, and the removal of phenyl ring at the 7(th) position of the heptadiene back bone and addition of hydroxyl group significantly increased the anti-proliferative activity of curcumin and hispolon (Ravindran et al., 2010).

References

Chen W, Zhao Z, Li L, et al. (2008). Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med, 45(1):60-72. doi: 10.1016/j.freeradbiomed.2008.03.013.


Huang GJ, Deng JS, Huang SS, Hu ML. (2011). Hispolon induces apoptosis and cell-cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem, 59(13):7104-13. doi: 10.1021/jf201289e.


Lu TL, Huang GJ, Lu TJ, et al. (2009). Hispolon from Phellinus linteus has anti-proliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol, 47(8):2013-21. doi: 10.1016/j.fct.2009.05.023.


Ravindran J, Subbaraju GV, Ramani MV, et al. (2010). Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol, 79(11):1658-66. doi: 10.1016/j.bcp.2010.01.033.

Eugenol

Cancer:
Melanoma, osteosarcoma, leukemia, gastric, colon, liver, oral., lung

Action: Radio-protective

Eugenol is a natural compound available in honey and various plants extracts; in particular, cloves (Syzygium aromaticum (L.) Merrill & Perry).

Melanoma, Skin Tumors, Osteosarcoma, Leukemia, Gastric Cancer

Eugenol (4-allyl-2-methoxyphenol), a phenolic phytochemicals, is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature show eugenol possesses anti-oxidant, anti-mutagenic, anti-genotoxic, anti-inflammatory and anti-cancer properties.

The molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented and highlights the anti-proliferative activity and molecular mechanism of eugenol-induced apoptosis against the cancer cells and animal model (Jaganathan et al., 2012).

Colon Cancer

Since most of the drugs used in cancer are apoptosis-inducers, the apoptotic effect and anti-cancer mechanism of eugenol were investigated against colon cancer cells. MTT assay signified the anti-proliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyzes.

These results demonstrate the molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemo-preventive agent against colon cancer (Jaganathan et al., 2011).

Radio-protective, Skin Cancer, Liver Cancer, Oral Cancer, Lung Cancer

Ocimum sanctum L. or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in the various Indian languages, is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia, and another plant from which eugenol is extracted. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. Preclinical studies have also shown that Ocimum and some of its phytochemicals including eugenol prevented chemical-induced skin, liver, oral., and lung cancers and to mediate these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

The aqueous extract of Ocimum and its flavanoids, orintin and vicenin, are shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. This action is related to the important phytochemicals it contains like eugenol, which are also shown to prevent radiation-induced DNA damage.

References

Baliga MS, Jimmy R, Thilakchan KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.


Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. (2011). Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int, 35(6):607-15. doi: 10.1042/CBI20100118.


Jaganathan SK, Supriyanto E. (2012). Anti-proliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells. Molecules, 17(6):6290-6304. doi:10.3390/molecules17066290.

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Cinobufacini

Cancers: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Hepatic Cancer

Cinobufacini injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Human Lymphatic Endothelial Cells

Cinobufacini injection is a traditional anti-tumor drug. However, its mechanism of action is still unclear. The effects of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as MEDLINEe (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with transcatheter arterial chemoembolization (TACE), and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of the control group. Cinobufacini injection, combined with TACE, can decrease TACE-induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose- and time- dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

References

Fu HY, Gao S, Tian LL, Chen XY, Cui XN. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao S, Chen XY, Fu HY, Cui XZ. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke J, Lu K, Li Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology,


Sun Y, Lu XX, Liang XM, Cui XN. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu C, Yin J, He J. (2012). Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.

Berberine

Cancer:
Liver,leukemia, breast, prostate, epidermoid (squamous-cell carcinoma), cervical.,testicular, melanoma, lymphoma, hepatoma

Action: Radio-sensitizer, anti-inflammatory, cell-cycle arrest, angiogenesis, chemo-enhancing, anti-metastatic, anti-oxidative

Berberine is a major phytochemical component of the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. It has been implicated in the cytotoxic effects on multiple cancer cell lines.

Anti-inflammatory

Berberine is an isoquinoline alkaloid widely distributed in natural herbs, including Rhizoma Coptidis chinensis and Epimedium sagittatum (Sieb. et Zucc.), a widely prescribed Chinese herb (Chen et al., 2008). It has a broad range of bioactivities, such as anti-inflammatory, anti-bacterial., anti-diabetes, anti-ulcer, sedation, protection of myocardial ischemia-reperfusion injury, expansion of blood vessels, inhibition of platelet aggregation, hepato-protective, and neuroprotective effects (Lau et al., 2001; Yu et al., 2005; Kulkarni & Dhir, 2010; Han et al., 2011; Ji, 2011). Berberine has been used in the treatment of diarrhea, neurasthenia, arrhythmia, diabetes, and so forth (Ji, 2011).

Angiogenesis, Chemo-enhancing

Inhibition of tumor invasion and metastasis is an important aspect of berberine's anti-cancer activities (Tang et al., 2009; Ho et al., 2009). A few studies have reported berberine's inhibition of tumor angiogenesis (Jie et al., 2011; Hamsa & Kuttan, 2012). In addition, its combination with chemotherapeutic drugs or irradiation could enhance the therapeutic effects (Youn et al., 2008; Hur et al., 2009).

Cell-cycle Arrest

The potential molecular targets and mechanisms of berberine are rather complicated. Berberine interacts with DNA or RNA to form a berberine-DNA or a berberine-RNA complex, respectively (Islam & Kumar. 2009; Li et al., 2012). Berberine is also identified as an inhibitor of several enzymes, such as N-acetyltransferase (NAT), cyclooxygenase-2 (COX-2), and telomerase (Sun et al., 2009).

Other mechanisms of berberine are mainly related to its effect on cell-cycle arrest and apoptosis, including regulation of cyclin-dependent kinase (CDK) family of proteins (Sun et al., 2009; Mantena, Sharma, & Katiyar, 2006) and expression regulation of B-cell lymphoma 2 (Bcl-2) family of proteins (such as Bax, Bcl-2, and Bcl-xL) (Sun et al., 2009), and caspases (Eom et al., 2010; Mantena, Sharma, & Katiyar, 2006). Furthermore, berberine inhibits the activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and induces the formation of intracellular reactive oxygen species (ROS) in cancer cells (Sun et al., 2009; Eom et al., 2010). Interestingly, these effects might be specific for cancer cells (Sun et al., 2009).

Several studies have shown that berberine has anti-cancer potential by interfering with the multiple aspects of tumorigenesis and tumor progression in both in vitro and in vivo experiments. These observations have been well summarized in recent reports (Sun et al., 2009; Tan et al., 2011). Berberine inhibits the proliferation of multiple cancer cell lines by inducing cell-cycle arrest at the G1 or G 2 / M phases and by apoptosis (Sun et al., 2009; Eom et al., 2010; Burgeiro et al., 2011). In addition, berberine induces endoplasmic reticulum stress (Chang et al., 1990; Eom et al., 2010) and autophagy (Wang et al., 2010) in cancer cells.

However, compared with clinically prescribed anti-cancer drugs, the cytotoxic potency of berberine is much lower, with an IC50 generally at 10 µM to 100 µM depending on the cell type and treatment duration in vitro (Sun et al., 2009). Besides, berberine also induces morphologic differentiation in human teratocarcinoma (testes) cells (Chang et al., 1990).

Anti-metastatic

The effect of berberine on invasion, migration, metastasis, and angiogenesis is mediated through the inhibition of focal adhesion kinase (FAK), NF-κB, urokinase-type plasminogen-activator (u-PA), matrix metalloproteinase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) (Ho et al., 2009; Hamsa & Kuttan. (2011); reduction of Rho kinase-mediated Ezrin phosphorylation (Tang et al., 2009); reduction of the expression of COX-2, prostaglandin E, and prostaglandin E receptors (Singh et al., 2011); down-regulation of hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), pro-inflammatory mediators (Jie et al., 2011; Hamsa & Kuttan, 2012).

Hepatoma, Leukaemia

The cytotoxic effects of Coptis chinensis extracts and their major constituents on hepatoma and leukaemia cells in vitro have been investigated. Four human liver cancer cell lines, namely HepG2, Hep3B, SK-Hep1 and PLC/PRF/5, and four leukaemia cell lines, namely K562, U937, P3H1 and Raji, were investigated. C. chinensis exhibited strong activity against SK-Hep1 (IC50 = 7 microg/mL) and Raji (IC50 = 4 microg/mL) cell lines. Interestingly, the two major compounds of C. chinensis, berberine and coptisine, showed a strong inhibition on the proliferation of both hepatoma and leukaemia cell lines. These results suggest that the C. chinensis extract and its major constituents berberine and coptisine possess active anti-hepatoma and anti-leukaemia activities (Lin, 2004).

Leukemia

The steady-state level of nucleophosmin/B23 mRNA decreased during berberine-induced (25 g/ml, 24 to 96 hours) apoptosis of human leukemia HL-60 cells. A decline in telomerase activity was also observed in HL-60 cells treated with berberine. A stable clone of nucleophosmin/B23 over-expressed in HL-60 cells was selected and found to be less responsive to berberine-induced apoptosis. About 35% to 63% of control vector–transfected cells (pCR3) exhibited morphological characteristics of apoptosis, while about 8% to 45% of nucleophosmin/B23-over-expressed cells (pCR3-B23) became apoptotic after incubation with 15 g/ml berberine for 48 to 96 hours.

These results indicate that berberine-induced apoptosis is associated with the down-regulation of nucleophosmin/B23 and telomerase activity. Nucleophosmin/B23 may play an important role in the control of the cellular response to apoptosis induction (Hsing, 1999).

Prostate Cancer

In vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24–72 hours) manner. Berberine significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential., and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase.

The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy (Mantena, 2006).

In another study, the treatment of human prostate cancer cells (PC-3) with berberine-induced dose-dependent apoptosis; however, this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential., release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins.

Berberine-induced apoptosis was blocked in the presence of the anti-oxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. Taken together, these results suggest that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer (Meeran, 2008).

Breast Cancer

DNA microarray technology has been used to understand the molecular mechanism underlying the anti-cancer effect of berberine carcinogenesis in two human breast cancer cell lines, the ER-positive MCF-7 and ER-negative MDA-MB-231 cells; specifically, whether it affects the expression of cancer-related genes. Treatment of the cancer cells with berberine markedly inhibited their proliferation in a dose- and time-dependent manner. The growth-inhibitory effect was much more profound in MCF-7 cell line than that in MDA-MB-231 cells.

IFN-β is among the most important anti-cancer cytokines, and the up-regulation of this gene by berberine is, at least in part, responsible for its anti-proliferative effect. The results of this study implicate berberine as a promising extract for chemoprevention and chemotherapy of certain cancers (Kang, 2005).

Breast Cancer Metastasis

Berberine also inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance.

The anoikis-resistant cells have a reduced growth rate and are more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell-cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells was compared to untreated control cells. These results reveal that berberine can efficiently inhibit growth by inducing cell-cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis (Kim, 2010).

Melanoma

Berberine inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. The effects and associated molecular mechanism of berberine on human melanoma cancer cell migration using melanoma cell lines A375 and Hs294 were probed in an in vitro cell migration assay, indicating that over- expression of cyclo-oxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells.

Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-kB), an up- stream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-kB, inhibited cell migration. Together, these results indicate that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors (Sing, 2011).

Cell-cycle Arrest, Squamous-cell Carcinoma

The in vitro treatment of human epidermoid carcinoma A431 cells with berberine decreases cell viability and induces cell death in a dose (5-75 microM)- and time (12–72 hours)-dependent manner, which was associated with an increase in G(1) arrest. G(0)/G(1) phase of the cell-cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin kinase inhibitors (Cdki) and cyclins.

Pre-treatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway.

Together, these results indicate berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 (squamous-cell) cells in vitro; further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers (Mantena, 2006).

Cervical Cancer, Radio-sensitizer

Cervical cancer remains one of the major killers amongst women worldwide. In India, a cisplatin based chemo/radiotherapy regimen is used for the treatment of advanced cervical cancer. Evidence shows that most of the chemotherapeutic drugs used in current clinical practice are radio-sensitizers. Natural products open a new avenue for treatment of cancer, as they are generally tolerated at high doses. Animal studies have confirmed the anti-tumorigenic activity of natural products, such as curcumin and berberine.

Berberine is a natural chemo-preventive agent, extracted from Berberis aristata, which has been shown to suppress and retard carcinogenesis by inhibiting inflammation.

The combined therapy of cisplatin/berberine and radiotherapy produced up-regulation of pro-apoptotic proteins Bax and p73, while causing down regulation of the anti-apoptotic proteins Bcl-xL, COX-2, cyclin D1. This additionally was accompanied by increased activity of caspase-9 and caspase-3, and reduction in telomerase activity. Results demonstrated that the treatment combination of berberine/cisplatin had increased induction of apoptosis relative to cisplatin alone (Komal., Singh, & Deshwal., 2013).

Anti-oxidative; Breast, Liver and Colon Cancer

The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation (lipid peroxidation), diphenyle–alpha-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and alpha-gulcosidase activities were spectrophotometrically determined.

Barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent anti-oxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that is associated with GPx and SOD hyperactivation. Both berberine chloride and barberry ethanolic extract were shown to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hours up to 72 hours and the inhibitory effect increased with time in a dose-dependent manner.

This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, for suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. As well, berberis vulgaris ethanolic extract is a safe non-toxic extract as it does not inhibit the growth of PBMC that can induce cancer cell death (Abeer et al., 2013).

Source:

Alkaloids Isolated from Natural Herbs as the Anti-cancer Agents. Evidence-Based Complementary and Alternative Medicine. Volume 2012 (2012) http://dx.doi.org/10.1155/2012/485042

References

Burgeiro A, Gajate C, Dakir EH, et al. (2011). Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 22(6):507–518.


Chang KSS, Gao C, Wang LC. (1990). Berberine-induced morphologic differentiation and down-regulation of c-Ki-ras2 protooncogene expression in human teratocarcinoma cells. Cancer Letters, 55(2):103–108.


Chen J, ZHao H, Wang X, et al. (2008). Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 29(10):2135–2147.


Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.


El-Wahab AEA, Ghareeb DA, et al. (2013). In vitro biological assessment of berberis vulgaris and its active constituent, berberine: anti-oxidants, anti-acetylcholinesterase, anti-diabetic and anti-cancer effects. BMC Complementary and Alternative Medicine, 13:218 doi:10.1186/1472-6882-13-218


Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.


Hamsa TP & Kuttan G. (2012). Anti-angiogenic activity of berberine is mediated through the down-regulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. Drug and Chemical Toxicology, 35(1):57–70.


Han J, Lin H, Huang W. (2011). Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 17(7):RA164–RA167.


Ho YT, Yang JS, Li TC, et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Letters, 279(2):155–162.


Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. (2009). The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. Journal of Cellular Biochemistry, 107(5):955–964.


Islam MM & Kumar GS. (2009). RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA and Cell Biology, 28(12):637–650.


Ji JB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Cp., LTD.


Jie S, Li H, Tian Y, et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1):179–185.


Kang JX, Liu J, Wang J, He C, Li FP. (2005). The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by up-regulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 26(11):1934-1939. doi:10.1093/carcin/bgi154


Kim JB, Yu JH, Ko E, et al. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Phytomedicine, 17(6):436-40. doi: 10.1016/j.phymed.2009.08.012.


Komal Singh M, & Deshwal VK. (2013). Natural plant product berberine/cisplatin based radiotherapy for cervical cancer: The new and effective method to treat cervical cancer. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 2(5), 278-291.


Kulkarni SK & Dhir A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3):317–324.


Lau CW, X. Q. Yao XQ, et al. (2001). Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3):234–244.


Li, XL Hu XJ, Wang H, et al. (2012). Molecular spectroscopy evidence for berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3):873–880.


Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol, 31(1-2):65-9.


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine, a natural product, induces G1-phase cell-cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27(10):2018-27. doi: 10.1093/carcin/bgl043


Meeran SM, Katiyar S & Katiyar SK. (2008). Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 229(1):33-43. doi:10.1016/j.taap.2007.12.027


Singh T, Vaid M, Katiyar N, et al. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1):86–92.


Sun Y, Xun K, Wang Y, Chen X. (2009). A systematic review of the anti-cancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9):757–769.


Tan W, Lu J, Huang M, et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6(1):27.


Tang F, Wang D, Duan C, et al. (2009) Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567. Journal of Biological Chemistry, 284(40):27456–27466.


Wang N, Feng Y, Zhu M et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of Cellular Biochemistry, 111(6):1426–1436.


Wu HL, Hsu CY, Liu WH, Yung BYM. (1999). Berberine‐induced apoptosis of human leukemia HL‐60 cells is associated with down‐regulation of nucleophosmin/B23 and telomerase activity. International Journal of Cancer, 81(6):923–929.


Youn MJ, So HS, Cho HJ, et al. (2008). Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells. Biological and Pharmaceutical Bulletin, 31(5):789–795.


Yu HH, Kim KJ, Cha JD, et al. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Journal of Medicinal Food, 8(4):454–461.

Berbamine

Cancer: Breast, leukemia, liver, neutropenia

Action: Anti-metastatic, chemo-sensitizer

Breast Cancer, Leukemia

Berbamine (BER), isolated from the Chinese herb Berberis amurensis and Berberis vulgaris (L.), selectively induces apoptosis in certain breast cancer and leukemia cell lines.

Studies have shown that berbamine suppresses the growth, migration and invasion in highly-metastatic human breast cancer cells by possibly inhibiting Akt and NF-kappaB signaling with their upstream target c-Met and downstream targets Bcl-2/Bax, osteopontin, VEGF, MMP-9 and MMP-2.

BER has synergistic effects with anti-cancer agents trichostatin A, celecoxib and carmofur on inhibiting the growth of MDA-MB-231 cells and reducing the ratio of Bcl-2/Bax and/or VEGF expressions in the cancer cells. These findings suggest that berbamine may have wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer and other cancers (Wang, 2009).

MDR, Leukemia stem cells

Previous studies have shown that berbamine selectively induces apoptosis of imatinib (IM)-resistant-Bcr/Abl-expressing leukemia cells from the K562 cell line and CML patients. Berbamine derivatives obtained by synthesis were found to have very high activity in vitro. Six of these exhibited consistent high anti-tumor activity for imatinib-resistant K562 leukemia cells. Their IC(50) values at 48h were 0.36-0.55 microM, whereas berbamine IC(50) value was 8.9 microM. Cell cycle analysis results showed that compound 3h could reduce G0/G1 cells. In particular, these compounds displayed potent inhibition of the cytoplasm-to-nucleus translocation of NF-kappaB p65 which plays a critical role in the survival of leukemia stem cells (Xie, 2009).

Liver Cancer, Leukemia

Meng et al. (2013) reported that berbamine and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+/calmodulin-dependent protein kinase II (CAMKII). Furthermore, berbamine inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice and downregulated the self-renewal abilities of liver cancer-initiating cells. Berbamine inhibits proliferation and induces apoptosis of KU812 leukaemia cells by increasing Smad3 activity (Kapoor, 2012).

Chronic Myeloid Leukemia, Leukopenia

During imatinib therapy, many patients with chronic myeloid leukemia (CML) develop severe neutropenia, leading to treatment interruptions, and potentially compromising response to imatinib. Berbamine (a bisbenzylisoquinoline alkaloid) has been widely used in Asian countries for managing leukopenia associated with chemotherapy. With berbamine support, the time to achieve complete cytogenetic response was significantly shorter (median, 6.5 vs. 10 months, p = 0.007). There were no severe adverse events associated with berbamine treatment. In conclusion, the present study reveals the potential clinical value of berbamine in the treatment of CML with imatinib-induced neutropenia (Zhao et al., 2011).

References

Kapoor S. (2012). Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. Zhejiang Univ Sci B, 13(9):761-2.


Meng Z, Li T, Ma X, et al. (2013). Berbamine Inhibits the Growth of Liver Cancer Cells and Cancer-Initiating Cells by Targeting Ca2+/Calmodulin-Dependent Protein Kinase II. Mol Cancer Ther.


Wang S, Liu Q, Zhang Y, et al. (2009). Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer, 8:81.


Xie J, Ma T, Gu Y, et al. (2009). Berbamine derivatives: A novel class of compounds for anti-leukemia activity. Eur J Med Chem, 44(8):3293-8. doi: 10.1016/j.ejmech.2009.02.018


Zhao Y, Tan Y, Wu G, et al. (2011). Berbamine overcomes imatinib-induced neutropenia and permits cytogenetic responses in Chinese patients with chronic-phase chronic myeloid leukemia. Int J Hematol, 94(2):156-62. doi: 10.1007/s12185-011-0887-7.

Aloe-emodin (See also Emodin)

Cancer:
Nasopharyngeal., ER α degradation, Lung, breast, oral., glioblastoma, liver cancer prevention

Action: Cytostatic, radio-sensitizing, chemo-sensitizing

Nasopharyngeal Carcinoma

Aloe-emodin (AE), a natural., biologically active compound from Aloe vera leaves has been shown to induce apoptosis in several cancer cell lines in vitro. Investigation showed that AE induced G2/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of nasopharyngeal carcinoma (NPC) cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression.

Collectively, results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells (Lin et al., 2010).

Glioblastoma

Aloe emodin arrested the cell-cycle in the S phase and promoted the loss of mitochondrial membrane potential in glioblastoma U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway. It plays an important role in the regulation of cell growth and death (Ismail et al., 2013).

Breast Cancer

The anthraquinones emodin and aloe-emodin are also abundant in the rhizome Rheum palmatum and can induce cytosolic estrogen receptor α (ER α) degradation; it primarily affected nuclear ER α distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ER α protein stability through distinct mechanisms (Huang et al., 2013).

Lung Cancer

Photoactivated aloe-emodin induced anoikis and changes in cell morphology, which were in part mediated through its effect on cytoskeleton in lung carcinoma H460 cells. The expression of protein kinase Cδ (PKCδ) was triggered by aloe-emodin and irradiation in H460 cells. Furthermore, the photoactivated aloe-emodin-induced cell death and translocation of PKCδ from the cytosol to the nucleus was found to be significantly inhibited by rottlerin, a PKCδ-selective inhibitor (Chang et al., 2012).

Oral Cancer; Radio-sensitizing, Chemo-sensitizing

The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intensively for their potential chemo-preventive properties and are pharmacologically safe.

These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities.

Treatment with aloe-emodin at 10 to 40 microM resulted in cell-cycle arrest at G2/M phase. The alkaline phosphatase (ALP) activity in KB cells increased upon treatment with aloe-emodin when compared to controls. This is one of the first studies to focus on the expression of ALP in human oral carcinomas cells treated with aloe-emodin. These results indicate that aloe-emodin has anti-cancer effect on oral cancer, which may lead to its use in chemotherapy and chemo-prevention of oral cancer (Xiao et al., 2007).

Liver Cancer Prevention

In Hep G2 cells, aloe-emodin-induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell-cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell-cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin-induced apoptosis by enhancing expression of Bax.

These findings suggest that aloe-emodin may be useful in liver cancer prevention (Lian et al., 2005).

References

Chang WT, You BJ, Yang WH, et al. (2012). Protein kinase C delta-mediated cytoskeleton remodeling is involved in aloe-emodin-induced photokilling of human lung cancer cells. Anti-cancer Res, 32(9):3707-13.

Huang PH, Huang CY, Chen MC, et al. (2013). Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ER α Inhibition. Evid Based Complement Alternat Med, 2013:376123. doi: 10.1155/2013/376123.

Ismail S, Haris K, Abdul Ghani AR, et al. (2013). Enhanced induction of cell-cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Nat Prod Res.

Lian LH, Park EJ, Piao HS, Zhao YZ, Sohn DH. (2005). Aloe Emodin‐Induced Apoptosis in Cells Involves a Mitochondria‐Mediated Pathway. Basic & Clinical Pharmacology & Toxicology, 96(6):495–502.

Lin, ML, Lu, YC, Chung, JG, et al. (2010). Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Letters, 291(1), 46-58. doi: 10.1016/j.canlet.2009.09.016.

Xiao B, Guo J, Liu D, Zhang S. (2007). Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase activation in human oral cancer KB cells. Oral Oncol, 43(9):905-10.

Xiao Ai Ping

Cancer: Lung, gastric, ovarian, liver

Action: Anti-proliferative, chemo-sensitizer, pro-apoptotic

Ingredients: wu gu teng (Fissistigma glaucescens)

TCM functions: Clearing Heat, removing Toxin, dissolving Phlegm and softening the hardness.

Indications: Esophagus cancer, stomach cancer, lung cancer, ovarian cancer and liver cancer.

Dosage and usage:

Intravenous drip: 20-100ml mixed with 5% or 10% glucose injection, once daily.

Xiaoaiping Injection (XAP) is made from extracts from wu gu teng (Fissistigma glaucescens). Its TCM functions are Clearing Heat, removing Toxin, dissolving Phlegm and softening the hardness. It is used in the treatment of esophagus cancer, stomach cancer, lung cancer and liver cancer. It can be used as an adjuvant therapy for radiotherapy or chemotherapy (Drug Information Reference in Chinese: See end, 2006).

Lung Cancer

Lewis lung cancer (LLC) bearing mice were injected intraperitoneally daily with various doses of cisplatin, Xiao-Ai-Ping, or cisplatin plus Xiao-Ai-Ping, respectively. The combination of Xiao-Ai-Ping and cisplatin yielded significantly better anti-growth and pro-apoptotic effects on LLC xenografts than sole drug treatment did. In addition, Xiao-Ai-Ping triggered the infiltration of CD8+ T cells, a group of cytotoxic T cells, to LLC xenografts. In vitro studies showed that Xiao-Ai-Ping markedly upregulated the mRNA levels of ifn-?, prf-1, and gzmb in CD8+ T cells in a concentration-dependent manner, suggesting that Xiao-Ai-Ping augments the function of CD8+ T cells.

Xiao-Ai-Ping promotes the infiltration and function of CD8+ T cells and thus enhances the anti-growth effects of cisplatin on LLC xenografts, which provides new evidence for the combination of Xiao-Ai-Ping and cisplatin in clinic in China (Li et al., 2013).

Hepatocellular Carcinoma

Xiao-Ai-Ping (XAP) enhances the quality of life (QOL) of patients with advanced HCC, improves their immunity and extends their PFS. XAP was administered daily by i.v. and the treatment course lasted for 30 days for both groups. The progression-free survival (PFS) rate and overall survival (OS) rate in the 2 groups were analyzed. The 6-months cumulative survival rates in the treatment and control groups were 33.3% and 25.0%, respectively, with no significant difference (P > 0.05). The PFS was 18 weeks in the treatment group and 15 weeks in control group (P < 0.05) (Huang et al., 2013).

NSCLC

Seventy nine patients with terminal NSCLC patients were divided into the control group and the treatment group. The control group: paclitaxel 135 mg/m2,the 1st day intravenous drip, cisplatin 30 mg/m2, the 1st day ~ 3rd day, intravenous drip (TP regimen). The treatment group: Xiaoaiping injection combined with TP regimen. The clinical data of two groups was compared.

The short-term  curative effect and quality of life in the treatment group was better than the control group. The adverse effect of treatment group was slightly lower. Xiaoaiping injection in combination with TP regimen in the treatment of non-small-cell lung cancer has better efficacy, effectively improves the clinical symptoms and improves quality of life with fewer adverse reactions (Guoan, 2013).

Gastric Cancer

To investigate the effect and toxicities of xiaoaiping injection in the treatment of the elderly patients with advanced gastric carcinoma, forty-six elderly patients with advanced gastric carcinoma in the test group were treated with xiaoaiping injection plus supportive care, and the 30 patients of the control group were treated with supportive care alone. The total effective rate, the excellence plus effectiveness rate and the improvement rate of quality of life of the test group were better than those of the control group (P<0.05). Xiaoaiping injection is effective and safe in the treatment of the elderly patients with advanced gastric carcinoma (Liu et al., 2012).

Ovarian Cancer; Metastasis

The ovarian cancer Caov-3 cells were treated with xiaoaiping (XAP) in vitro. The inhibitor doxycyclin was also applied to the metalloproteinase-9 (MMP) as the positive control, whereas phosphate-buffered saline served as the negative control. XAP effectively inhibited Caov-3 cell migration and invasion and decreased the MMP-9 gene and protein expression levels (P<0.05). Moreover, the inhibitory effect of XAP was similar to that of doxycyclin (P>0.05). Conclusion: XAP inhibits Caov-3 cell migration by decreasing the MMP-9 expression (Wang et al., 2012).

Hepatoma

Zhao at al. (2011) researched the inhibitory effect of the combination of octreotide acetate and Xiaoaiping injection on hepatoma Hepal-6 cells and the expression of PAK1 protein. The different concentrations (10, 30, 50mg/ml), the different times (-24, -16, -8, 0 hours, 8, 16 & 24 hours), and the inhibition of the combination of oetreotide acetate and Xiaoaiping injection on Hepal-6 cells were detected by MTT assay.

Xiaoaiping of 50mg/ml combined with octreotide acetate was the best concentration of pharmacodynamie action for treating liver cancer (P<0. 05). Xiaoaiping of 50mg/nd combined with octreotide acetate was the best concentration for anti-cancer effect. Using oetreotide acetate 8 hours early was the best time for anti-cancer treatment, and its motility decreased significantly. Above all, down-regulating the PAK1 protein could restrain the proliferation of tumors and reduce motility. This provided the theoretical basis in targeted treatment for hepatocellular carcinoma.

References

Guoan X. (2013). Effect of xiaoaiping injection combined with TP regimen in the treatment of advanced non-small-cell lung cancer. Lin Chuang Yi Yao Shi Jian, 22(2): 83-85.


Huang, Z., Wang, Y., Chen, J., Wang, R., Chen, Q. (2013) Effect of Xiaoaiping injection on advanced hepatocellular carcinoma in patients. J Tradit Chin Med, 33(1):34-8.


Li, W.S., Yang, Y., Ouyang, Z.J. (2013). Xiao-Ai-Ping, a TCM injection, enhances the anti-growth effects of cisplatin on Lewis lung cancer cells through promoting the infiltration and function of CD8+ T lymphocytes. Evidence-Based Complementary and Alternative Medicine, 2013(2013):879512. doi:10.1155/2013/879512.


Liu X, Su Q, Mao X, Xue L, et al. (2012). Effect of Xiaoaiping Injection in the Treatment of the Elderly Patients with Advanced Gastric Carcinoma. Zhong Liu Ji Chu Yu Lin Chuang, 15(6): 513-514.


Wang. C., Dong, X., Wang, M., Wang, X. (2012). Xiaoaiping Injection Inhibits Cell Migration by Reducing MMP-9 Gene Expression in Human Ovarian Cancer Cells. Zhong Guo Zhong Liu Lin Chuang, 29(13): 886-888.


Xiao G. (2013). Effect of xiaoaiping injection combined with TP regimen in the treatment of advanced non-small-cell lung cancer. Lin Chuang Yi Yao Shi Jian, 22(2): 83-85.


Zhao HP, Liang LQ, Xie YR. (2011). Growth inhibition effect of Xiaoaiping injection combined with octreotide acetate on Hepal-6 cells and the expression of PAK1. Lin Chuang Zhong Liu Xue Za Zhi, 16(1): 19-22.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.

Oxymatrine or Compound Matrine (Ku Shen)

Cancer: Sarcoma, pancreatic, breast, liver, lung, oral., rectal., stomach, leukemia, adenoid cystic carcinoma

Action: Anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, anti-angiogenesis

Ingredients: ku shen (Sophora flavescens), bai tu ling (Heterosmilax chinensis).

TCM functions: Clearing Heat, inducing diuresis, cooling Blood, removing Toxin, dispersing lumps and relieving pain (Drug Information Reference in Chinese: See end, 2000-12).

Indications: Pain and bleeding caused by cancer.

Dosage and usage:

Intramuscular injection: 2-4 ml each time, twice daily; intravenous drip: 12 ml mixed in 200 ml NaCl injection, once daily. The total amount of 200 ml administration makes up a course of treatment. 2-3 consecutive courses can be applied.

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012). The four major alkaloids in compound Ku Shen injection are matrine, sophoridine, oxymatrine and oxysophocarpine (Qi, Zhang, & Zhang, 2013).

Sarcoma

When a high dose was used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

T Cell Leukemia

Matrine, a small molecule derived from the root of Sophora flavescens AIT was demonstrated to be effective in inducing T cell anergy in human T cell leukemia Jurkat cells.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells could influence the ability of T cell anergy induction.

The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Osteosarcoma

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing osteosarcoma MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3 (Ling et al., 2011).

Rectal Carcinoma

Eighty-four patients diagnosed with rectal carcinoma at the People”s Hospital of Yichun city in Jiangxi province from September 2006 to September 2011, were randomly divided into two groups: therapeutic group and control group. The patients in the therapeutic group were treated with compound matrine and intensity modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT.

The clinical effect and survival rate in the therapeutic group were significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress in the therapeutic group.

However, the control group had 12 improvements, 14 stabilized, and 16 disease progress. Quality of life in the therapeutic group was higher than that in the control group by rank sum test. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post therapy, according to the student test. Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

Seventy-six cases of advanced gastric cancer were collected from June 2010 to November 2011, and randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively. The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

Adenoid cystic carcinoma (ACC-2) cells were cultured in vitro. MTT assay was used to measure the cell proliferative effect. Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer; Chemotherapy

A retrospective analysis of oncological data of 70 postoperative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days for a cycle) were compared.

The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An, & Wu, 2012).

Lung cancer; Pleural Effusion

The therapeutic efficiency of Fufang Kushen Injection Liquid (FFKSIL), IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected FFKSIL plus IL-2, FFKSIL plus α-tFN, and IL-2 plus α>-IFN, respectively. The control group was divided into three groups and injected FFKSIL, IL-2 and α>-IFN, respectively. The effective rate of FFKSIL, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. The effect of FFKSIL, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of FFKSIL plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Gastric Cancer

Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-αlevels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity (Zhou et al., 2012).

Colorectal Cancer; Chemotherapy

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mLád-1 compound Kushen injection, for 10d during chemotherapy. In the control group the numbers of CD3+,CD4+T cells,NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells ,NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

NSCLC; Chemotherapy

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term  efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group. The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05).

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone. Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Liver Cancer

Fifty-seven patients with unresectable primary liver cancer were randomly divided into 2 groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. One, two, and three year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

Chemotherapy

Ten RCTs were included in a meta-analysis, whose results suggest that compared with chemotherapy alone, the combination had a statistically significant benefit in healing efficacy and improving quality of life. As well,  the combination also had a statistically significant benefit in myelosuppression, white blood cell, hematoblast, liver function and in reducing the gastroenteric reaction, decreasing the of CD3, CD4, CD4/CD8, and NK cells (Huang et al., 2011).

Colorectal Cancer, NSCLC, Breast Cancer; Chemotherapy

Fufang kushen Injection might improve the efficacies of chemotherapy in patients with colorectal cancer, NSCLC and breast cancer.

The results of a meta-analysis of 33 studies of randomized controlled trials with a total of 2,897 patients demonstrated that the short-term efficacies in patients with colorectal cancer, NSCLC, and breast cancer receiving Fufangkushen Injection plus chemotherapy were significantly better than for those receiving chemotherapy alone. However the results for patients with gastric cancer on combined chemotherapy were not significantly different from those for patients on chemotherapy alone (Fang, Lin, & Fan, 2011).

References

An, A.J., An, G.W., & Wu, Y.C. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People”s Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen, G., Yu, B., Yuan, S.J., & Yuan, Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013). Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan, C.X., Lin, C.L., Liang, L., Zhao, Y.Y., Liu, J., Cui, J., Yang, Q.M., Wang, Y.L., & Zhang, A.R. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Fang, L., Lin, N.M., Fan, Y. (2011). Short-term  efficacies of Fufangkushen Injection plus chemotherapy in patients with solid tumors: a meta-analysis of randomized trials. Zhonghua Yi Xue Za Zhi, 91(35):2476-81.


Hu, D.J., & Mei, X.D. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Huang S, Fan W, Liu P, Tian J. (2011). Meta-analysis of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer. Zhongguo Zhong Yao Za Zhi, 36(22):3198-202.


Kong, Q-Z., Huang, D-S., Huang, T. et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Qi, L., Zhang, J., Zhang, Z. (2013). Determination of four alkaloids in Compound Kushen Injection by high performance liquid chromatography with ionic liquid as mobile phase additive. Chinese Journal of Chromatography, 31(3): 249-253. doi: 10.3724/SP.J.1123.2012.10039.


Shi, B., & Xu, H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012:373219. doi: 10.1155/2012/373219.


Wang, H.M., & Cheng, X.M. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia, G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin, W.H., Sheng, J.W., Xia, H.M., Chen, J., Wu, Y.W., & Fan, H.Z. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhou, S-K., Zhang, R-L., Xu, Y-F., Bi, T-N. (2012) Anti-oxidant and Immunity Activities of Fufang Kushen Injection Liquid. Molecules 2012, 17(6), 6481-6490; doi:10.3390/molecules17066481


Zhu, M.Y., Jiang, Z.H., Lu, Y.W., Guo, Y., & Gan, J.J. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Oridonin

Cancer: Prostate

Action: Growth arrest, autophagy

To investigate the mechanism of oridonin (ORI)-induced autophagy in prostate cancer PC-3 cells, PC-3 cells cultured in vitro were treated with ORI, and the inhibitory ratio of ORI on PC-3 cells was assayed by 3-4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. After ORI treatment, the proliferation of PC-3 cells was inhibited significantly in a concentration and time-dependent manner. SEM examination revealed cellular shrinkage and disappearance of surface microvilli in ORI-treated cells. Under TEM examination, the nuclei exhibited chromatin condensation and the appearance of a large number of autophagosomes with double-membrane structure in cytoplasm. AO staining showed the existence of AVOs. The expression of LC3 and the mRNA level of beclin 1 was increased by ORI. Furthermore, autophagy inhibitor 3-methyladenine reversed the increase of beclin 1 mRNA. The growth of PC-3 cells was inhibited, and autophagy was induced by ORI, indicating ORI may have a potential antitumor effect.

Source
Ye LH, Li WJ, Jiang XQ, et al. Study on the autophagy of prostate cancer PC-3 cells induced by oridonin. Anat Rec (Hoboken). 2012 Mar;295(3):417-22. doi: 10.1002/ar.21528.

 

Cancer: Multiple myeloma

Action: Inhibits proliferation and induces apoptosis

This study was purposed to investigate the antitumor effect of oridonin on human multiple myeloma cell line U266 The results showed that the oridonin obviously inhibited the growth of U266 cell in dose-and time-dependent manners. As for morphological changes, characteristic apoptotic cells presented in U266 cells treated with 10 µmol/L oridonin for 24 hours. The apoptotic rate of U266 cells increased in dose and time dependent manners; after treatment of U266 cells with oridonin the mRNA levels of FGFR3, BCL2, CCND1 and MYC as well as the their protein levels decreased. Occasionally, the oridonin up-regulated the protein levels of P53 in the same manner. It is concluded that the oridonin can exert its anti-tumor effect by inhibiting proliferation and inducing apoptosis of U266 cell in dose dependent and time dependent manners, that maybe give the clues about new program of target therapy for multiple myeloma.

Source:

Duan HQ, Li MY, Gao L, et al. Mechanism concerning antitumor effect of oridonin on multiple myeloma cell line U266. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014 Apr;22(2):364-9. doi: 10.7534/j.issn.1009-2137.2014.02.018.

Cancer: Multiple myeloma

Action: Induces apoptosis and autophagy

Exposure to oridonin (1-64 μmol/L) inhibited the proliferation of RPMI8266 cells in a concentration-dependent manner with an IC(50) value of 6.74 μmol/L. Exposure to oridonin (7 μmol/L) simultaneously induced caspase 3-mediated apoptosis and Beclin 1-dependent autophagy of RPMI8266 cells. Both the apoptosis and autophagy were time-dependent, and apoptosis was the main effector pathway of cell death. Exposure to oridonin (7 μmol/L) increased intracellular ROS and reduced SIRT1 nuclear protein in a time-dependent manner.

Oridonin simultaneously induces apoptosis and autophagy of human multiple myeloma RPMI8266 cells via regulation of intracellular ROS generation and SIRT1 nuclear protein. The cytotoxicity of oridonin is mainly mediated through the apoptotic pathway, whereas the autophagy protects the cells from apoptosis.

Source

Zeng R, Chen Y, Zhao S, Cui GH.Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin. 2012 Jan;33(1):91-100. doi: 10.1038/aps.2011.143.

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Chemoresistance, Ara-C, VP-16 

Cancer cell arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. Weng et al., (2014) compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S–mediated apoptosis.

Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.

Reference

Weng Hy, Huang Hl, Dong B, et al. Inhibition of miR-17 and miR-20a by Oridonin Triggers Apoptosis and Reverses Chemoresistance by Derepressing BIM-S. Cancer Res; 74(16); 1–11. doi: 10.1158/0008-5472.CAN-13-1748

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.

 

Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.

 

Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681

 

Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.

 

Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.

 

Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.

 

Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.

 

Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.

 

Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.

 

Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.

 

Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.

 

Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.

 

Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.

 

Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.

 

Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.

Kanglaite injection (KLT)

Cancer: Lung, stomach, liver, kidney, breast, nasopharynx, esophagus, pancreas, colon-rectum, ovarian, prostate, lymphoma, leukemia

Action: Anti-tumoral, immunomodular, chemotherapy support, radiation support

Ingredients: yi yi ren (Coix Lacryma-jobi seed oil, CLSO).

Indications: primary NSCLC and primary liver cancer, which are not suitable for surgery, of qi and yin deficiency, lingering “Dampness due to Spleen deficiency types”. It has synergic effect when combined with radiotherapy or chemotherapy. It has certain anti-cachexia and analgesic effects for middle or late-stage tumor patients.

Dosage and usage:

Slow intravenous drip: 200 ml, once daily, 21 days as a course of treatment with 3-5 days interval.

When combined with radiotherapy or chemotherapy, the dosage can be reduced according to the practical conditions. (Drug Information Reference in Chinese, 2000. See end).

Invented by the famous pharmacological professor, Prof. Li Dapeng, Kanglaite Injection (KLT) has been listed by the Chinese government as a “State Basic Drug”, a “State Basic Medical Insurance Drug” and a “State Key New Drug”.

Based on pre-clinical studies at John Hopkins University, USA, tumor-inhibitive rate of KLT on transplanted breast carcinoma induced by cell strain MDA-MB-231 was over 50%. KLT could inhibit the expression of COX2 of the strain in vitro and act as an inhibitor of fatty acid synthase.

The broad ranged basic studies in China also revealed KLT different mechanisms such as inducing cancer cell apoptosis, inhibiting angiogenesis, reversing MDR and regulating gene expression of Fas/Apo-1 and Bcl-2.

Both Chinese and overseas clinical experiences have shown that KLT has proven effect in the treatment of cancers mainly at the sites of lung, breast, liver, nasopharynx, esophagus, stomach, pancreas, kidney, colon-rectum, ovary and prostate. This agent is also applied in the treatment of malignant lymphoma and acute leukemia. KLT has brought great benefits to over 500,000 cancer patients in more than 2,000 big or medium hospitals in China since 1997.

The year 1995 witnessed KLT patent certificates granted from China and the USA. In August 1997 the phase III clinical study was successfully completed and the injection was officially launched in China after final approval from the Ministry of Public Health.

Doctors in America carried out a phase 1 study of Kanglaite in 2003. They gave it to 16 people who had different types of cancer including lung, prostate and oesophageal cancers. The results showed people did not have many side-effects but the effect on their cancer varied. Some people showed no response, and their cancers continued to grow. But in others, the cancer stopped growing for a few months.

Standard treatment course for KLT is 200 ml (2 bottles) per day via intravenous drip x 42 days (84 bottles). There is a break for 4-5 days after 21 days. Clinical experiences in China and Russia suggest 2 treatment courses for those with late stage advanced and metastatic tumors for better therapeutic effect and evident prolongation of life (Conti, n.d.).

A consecutive cohort of 60 patients was divided into two groups, the experimental group receiving Kanglaite” Injection combined with chemotherapy and the control group receiving chemotherapy alone. After more than two courses of treatment, efficacy, quality of life and side-effects were evaluated. The response rate and KPS score of the experimental group were significantly improved as compared with those of the control group(P<0.05). In addition, gastrointestinal reactions and bone marrow suppression were significantly lower than in the control group(P<0.05). Kanglaite” Injection enhanced efficacy and reduced the side-effects of chemotherapy, improving quality of life of gastric cancer patients (Zhan et al., 2012).

Lung Cancer

C57BL/6 mice with Lewis lung carcinoma were divided into four groups: the control group (C), cisplatin group (1 mg/kg, DDP), low KLT group (6.25 ml/kg body weight [L]), and high KLT group (12.5 ml/kg body weight [H]). T cell proliferation was determined by the MTT assay. Nuclear factor-kappa B (NF-κB), inhibitor kappa B alpha

(IκBα), IκB kinase (IKK) and epidermal growth factor receptor (EGFR) levels were measured by western blotting. An enzyme-linked immunosorbent assay was used to analyze the expression of interleukin-2 (IL-2).

Intraperitoneal KLT significantly inhibited the growth of Lewis lung carcinoma, and the spleen index was significantly higher in the L and H groups than in the C group. KLT stimulated T cell proliferation in a dose-dependent manner. Treatment with KLT at either 6.25 or 12.5 ml/kg decreased the level of NF-κB in the nucleus in a dose-dependent manner, and KLT markedly decreased the expression of IκBα, IKK and EGFR in the cytoplasm of tumor cells and overall. IL-2 was significantly increased in the supernatant of splenocytes in the H group.

These results demonstrate that KLT has pronounced anti-tumor and immunostimulatory activities in C57BL/6 mice with Lewis lung carcinoma. These may affect the regulation of NF-κB/IκB expression, in addition to cytokines such as IL-2 and EGFR. Further work needs to investigate the relevant signaling pathway effects, but our findings suggest that KLT may be a promising anti-tumor drug for clinical use (Pan et al., 2012).

Skin Keratinocytes

Ultraviolet (UV) radiation plays an important role in the pathogenesis of skin photoaging. Depending on the wavelength of UV, the epidermis is affected primarily by UVB. One major characteristic of photoaging is the dehydration of the skin. Membrane-inserted water channels (aquaporins) are involved in this process. In this study we demonstrated that UVB radiation induced aquaporin-3 (AQP3) down-regulation in cultured human skin keratinocytes. Kanglaite is a mixture consisting of extractions of Coix Seed, which is an effective anti-neoplastic agent and can inhibit the activities of protein kinase C and NF-κB. We demonstrated that Kanglaite inhibited UVB-induced AQP3 down-regulation of cultured human skin keratinocytes. Our findings provide a potential new agent for anti-photoaging (Shan et al., 2012).

Hepatocellular Carcinoma

KLT produced an obvious time and dose-dependent inhibitory effect on HepG2 cells, and marked apoptosis was detected by FCM. The protein of Fas increased by 11.01%, 18.71%, 28.71% and 37.15%; the protein of FasL increased by 1.49%, 1.91%, 3.27% and 3.38% in comparison with the control (P<0.05). Real-time fluorescent quantitative RT-PCR showed that treating HepG2 cells with KLT caused the up-regulation of Fas and FasL mRNA. KLT inhibits HepG2 growth by inducing apoptosis, which may be mediated through activation of the Fas/FasL pathway (Lu et al., 2009).

Glomerular Nephritis

MTT, telomere repeat amplification protocol (TRAP), ELISA, PAGE and silver-stain were applied to detect the growth rate and telomerase activity of mesengial cell (MC) after stimulation of Kang Lai Te (KLT) and IL-1. The growth rate of MC was enhanced by IL-1 stimulation, which was accompanied with a reduction of the activity of telomerase. Adversely, the growth rate of MC was reduced by KLT, which was accompanied with an enhancement of activity of telomerase. Moreover, the growth rate of MC and the activity of telomerase were both inhibited by the combinative use of IL-1 and KLT without any influence from the sequence of their administration. KLT could inhibit proliferation and telomerase activity of MC with or without pre-stimulation with IL-1. KLT might be useful to prevent and treat glomerular nephritis related to MC proliferation (Hu et al., 2005).

Lung Metastasis

To screen the differential expression genes of Kanglaite in anti-tumor metastasis mRNA was extracted and purified from the lung of the mouse with LA795 lung metastasis, and hybridized respectively on 4 096-gene chip. cDNA microarray was scanned for the fluorescent signals and analyzing difference expression. Twenty-seven differential expressed genes were obtained.

Among these genes, 25 were up-regulated and 2 were down-regulated. Twelve of them were Mus musculus cDNA clone. Six genes related with genesis, development and metastasis of tumor. cDNA microarray for analysis of gene expression patterns is a powerful method to identify differential expressed genes. In this study, 6 genes are thought to be associated genes of Kanglaite in anti-tumor metastasis (Wu et al., 2003).

Lung Cancer; Chemo Side Effects

Sixteen reports were included in the meta-analysis. The quality of 16 studies was low. Pooling data of 5 studies indicated that the effect of Kanglaite+NP (Vinorelbine+Cisplatin) was better than NP with RR 1.46, 95% Confidence Interval 1.13 to 1.91. Pooling data of 3 studies of MVP (Mitomycin+Vindsine+ Cisplatin) plus Kanglaite indicated that the effect was better with RR 1.84, 95%CI 1.22 to 2.76. Pooling data of 2 studies showed that the effect of GP (Gemcitabine+Cisplatin) plus Kanglaite was better than GP with RR 1.63, 95%CI 1.09 to 2.43.

Fourteen studies revealed that Kanglaite may reduce the side-effects induced by regular treatment. Ten studies showed regular treatment plus Kanglaite can stabilize/improve quality of life (Zhu et al., 2009).

Apoptosis

Some studies show Kanglaite could inhibit some anti-apoptotic genes and activate some pro-apoptotic genes. Its injection solution is one of the new anti-cancer medicines that can significantly inhibit various kinds of tumor cells, so it has become the core of research into how to further explore KLT injection to promote tumor cell apoptosis by impacting on related genes (Lu et al., 2008).

References

Conti, M. (n.d.). Anti-cancer Chinese herbal kanglaite. Cancer Evolution. Retrieved from: http://www.cancerevolution.info/cancer-therapies/alternative-therapies/83-anticancer-chinese-herbal-kanglaite.html.


Hu, Y,H., Liang, W.K. Gong, Z.F. Xu,Q.L. Zou. (2005). The effect of kanglaite injection (KLT) on the proliferation and telomerase activity of rat mesangial cells. Zhongguo Zhong Yao Za Zhi, 30(6):450-453.


Lu, Y., Li, C.S., Dong, Q. (2008) Chinese herb related molecules of cancer-cell-apoptosis: a mini-review of progress between Kanglaite injection and related genes. J Exp Clin Cancer Res, 27:31. doi: 10.1186/1756-9966-27-31.


Lu, Y., L.Q. Wu, Q. Dong,C.S. Li. (2009). Experimental study on the effect of Kang-Lai-Te induced apoptosis of human hepatoma carcinoma cell HepG2. Hepatobiliary Pancreat Dis Int, 8(3):267-272.


Pan, P.,Y. Wu,Z.Y. Guo,R. et al. (2012). Anti-tumor activity and immunomodulatory effects of the intraperitoneal administration of Kanglaite in vivo in Lewis lung carcinoma. J Ethnopharmacol, 143(2):680-685.


Shan, S.J., Xiao T., Chen J., et al. (2012). Kanglaite attenuates UVB-induced down-regulation of aquaporin-3 in cultured human skin keratinocytes. Int J Mol Med, 29(4):625-629.


Wu, Y., Yang Y., Wu D. (2003). Study on the gene expression patterns of Kanglaite in anti-lung metastasis of LA795 mouse. Zhongguo Fei Ai Za Zhi, 6(6):473-476.


Zhan, Y.P., Huang X.E., Cao J. (2012). Clinical safety and efficacy of Kanglaite(R) (Coix Seed Oil) injection combined with chemotherapy in treating patients with gastric cancer. Asian Pac J Cancer Prev, 13(10):5319-5321.


Zhu, L.Z. Yang, S. Wang, Y. Tang. (2009). Kanglaite for Treating Advanced Non-small-cell Lung Cancer: A Systematic Review. Zhongguo Fei Ai Za Zhi, 12(3):208-215.

Cinobufacini Injection

Cancer: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Ingredients: chan su (Dried toad skin/Bufo bufo gargarizans)

TCM functions: Removing Toxin, reducing swelling, relieving pain.

Indications: Anti-tumor, immune enhancing and anti-viral effects, and can be used in middle and late-stage tumors, chronic hepatitis B.

Dosage and usage:

Intramuscular injection: 2-4 ml once, twice daily, 2-3 months as a course of treatment.

Cervical Cancer; Radiotherapy

Sixty patients with early cervical cancer were randomly divided into two groups. Twenty eight cases in treatment group were treated by intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection. Thirty two cases in control group were treated only by intensity modulated radiation therapy. There was no significant difference between the two groups on the short-term  effect and lesion local control rate (P > 0.05). The 3-year overall survival rate in the treatment group was higher than that in control group (P<0.05). There was significant difference between the two groups on radiation proctitis (P<0.05).

Intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection can improve efficacy and reduce adverse reactions in early cervical cancer, worthy of clinical application. 10-20 ml mixed with 500 ml of 5% glucose for slow intravenous drip. Four weeks as a course of treatment, and 1-2 days interval after each week”s treatment.

Cinobufacini Injection (CI) showed better tumor inhibition effects on tumor-bearing rats of with a “heat syndrome” constitution, indicating CI was of a “cold property”. It may potentially be used in tumor-bearing rats of a “heat syndrome” constitution (Wang et al., 2011).

Induces Apoptosis

Chan Su is a traditional Chinese medicine prepared from the dried white secretion of the auricular and skin glands of toads, and has been used as an oriental drug for the treatment of a number of diseases, including cancer. In lung carcinoma A549 cells, treatment with the skin of Venenum Bufonis (SVB) resulted in the inhibition of cell growth and viability, and the induction of apoptosis.

SBV treatment induced the proteolytic activation of caspases and the concomitant degradation of poly(ADP-ribose)-polymerase and beta-catenin protein. Cleavage of Bid and a down-regulation of the inhibitor of apoptosis family proteins were also observed in SBV-treated A549 cells. Data from this study indicates that SVB induces the apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic and mitochondria-mediated intrinsic caspase pathways (Yun et al., 2009).

Blocks Metastasis

The effect of Cinobufacini injection on proliferation, heterogeneous adhesion, and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells (HLEC) was studied.

A co-culture system of human hepatoma HepG-2 cells and HLEC was established by means of Transwell chamber. Cell proliferation was analyzed by Trypan blue stain assay. MTT assay was used to observe the heterogeneous adhesion capacity of HepG-2 cells co-cultured with HLEC. Transwell invasion chamber was used to observe the invasiveness capacity of HepG-2 cells co-cultured with HLEC.

Cinobufacini Injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Inhibits Human Lymphatic Endothelial Cells (HLEC)

The effect of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

As the dosage of Cinobufacini injection increased (0.105, 0.21 and 0.42 µg/mL), so did the inhibition of HLCE. Cinobufacini injection demonstrated significant inhibition of HLEC proliferation (P < 0.05), migration (P < 0.05) and tubulin formation, in a dose-dependent manner (P < 0.05). Cinobufacini injection significantly decreased the expression of VEGFR-3 and HGF in HLEC, in a dose-dependent manner (P < 0.05).

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC; Chemotherapy

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as Medline (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

A total of seven RCTs of 498 patients were included. Meta-analysis results show that the experimental group and control group have significant differences in the response rate [RR=1.29, 95% CI (1.07, 1.56)], Karnofsky score [RR=1.86, 95% CI (1.14, 3.05)], weight change [RR=1.56, 95% CI (1.20, 2.03)], gastrointestinal side-effects [RR=0.72, 95% CI (0.53, 0.99)], neutropenia [RR=0.70, 95%CI(0.54, 0.91)], thrombocytopenia [RR=0.53, 95% CI (0.38, 0.75)], and renal function [RR=0.37, 95% CI (0.17, 0.79).

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

The clinical effect of Cinobufacini injection, combined with transcatheter arterial chemoembolization (TACE), on treating primary liver cancer was investigated.

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with TACE, and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of control group. There was no statistical difference in the rate of effectiveness between the two groups. Laboratory tests, after three cycles, in the treatment group were better than that of the control group, and the difference between the two groups was statistically significant.

Cinobufacini injection, combined with TACE, can decrease TACE induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Hepatoma

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose and time-dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

Cell-cycle Arrest

Studies in China by Sun et al., (2011), Ke et al., (2011) and Tu et al., (2012) demonstrated that Cinobufacini Injection induced cell-cycle arrest, and could be used in the treatment of primary liver cancer, as well as in conjunction with chemotherapy in the treatment of non-small-cell lung cancer.

Caution

Resibufogenin (RBG), one of the major components in chan su, significantly affected all parameters of transmembrane action potential., induced delayed response after depolarization, and triggered arrhythmias in sheep and canine Purkinje fibers. Chan su toxicity carries a high mortality rate in the United States and this study focused upon the cardiac electrophysiological and electro-toxicity effects of RBG (Xie et al., 2000).

References

Fu, H.Y., Gao, S., Tian, L.L., Chen, X.Y., & Cui, X.N. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao, S., Chen, X.Y., Fu, H.Y., & Cui, X.Z. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke, J, Lu, K., & Li, Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology.


Sun, Y., Lu, X.X., Liang, X.M., & Cui, X.N. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu, C., Yin, J., & He, J. Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.


Wang, S.S., Zhai, X.F., Li, B. (2011) Effect of cinobufacini injection on the tumor growth of tumor-bearing rats of different constitutions. Zhongguo Zhong Xi Yi Jie He Za Zhi, 31(8):1101-3.


Xie, J-T., Wang, Hs., Attele A.S., Yuan, C-S. (2000). Effects of Resibufogenin from Toad Venom on Isolated Purkinje Fibers. American Journal of Chinese Medicine, 28(2):187-196.


Yun, H.R., Yoo, H.S., Shin, D.Y., et al. (2009). Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum Bufonis) through activation of caspases. J Acupunct Meridian Stud, 2(3):210-7. doi: 10.1016/S2005-2901(09)60057-1.

Ai Di Injection (ADI)

Cancers: Breast, colorectal., glioma, lung

Action: Chemo-sensitizer, cytostatic, radio-sensitizer

 

Ingredients: Mylabris phalerata (ban mao), Panax ginseng (ren shen), Astragalus membranaceus (huang qi).

TCM functions: Clearing Heat, removing Toxin, resolving stagnant Blood, dissolving lumps.

Indications: Primary liver cancer, lung cancer, colorectal cancer, malignant lymphoma, and gynecological malignancies.

Dosage and usage:

For adults: 50-100ml, mixed with 400-500ml of 0.9% NaCl injection or 5-10% glucose injection for intravenous drip, once daily.

When combined with radiotherapy or chemotherapy, the course of treatment is synchronized to radiotherapy or chemotherapy.

Application before or after the surgery: 10 days as a course of treatment.

Intervention treatment: 10 days as a course of treatment.

Single application: 15 days as a cycle, with 3 days interval., 2 cycles as a course of treatment.

 

Cachexia patients in advanced stage: 30 consecutive days as a course of treatment (Drug Information Reference in Chinese: See end).

 

Glioma; Radio-sensitization

The inhibition ratio was determined by MTT assay, the change in the cell-cycle was analyzed by flow cytometry and the expression of cyclin B1 and Wee1 was detected by Western blot analysis. The reproductive activity of the group treated with irradiation (IR) and Aidi injection was suppressed significantly, and the cloning efficiency and divisional index also declined. Aidi injection (15 µg/ml) induced G2/M phase arrest in the cell line after 48 h.

 

Aidi injection (ADI) is effective in radio-sensitization. The possible mechanisms involved may be associated with G2/M phase cell arrest, the down-regulation of cyclin B1 and up-regulation of Wee1 expression, which influences cell size by inhibiting the entry into mitosis, through inhibiting Cyclin-dependent kinase 1 (Xu, Song, Qin, Wang, & Zhou, 2012).

 

Breast Cancer

ADI significantly inhibited the proliferation of MCF-7 cells in a dose-dependent manner. The IC50 of ADI was 55.71 mg/mL after treatment for 48 h. The 60 mg/mL ADI was used as the therapeutic drug concentration. Microarray analysis identified 45 miRNAs that were up-regulated and 55 miRNAs that were down-regulated in response to ADI treatment. Many ADI-induced miRNAs were related to breast cancers. The 12 potential target genes of mir-126 were predicted by both TargetScan and PicTar software.

 

The miRNA may serve as therapeutic targets for ADI, and its modulation of expression is an important mechanism of ADI inhibition of breast cancer cell growth (Zhang, Zhou, Lu, Du, & Su, 2011).

 

Colorectal Cancer; FOLFOX4

A consecutive cohort of 100 patients was divided into two groups. The experimental group was treated with a combination of Aidi injection and FOLFOX4, while the control group was only administered FOLFOX4. After a minimum of two courses of treatment, efficacy, quality of life, and side-effects were evaluated.

 

The response rate of the experimental group was not significantly different compared to the control group (P > 0.05). However, there were significant differences in clinical benefit response and KPS score. In addition, adverse gastrointestinal reactions and the incidence of leukopenia were lower than that of the control group (P < 0.05).

Aidi injection, combined with FOLFOX4, is associated with reduced toxicity of chemotherapy, enhanced clinical benefit response, and improved quality of life in patients with advanced colorectal cancer (Xu, Huang, Li, Li, & Tang, 2011).

 

NSCLC

Ninety-eight cases of advanced NSCLC were randomly divided into two groups: a trial group and control group. In the trial group Navelbine/Cisplatin (NP) plus Ai Di Injection (ADI) (60-80 ml) was administered intravenously, via dissolution in 400 ml of normal saline, per day for 8-10 days. In the control group, only NP chemotherapy was administered at the dosages of: Navelbine (25 mg/m², d1, 8) and Cisplastin (40 mg/m², d1-3). Each patient received at least two cycles of treatment.

 

The effective rate in the trial group and the control group was 53.1% and 44.9% respectively, without significant difference between the two groups (P > 0.05). However, the rate of progression, adverse reactions in the bone marrow, digestive tract, and immune function in the trial group were all lower than those in the control group (P < 0.05). In addition, improvement in Karnofsky score in the trial group was higher than that in the control group (P < 0.05).

 

A chemotherapy regiment of NP, combined with ADI, shows benefit in the treatment of advanced NSCLC. AI could minimize the adverse reactions of chemotherapy, and improve the quality of life in patients with NSCLC (Wang et al., 2004).

 

NSCLC; Meta-analysis

PubMed (1980-2008), Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 3, 2008), EMBASE (1984-2008), CancerLit (1996-2003), CBMdisc (1980-2008), CNKI database (1980-2008), Wanfang database (1980-2008), and Chongqing VIP database (1980-2008) were searched. Relevant Chinese periodicals were manually searched as well. All randomized controlled trials comparing Aidi Injection with other treatment methods of NSCLC were included. Two reviewers selected studies, assessed the quality of studies, and extracted the data independently.

 

Fourteen randomized controlled trials were included in the meta-analysis, but unfortunately, the quality of reports of the 14 included studies were poor. Aidi Injection combined with cobalt-60, or navelbine and platinol (NP), showed statistically significant differences in improving the response rate, compared to the use of cobalt-60 alone (P = 0.0002) or NP alone (P = 0.04). However, Aidi Injection combined with etoposide and platinol (EP), taxinol and platinol (TP) or gamma knife showed no significant differences when compared with single use of EP (P=0.60), TP (P=0.16) or gamma knife (P=0.34), respectively. The RR and 95% CI of EP, TP, and gamma knife were 1.17 [0.65, 2.09], 1.27 [0.91, 1.78] and 1.08 [0.92, 1.26] respectively.

 

Six studies indicated that Aidi Injection, combined with NP or gamma knife, could improve quality of life. Six studies showed that Aidi Injection, combined with NP or TP, could improve the bone marrow’s hematopoietic function. The results of the meta-analysis indicate that Aidi Injection may have adjuvant therapeutic effects in the treatment of NSCLC patients. However, sample sizes are small, study quality is poor, and the existence of publication bias had been found. The effects of Aidi Injection need to be confirmed by large multicenter randomized controlled trials (Ma, Duan, Feng, She, Chen & Zhang, 2009).

 

NSCLC; Neo-adjuvant Chemotherapy

Sixty patients, with stage IIIA non-small-cell lung cancer (NSCLC), underwent two courses of bronchial arterial infusion (BAI) chemotherapy, before tumor incision. They were assigned to either the treatment or control group, using a random number table. Thirty patients were allocated to each. An ADI of 100 mL, added into 500 mL of 5% glucose, was given to the patients in the treatment group via intravenous drip. Treatment was once a day, beginning 3 days prior and throughout each of two 14-day courses of chemotherapy.

 

Levels of T-lymphocyte subsets, natural killer cell activity, and interleukin-2 in peripheral blood were measured before and after the treatment. The effective rate in the treatment group was higher than that in the control group (70.0% vs. 56.7%, P < 0.05).

 

Moreover, bone marrow suppression and liver function damage (P < 0.05) was less in the treatment group relative to the control. Cellular immune function was suppressed in NSCLC patients, but was ameliorated after treatment, showing a significant difference when compared to the control group (P < 0.05).

 

ADI could potentially act as an ideal auxiliary drug for patients with stage IIIA NSCLC, receiving BAI neo-adjuvant chemotherapy, before surgical operation. It could enhance the effectiveness of chemotherapy, ameliorate adverse reactions, and elevate patient’s cellular immune function (Sun, Pei, Yin, Wu & Yang, 2010).

 

References

Ma, W.H., Duan, K.N., Feng, M., She, B., Chen, Y., & Zhang, R.M. (2009). Aidi Injection as an adjunct therapy for non-small-cell lung cancer: a systematic review. Journal of Chinese Integrative Medicine, 7(4), 315-324.

Sun, X.F., Pei, Y.T., Yin, Q.W., Wu, M.S., & Yang, G.T. (2010). Application of Aidi injection in the bronchial artery infused neo-adjuvant chemotherapy for stage III A non-small-cell lung cancer before surgical operation. Chinese Journal of Integrative Medicine, 16(6), 537-541.

Wang, D., Chen, Y., Ren, J., Cai, Y., M. Liu, M., & Zhan, Q. (2004). A randomized clinical study on efficacy of Aidi injection combined with chemotherapy in the treatment of advanced non-small-cell lung cancer. Journal of Chinese Integrative Medicine, 7(3), 247-249.

Xu, H.X., Huang, X.E., Li, Y., Li, C.G., & Tang, J.H. (2011). A clinical study on safety and efficacy of Aidi injection combined with chemotherapy. Asian Pacific Journal of Cancer Prevention, 12(9), 2233-2236.

Xu, X.T., Song, Y., Qin, S., Wang, L.L., & Zhou, J.Y. (2012). Radio-sensitization of SHG44 glioma cells by Aidi injection in vitro. Molecular Medicine Reports, 5(6), 1415-1418.

Zhang, H., Zhou, Q.M., Lu, L.L., Du, J., & Su, S.B. (2011). Aidi injection alters the expression profiles of microRNAs in human breast cancer cells. Journal of Traditional Chinese Medicine, 31(1), 10-16.

β-Elemene

Cancer: Lung, malignant ascites, glioblastoma, gastric

Action: Anti-tumoral., chemotherapy support

Ingredients: Mixed liquid of β-, γ-, δ-elemene.

Indications: Increases the therapeutic effect and lowers the toxic and side-effects of radiotherapy and chemotherapy when in combination with routine regiments of radiotherapy or chemotherapy for lung cancer, liver cancer, esophageal cancer, nasopharyngeal cancer, brain tumors, metastatic bone cancer and other malignancies. It can also be used for intervention, intracavitary chemotherapy and pleural effusion or ascites caused by cancer.

Dosage and usage:

Intravenous injection: 0.4-0.6 g, once daily, 2-3 weeks as a course of treatment.

Pleural injection: 300 ml + 10 ml of 2% procaine. The treatment can be repeated once after 5-7 days if the pleural effusion does not reduce.

Abdominal injection: 500 ml + 10 ml of 2% procaine, 1-2 times every week for 2 consecutive weeks.

Topical administration: 25-50 mg, once daily, 5-10 times as a course of treatment.

Arterial infusion: 300-400 mg once.

Elemene Injection is made from mixed liquid of β-, γ-, δ-elemene. It can increase the therapeutic effect and lower the toxicity and side-effects of radiotherapy and chemotherapy when combined with routine regiments of radiotherapy or chemotherapy for lung cancer, liver cancer, esophageal cancer, nasopharyngeal cancer, brain tumors, metastatic bone cancer and other malignancies. It can also be used for intervention, intraperitoneal chemotherapy, and pleural effusion or ascites caused by cancer (Drug Information Reference in Chinese: See end. 2000-12).

NSCLC; Chemotherapy

Randomized controlled trials (RCTs) of elemene injection combined with cisplatin chemotherapeuties in treating small cell lung cancer (NSCLC) were collected by Xu et al., (2013). Their meta-analysis results suggested that compared with cisplatin chemotherapy alone, the combination of elemene injection and cisplatin chemotherapeutics showed a higher clinical benefit rate (OR = 2. 03, 95% CI:1.43-2. 88, P <0. 000 1) and a better quality of life (OR = 3.23, 95% CI:2. 20-4. 74, P <0. 000 01). As well, the combination could also reduce leucopenia (OR =0. 50, 95% CI:0. 33-0. 76, P <0. 001), and thrombocytopenia (OR =0. 38, 95% CI:0. 16-0. 85, P <0. 02), increase CD4 (MD = 3.32, 95% C1:2. 94-3.70, P <0. 000 01), and CD4/CD8 (MD = 0. 36, 95% CI:0. 28-0. 44, P < 0. 000 01), and relieve gastrointestinal reactions such as nausea and vomiting (OR = 0. 37, 95% CI: 0. 19-0. 71, P = 0. 003).

The analysis indicates that elemene can enhance the chemotherapeutic effect on NSCLC, improve the quality of life, and reduce adverse effect of platinum-contained chemotherapeutics, thereby being worth promoting in clinic.

Lung Cancer

Randomized controlled clinical trials related to the use of β>-elemene injection, as an adjunctive treatment for lung cancer, were retrieved from the Chinese Biomedical (CBMweb), Chinese Medical Current Content (CMCC), China National Knowledge Infrastructure (CNKI), ChinaInfo, Cochrane Central Register of Controlled Trials; MEDLINE, EMBASE, OVID and TCMLARS databases.

A total of 21 source documents (1,467 patients) matched pre-specified criteria for determining the effectiveness and safety of β>-elemene injection as an adjunctive treatment for lung cancer. Five studies involving 285 NSCLC patients reported a higher 24-month survival rate (39.09%) with the adjunctive treatment than with chemotherapy alone (26.17%; RR, 1.51; 95% CI, 1.03 to 2.21). Four studies involving 445 patients reported that the increased probability for improved performance status for patients treated with elemene-based combinations was higher than that of patients treated with chemotherapy alone (RR, 1.82; 95% CI, 1.45 to 2.29).

The results from a subgroup analysis on 12 studies involving 974 NSCLC patients and 9 studies involving 593 patients with both SCLC and NSCLC showed that the tumor control rate for NSCLC improved more in the elemene-based combinations treatment group (78.70%) than in the chemotherapy alone control group (71.31%; RR, 1.06; 95% CI, 1.00 to 1.12). The tumor response rate for NSCLC also improved more among patients treated with elemene based combinations (50.71%) than among patients treated with chemotherapy alone (38.04%; RR, 1.34; 95% CI, 1.17 to 1.54). The effectiveness of chemotherapy for the treatment of lung cancer may improve when combined with β-elemene injection as an adjunctive treatment. The combined treatment can result in an improved quality of life and prolonged survival (Wang et al., 2012).

Malignant Ascites

The effective combination therapy for malignant ascites, the therapeutic value of the combination of Endostar, a modified recombinant human endostatin, and β-elemene, an active component of a traditional Chinese herb, in an H22 mouse malignant ascites model was investigated by Jiang et al. (2012). The results of this study revealed that the combination therapy had significant synergistic effects on the inhibition of ascites formation and a deceased number of tumor cells and protein levels in ascites compared with the results of treatment with a single agent. A decreased peritoneal microvascular permeability and reduction in VEGF, MMP-2 and hypoxia inducible factor 1α(HIF1α) was noted in the combination group, when compared with single agent treatment.

These studies found that in the ascitic tumor cells, the protein levels of VEGF and MMP-2, as well as levels of VEGF mRNA, were significantly inhibited by the combination therapy. The potentiating effects of the combination of Endostar with β-elemene suggest that this novel therapy may yield an effective therapy for the treatment of malignant ascites.

Glioblastoma

Anti-proliferation of glioblastoma cells induced by beta-elemene was dependent on p38 MAPK activation. Treatment of glioblastoma cell lines with beta-elemene, led to phosphorylation of p38 MAPK, cell-cycle arrest in G0/G1 phase and inhibition of proliferation of these cells. Inhibition of p38 MAPK reversed beta-elemene-mediated anti-proliferation effect. Furthermore, the growth of glioblastoma cell-transplanted tumors in nude mice was inhibited by intraperitoneal injection of beta-elemene (Yao et al., 2008).

Breast Cancer; Chemotherapy

Beta-elemene had synergistic effect with Paclitaxel, and its possible mechanism might be correlated with down-regulating the cell-cycle protein cyclin-B1 expression and up-regulating the P27(kip1) expression. Beta-elemene (20 and 40 microg/mL respectively) and Paclitaxel (0.016 and 0.008 microg/mL respectively) synergistically inhibited cell proliferation of MB-468 breast cancer cells, with Q value > 1.15. Beta-elemene alone (52.59 microg/mL) apparently decreased the expression of cyclin-B1 protein. The expression of cyclin-B1 protein in the combined group was also lower than that in the PI group (1.698 microg/mL). The expression of P27(kip1) was up-regulated when compared with that in the betaI group or the PI group (Cai et al., 2013).

Gastric Cancer

TCM therapy applied in the 34 patients assigned in the TCM group (group I) included intravenous injection of Cinobufotalin, beta-elemene, or orally taking of anti-cancer Chinese herbs. The same TCM was also applied in the 36 patients of the combined treatment group (group II), but in combined use of FOLFOX chemotherapeutic protocol.

The median survival period in group II was 31 months, while it was 30 months in group I; the 1-, 2-, 3-year survival rates in group II were 88.89%, 84.38% and 59.26%, and those in the group I were 82.35%, 71.43% and 65.00%, respectively with insignificant difference between the two groups (chi2 = 0.298, P > 0.05); QOF in group I was significantly superior to that in group II (P < 0.05), and the adverse reaction occurrence was significantly less in group I than that in group II.

Chinese medicine treatment can improve the QOF and prolong the survival period of patients with progressive gastric cancer with few side-effects (Liu et al., 2008).

References

Jiang, Z.Y., Qin, S.K., Yin, X.J., Chen, Y.L., Zhu, L. (2012). Synergistic effects of Endostar combined with β-elemene on malignant ascites in a mouse model. Exp Ther Med, 4(2):277-284.

Liu X, Hua BJ. (2008). Effect of traditional Chinese medicine on quality of life and survival period in patients with progressive gastric cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi, 28(2):105-7.

Wang, B., Peng, X.X., Sun, R., Li, J., Zhan, X.R., Wu, L.J., Wang, S.L., & Xie, T. (2012). Systematic review of β-elemene injection as adjunctive treatment for lung cancer. Chinese Journal of Integrative Medicine, 18(11), 8313-823.

Xu, X.W., Yuan, Z.Z., Hu, W.H., Wang, X.K. (2013). Meta-analysis on elemene injection combined with cisplatin chemotherapeutics in treatment of non-small-cell lung cancer. Zhongguo Zhong Yao Za Zhi, 38(9):1430-7.

Yao, Y.Q., Ding, X., Jia, Y.C, et al. (2008). Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett, 264(1):127-34. doi: 10.1016/j.canlet.2008.01.049.

De Li Sheng Injection

Cancer: Lung

Action: Chemo-protective, chemo-enhancing

Ingredients: hong shen (processed/red Panax ginseng), huang qi (Astragalus membranaceus), sheng chan su (Bufo bufo gargarizans Cantor), sheng ban mao (crude Mylabris phalerata)

TCM functions: Invigorating qi, supporting Vital-qi, dissolving tumors and dispersing lumps.

Indications: qi deficiency and Blood stagnation type of primary liver cancer of middle and late stage.

Dosage and usage:

40-60 ml mixed with 500 ml of 5% glucose injection or normal saline for intravenous drip, once daily. In each course of treatment, the dosage of first treatment should be reduced to half and medicinal liquid should be diluted to no lower than 1:20, the speed should be no more than 15 drips every minute. 45 days as a course of treatment. A new course should begin after 1 one week”s interval.

Chemotherapy

A meta-analysis of 10 studies showed that, when Delisheng Injection combined with chemotherapy group was compared with chemotherapy group, the relative risk (RR) to the effective rate (CRPR) was 1.29 and 95% confidence interval (CI) was [1.11, 1.50]; RR to KPS scale improved rate was 1.81 and 95%CI was [1.53, 2.15]. The incidence of adverse reactions was lower in patients treated with Delisheng Injection combined with chemotherapy than in those treated with chemotherapy alone. Significant difference was noted in the incidence of alopecia, liver damage phlebitis, between the two groups of patients (Huang, Lai, & Ye, 2013).

Lung Cancer

Delisheng Injection (DLS) single-agent has a satisfying inhibition effect in PGCL3 cell line and DLS might enhance the inhibition effect of DDP on cancer metastasis. Research by Dong, et al., (2013) provided an experimental basis about the treatment on highly metastatic lung cancer.

NSCLC; Chemotherapy

There were significant differences observed in hematological toxicity and gastrointestinal toxicity and clinical symptoms (P < 0.05) between the control group, treated with only Gemcitabine and Platinum (GP), and the treatment group of combined Delisheng and GP. The change of the scores of the Karnofsky Performance Status scale (KPS) and body weight was significant in the treatment group compared with the control group (P < 0.05). The combination of Delisheng injection and (Gemcitabine and Platinum) GP can be used to treat non-small-cell lung cancer postoperatively, which can improve the clinical symptoms and reduce the toxicity during chemotherapy and enhance the patient”s tolerance to chemotherapy (Wu, Ye, & Xie, 2010).

The therapeutic effect of Delisheng (DLS) combined with chemotherapy is better than that of chemotherapy alone, in the treatment of patients with stage III-IV non-small-cell lung cancer. It can improve efficacy, quality of life, and reduce the side-effects of chemotherapy, while promoting hematopoiesis (Zhou & Ni, 2009).

767 participants (patients) in 10 homogeneous studies were included in randomly controlled trials that met the enrolling criteria. The meta-analysis of the 10 studies showed that, when Delisheng Injection combined with chemotherapy group was compared with chemotherapy group, the relative risk (RR) to the effective rate (CRPR) was 1.29 and 95% confidence interval (CI) was [1.11, 1.50]; RR to KPS scale improved rate was 1.81 and 95%CI was [1.53, 2.15].

The incidence of adverse reactions was lower in patients treated with Delisheng Injection combined with chemotherapy than in those treated with chemotherapy alone. Significant difference was noted in the incidence of alopecia, liver damage phlebitis, between the two groups of patients. Conclusion: Delisheng Injection combined with chemotherapy has beneficial effects in the treatment of NSCLC (Huang et al., 2013).

References

Dong, X-l., Gong, Y., Chen, Z-z. (2013). Delisheng injection  a Chinese medicinal compound, enhanced the effect of cis-platinum on lung carcinoma cell line PGCL3. Chinese Journal of Integrative Medicine.


Huang, Y.l., Lai, D., Ye, Y.(2013) A meta-analysis of Delisheng Injection combined with chemotherapy in the treatment of non-small-cell lung cancer. Lu Shou Yi Xue Yuan Xue Bao. 2013, 36(2): 139-144


Wu, X., Ye, Sy., Xie, Bl. (2010). Effect of Delisheng Injection with Chemotherapy on Reducing Toxicities in Postoperative Treatment for Non-Small-Cell Lung Cancer. Zhong Guo Zhong Xi Yi Jie He Wai Ke Za Zhi, 16(4): 412-414.


Zhou, J., Ni, S. (2009). The Therapy of DLS combined with chemotherapy in stage Ⅲ-Ⅳ non-small-cell lung cancer. Lin Chuang Fei Ke Za Zhi, 14(5): 642-644.

Xi Shu (Fr. seu Rx Camptothecae Acuminatae)

• Camptothecinum injection: 5 mg IM, bid or 15-20 mg added in normal saline 20 ml IV, once every other week, 200-250 mg as one course; 20 mg bladder perfusion twice a week or 5-10 mg intracancerous injection qod for bladder cancer. Camptothecinum suspension: 2.5-5.0 mg in 50% glucose 40 ml IV once every week, 50-100mg as one course, maintenance dose 2.5 mg every week, for liver cancer, leukemia and lymphoma. Hydroxycamptothecimum injection: 4-10 mg added in normal saline 20 ml IV qd or qod, 60-120mg as one course.

• Indications: bladder cancer, liver cancer, leukemia and lymphoma as indicated above.

• Pharmaceutical actions: Hydroxycamptothecine is an anti-carcinogenic which inhibits polymerase of DNA or damages DNA directly.

Shan Ci Gu (Bulbus Iphigeniae)

• Clochincine amide 10 mg: 10 mg IV for drips daily, total dosage 0.2-0.3g. This herb may cause nausea, vomiting, general pain, palpitation, alopecia, etc. or even leukocytopenia, so the dosage should be limited.

• Pharmacological action: Clochincine, one of its active components, and tis derivatives exerts an inhibiting effect on various kinds of sarcoma and parenchymatous liver cancer in experimental animals. It serves as inhibitor in the intermediate stage of cellular mitosis.