Category Archives: Down-regulates

Retinoids

Cancer: none noted

Action: Down-regulates,epidermal growth factor receptor

Human papillomavirus (HPV) is an important etiological agent in the genesis of cervical cancer. HPV-positive cervical tumors and human papillomavirus-positive cell lines display increased epidermal growth factor receptor (EGFR) expression, which is associated with increased cell proliferation. ECE16-1 cells are an HPV-immortalized human ectocervical epithelial cell line that is a model of HPV-associated cervical neoplasia and displays elevated EGFR levels.

The effects of receptor-selective retinoid ligands on EGFR-associated signal transduction were examined. It has been shown that retinoic acid receptor (RAR)-selective ligands reduce EGFR level and the magnitude and duration of EGFR activation in EGF-stimulated cells.

These effects are reversed by co-treatment with an RAR antagonist. To identify the mechanism, Sah et al. (2002) examined the effects of retinoid treatments on EGF-dependent signaling. Stimulation with EGF causes a biphasic activation of the ERK1/2 MAPK.

This effect is specific as retinoid treatment does not alter the level or activity of other EGFR-regulated kinases, including AKT and the MAPKs p38 and JNK. Retinoid X receptor-selective ligands, in contrast, did not regulate these responses. These results suggest that RAR ligand-associated down-regulation of EGFR activity reduces cell proliferation by reducing the magnitude and duration of EGF-dependent ERK1/2 activation.

All-trans retinoic acid (RA), through binding to the retinoic acid receptors (RARs), alters interactions of the RARs with various protein components of the transcription complex at numerous genes in stem cells, and some of these protein components of the transcription complex then either place or remove epigenetic marks on histones or on DNA, altering chromatin structure and leading to an exit from the self-renewing, pluripotent stem cell state.

Different epigenetic mechanisms, i.e. first, primarily H3K27me3 marks and then DNA methylation, may be employed by embryonic stem cells and other stem cells for control of early vs. late stages of cell differentiation. Creating these stable epigenetic changes requires the actions of many molecules, including tet1, polycomb protein complexes (PRCs), miRNAs, DNA methyltransferases (DNMTs), and telomerase reverse transcriptase (Gudas, 2013).

References

Gudas LJ. (2013). Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol, S1084-9521(13)00102-X. doi: 10.1016/j.semcdb.2013.08.002.


Sah JF, Eckert RL, Chandraratna RA, Rorke EA. (2002). Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem, 277(12):9728-35.

Pumpkin seed extract

Cancer: Breast

Action: Down-regulates ER-α

Breast Cancer

Phytoestrogens have a controversial effect on hormone-dependent tumors. Herein, we investigated the effect of the pumpkin seed extract (PSE) on estradiol production and estrogen receptor (ER)-α/ER-β/progesterone receptor (PR) status on MCF7, Jeg3, and BeWo cells. The effect of the PSE on ER-α/ER-β/PR expression was assessed by immunocytochemistry. The PSE was found to contain both lignans and flavones. Estradiol production was elevated in MCF7, BeWo, and Jeg3 cells in a concentration-dependent manner.

In MCF7 cells, a significant ER-α down-regulation and a significant PR up-regulation were observed. The above results, after properly designed animal studies, could highlight a potential role of pumpkin seed lignans in breast cancer prevention and/or treatment (Richter et al., 2013).

Reference

Richter D, Abarzua S, Chrobak M, Vrekoussis T, et al. (2013). Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells. Nutr Cancer, 65(5):739-45. doi: 10.1080/01635581.2013.797000.

Puerarin

Cancer: Colon, breast, acute myeloid leukemia

Action: MDR, aromatase inhibition, induces apoptosis

Induces Apoptosis, Colorectal Cancer

Puerarin is isolated from Pueraria radix (Pueraria lobata [(Willd.) Ohwi]) and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders, as well as anti-cancer properties. Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has anti-thrombotic and anti-allergic properties and stimulates estrogenic activity.

Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments with ³ 25µM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. Puerarin also affects the expression of apoptosis-associated genes, revealing an increase of bax and decreases of c-myc and bcl-2.

Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemo-preventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis (Li, et al., 2006).

Induces Apoptosis, Breast Cancer

Puerarin exhibits a dose-dependent inhibition of cell growth in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell-cycle distribution and apoptosis assays revealed that puerarin induced cell apoptosis through a caspase-3-dependent pathway and mediated cell-cycle arrest in the G2/M phase. It is therefore suggested that puerarin may act as a chemo-preventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis (Lin et al., 2009).

Breast Cancer, MDR

Purearin down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation.

The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, these results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells (Hien et al., 2010).

Acute Myeloid Leukemia (AML)

The results showed that a certain concentration of puerarin (PR) could inhibit the proliferation of these four cell lines effectively in time-and dose-dependent manners, and the intensity of inhibition on four kinds of acute myeloid leukemia (AML) cell lines was from high to low as follows: NB4>Kasumi-1>U937>HL-60. Meanwhile, PR could also change cycle process, cell proportion in G1/G0 phase decreased, cells in S phase increased and Sub-diploid peak also appeared. It is concluded that PR can selectively inhibit the proliferation of four AML cell lines and block cell-cycle process, especially for NB4 cells (Shao et al., 2010).

Aromatase Inhibition

Aromatase P450 (P450 (arom)) is overexpressed in endometriosis, endometrial cancers and uterine fibroids. With weak estrogen agonists/antagonists and some other enzymatic activities, isoflavones are increasingly advocated as a natural alternative to estrogen replacement therapy (ERT) and are available as dietary supplements. Puerarin is a major isoflavonoid compound isolated from Pueraria lobata (ge gen).

Yu et al. (2008) found that puerarin exerted a time-course effect on the inhibition of c-jun mRNA, which parallelled that of P450(arom). The suppression of P450(arom) expression and activity by puerarin treatment may associate with the down-regulation of transcription factor AP-1 or c-jun.

References

Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF- κ B pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res, 54(7):918-28. doi: 10.1002/mnfr.200900146.


Lin YJ, Hou YC, Lin CH, et al. (2009). Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochemical and Biophysical Research Communications, 378(4):683-8. doi:10.1016/j.bbrc.2008.10.178


Shao HM, Tang YH, Jiang PJ, et al. (2010). Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(2):296-9.


Yu C, Li Y, Chen H, Yang S, Xie G. (2008). Decreased expression of aromatase in the Ishikawa and RL95-2 cells by the isoflavone, puerarin, is associated with inhibition of c-jun expression and AP-1 activity. Food Chem Toxicol, 46(12):3671-6. doi: 10.1016/j.fct.2008.09.045.


Yu Z, Li WJ. (2006). Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters, 238(1):53-60.

Norcantharidin (NCTD)

Cancer: Colorectal., CSCs, breast

Action: Anti-metastatic, MDR

Norcantharidin is a metastatic inhibitor derived from cantharidin, which is found in many species of blister beetles, including Mylabris phalerata (Pall.) and Lytta vesicatoria (Linnaeus).

Norcantharidin (NCTD) is a small-molecule metastatic inhibitor without renal toxicity derived from a renal toxic compound cantharidin, which is found in blister beetles (Mylabris phalerata Pall.), commonly used in traditional Chinese medicine.

Colorectal Cancer; Anti-metastatic

The aim of this study was to clarify the transcriptional regulation of MMP-9 gene by NCTD in colorectal cancer CT-26 cells. NCTD not only down-regulated MMP-9 mRNA and protein expression, but also inhibited gelatinase activity in a concentration- and time-dependent manner. Evidence by electrophoretic mobility shift assay demonstrated that NCTD inhibited the DNA-binding activity of Sp1. In addition, the increase effect of NF-kappaB-luciferase activity by NCTD may include the up-expression of nuclear STAT1 and result in competitive suppression of NF-kappaB-binding activity in MMP-9 promoter. In conclusion, the metastasis inhibitor NCTD down-regulates MMP-9 expression by inhibiting Sp1 transcriptional activity in colorectal cancer CT26 cells (Chen et al., 2009).

MDR; Cancer Stem Cells

Hsieh et al. (2013) investigated the modulation of self-renewal pathways and MDR in CSCs by NCTD. They suggest that using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

Breast Cancer

Cantharidin and norcantharidin induced apoptosis and repressed MCF-7 cell growth, adhesion and migration. They repressed MCF-7 cell adhesion to platelets through down-regulation of α2 integrin, an adhesion molecule present on the surface of cancer cells. The repression of α2 integrin expression was found to be executed through the protein kinase C pathway, the activation of which could have been due to PP2A inhibition (Shou et al. 2013).

References

Chen YJ, Chang WM, Liu YW, et al. (2009). A small-molecule metastasis inhibitor, norcantharidin, downregulates matrix metalloproteinase-9 expression by inhibiting Sp1 transcriptional activity in colorectal cancer cells. Chem Biol Interact., 181(3):440-6.


Hsieh CH, Chao KS, Liao HF, Chen YJ. (2013). Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells. Evid Based Complement Alternat Med, 2013;2013:838651.


Shou LM, Zhang QY, Li W, et al. (2013). Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent down-regulation of α 2 integrin. Oncol Rep. doi: 10.3892/or.2013.2601.

Hispolon

Cancer: Bladder, breast, liver, gastric

Action: Anti-inflammatory, cytostatic, cytotoxic, pro-oxidative, anti-proliferative

Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have anti-oxidant, anti-inflammatory, and anti-cancer activities.

Liver Cancer

Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell-cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells.

These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell-cycle arrest and apoptosis in Hep3B cells (Huang et al., 2011).

Gastric Cancer, Breast Cancer, Bladder Cancer

Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. Hispolon has also been found to inhibit breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment.

Lu et al. (2009) also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126.

In conclusion, hispolon ubiquitinates and down-regulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

Gastric Cancer

The efficacy of hispolon in human gastric cancer cells and cell death mechanism was explored. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells.

The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione anti-oxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer.

These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anti-cancer agents (Chen et al., 2008).

Anti-proliferative Activity

Hispolon, which lacks one aromatic unit in relation to curcumin, exhibits enhanced anti-inflammatory and anti-proliferative activities. Dehydroxy hispolon was least potent for all three activities. Overall the results indicate that the substitution of a hydroxyl group for a methoxy group at the meta positions of the phenyl rings in curcumin significantly enhanced the anti-inflammatory activity, and the removal of phenyl ring at the 7(th) position of the heptadiene back bone and addition of hydroxyl group significantly increased the anti-proliferative activity of curcumin and hispolon (Ravindran et al., 2010).

References

Chen W, Zhao Z, Li L, et al. (2008). Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med, 45(1):60-72. doi: 10.1016/j.freeradbiomed.2008.03.013.


Huang GJ, Deng JS, Huang SS, Hu ML. (2011). Hispolon induces apoptosis and cell-cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem, 59(13):7104-13. doi: 10.1021/jf201289e.


Lu TL, Huang GJ, Lu TJ, et al. (2009). Hispolon from Phellinus linteus has anti-proliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol, 47(8):2013-21. doi: 10.1016/j.fct.2009.05.023.


Ravindran J, Subbaraju GV, Ramani MV, et al. (2010). Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol, 79(11):1658-66. doi: 10.1016/j.bcp.2010.01.033.

Artesunate

Cancer: Colon, esophageal., pancreatic, ovarian, multiple myeloma and diffuse large B-cell lymphoma, osteosarcoma, lung, breast, skin, leukemia/lymphoma

Action: Anti-metastatic, MDR, radio-sensitizer

Pulmonary Adenocarcinomas

Artesunate exerts anti-proliferative effects in pulmonary adenocarcinomas. It mediates these anti-neoplastic effects by virtue of activating Bak (Zhou et al., 2012). At the same time, it down-regulates epidermal growth factor receptor expression. This results in augmented non-caspase dependent apoptosis in the adenocarcinoma cells. Artesunate mediated apoptosis is time as well as dose-dependent. Interestingly, AIF and Bim play significant roles in this Bak-dependent accentuated apoptosis (Ma et al., 2011). Adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) expression is also attenuated while transcription of matrix metallopeptidase 7 (MMP-7) is also down-regulated (Zhao et al., 2011). In addition, arsenuate enhances the radio-sensitization of lung carcinoma cells. It mediates this effect by down-regulating cyclin B1 expression, resulting in augmented G2/M phase arrest (Rasheed et al., 2010).

Breast Cancer

Similarly, artesunate exhibits anti-neoplastic effects in breast carcinomas. Artesunate administration is typically accompanied by attenuated turnover as well as accentuated peri-nuclear localization of autophagosomes in the breast carcinoma cells. Mitochondrial outer membrane permeability is typically augmented. As a result, artesunate augments programmed cellular decline in breast carcinoma cells (Hamacher-Brady et al., 2011).

Skin Cancer

Artesunate also exerts anti-neoplastic effects in skin malignancies. It mediates these effects by up-regulating p21. At the same time it down-regulates cyclin D1 (Jiang et al., 2012).

Colon Cancer

Artemisunate significantly inhibited both the invasiveness and anchorage independence of colon cancer SW620 cells in a dose-dependent manner. The protein level of intercellular adhesion molecule 1 (ICAM-1) was down-regulated as relative to the control group.

Artemisunate could potentially inhibit invasion of the colon carcinoma cell line SW620 by down-regulating ICAM-1 expression (Fan, Zhang, Yao & Li, 2008).

Multi-drug resistance; Colon Cancer

A profound cytotoxic action of the antimalarial., artesunate (ART), was identified against 55 cancer cell lines of the U.S. National Cancer Institute (NCI). The 50% inhibition concentrations (IC50 values) for ART correlated significantly to the cell doubling times (P = 0.00132) and the portion of cells in the G0/G1 (P = 0.02244) or S cell-cycle phases (P = 0.03567).

Efferth et al., (2003) selected mRNA expression data of 465 genes obtained by microarray hybridization from the NCI data-base. These genes belong to different biological categories (drug resistance genes, DNA damage response and repair genes, oncogenes and tumor suppressor genes, apoptosis-regulating genes, proliferation-associated genes, and cytokines and cytokine-associated genes). The constitutive expression of 54 of 465 (=12%) genes correlated significantly to the IC50 values for ART. Hierarchical cluster analysis of these 12 genes allowed the differentiation of clusters with ART-sensitive or ART-resistant cell lines (P = 0.00017).

Multi-drug-resistant cells differentially expressing the MDR1, MRP1, or BCRP genes were not cross-resistant to ART. ART acts via p53-dependent and- independent pathways in isogenic p53+/+ p21WAF1/CIP1+/+, p53-/- p21WAF1/CIP1+/+, and p53+/+ p21WAF1/CIP1-/- colon carcinoma cells.

Multi-drug resistance; Esophageal Cancer

The present study aimed to investigate the correlation between ABCG2 expression and the MDR of esophageal cancer and to estimate the therapeutic benefit of down-regulating ABCG2 expression and reversing chemoresistance in esophageal cells using artesunate (ART).

ART is a noteworthy antimalarial agent, particularly in severe and drug-resistant cancer cases, as ART is able to reverse drug resistance. ART exerted profound anti-cancer activity. The mechanism for the reversal of multi-drug resistance by ART in esophageal carcinoma was analyzed using cellular experiments, but still remains largely unknown (Liu, Zuo, & Guo, 2013).

Pancreatic Cancer

The combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Results indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications (Liu & Cui, 2013).

Ovarian Cancer

Advanced-stage ovarian cancer (OVCA) has a unifocal origin in the pelvis. Molecular pathways associated with extrapelvic OVCA spread are also associated with metastasis from other human cancers and with overall patient survival. Such pathways represent appealing therapeutic targets for patients with metastatic disease.

Pelvic and extrapelvic OVCA implants demonstrated similar patterns of signaling pathway expression and identical p53 mutations.

However, Marchion et al. (2013) identified 3 molecular pathways/cellular processes that were differentially expressed between pelvic and extrapelvic OVCA samples and between primary/early-stage and metastatic/advanced or recurrent ovarian, oral., and prostate cancers. Furthermore, their expression was associated with overall survival from ovarian cancer (P = .006), colon cancer (1 pathway at P = .005), and leukemia (P = .05). Artesunate-induced TGF-WNT pathway inhibition impaired OVCA cell migration.

Multiple Myeloma, B-cell Lymphoma

Findings indicate that artesunate is a potential drug for treatment of multiple myeloma and diffuse large B-cell lymphoma (DLBCL) at doses of the same order as currently in use for treatment of malaria without serious adverse effects. Artesunate treatment efficiently inhibited cell growth and induced apoptosis in cell lines. Apoptosis was induced concomitantly with down-regulation of MYC and anti-apoptotic Bcl-2 family proteins, as well as with cleavage of caspase-3. The IC50 values of artesunate in cell lines varied between 0.3 and 16.6 µm. Furthermore, some primary myeloma cells were also sensitive to artesunate at doses around 10 µm. Concentrations of this order are pharmacologically relevant as they can be obtained in plasma after intravenous administration of artesunate for malaria treatment (Holien et al., 2013).

Osteosarcoma, Leukemia/Lymphoma

Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo (Xu et al. 2011). ART alone or combined with chemotherapy drugs could inhibit the proliferation of B/T lymphocytic tumor cell lines as well ALL primary cells in vitro, probably through the mechanism of apoptosis, which suggest that ART is likely to be a potential drug in the treatment of leukemia/lymphoma (Zeng et al., 2009).

References

Efferth, T., Sauerbrey, A., Olbrich, A., et al. (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol, 64(2):382-94.


Fan, Y., Zhang, Y.L., Yao, G.T., & Li, Y.K. (2008). Inhibition of Artemisunate on the invasion of human colon cancer line SW620. Lishizzhen Medicine and Materia Medica Research, 19(7), 1740-1741.


Hamacher-Brady, A., Stein, H.A., Turschner, S., et al. (2011). Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286(8):6587–6601. doi: 10.1074/jbc.M110.210047.


Holien, T., Olsen, O.E., Misund, K., et al. (2013). Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. Eur J Haematol, 91(4):339-46. doi: 10.1111/ejh.12176.


Jiang, Z., Chai, J., Chuang, H.H., et al. (2012). Artesunate induces G0/G1 cell-cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anti-cancer Drugs, 23(6):606–613. doi: 10.1097/CAD.0b013e328350e8ac.


Liu, L., Zuo, L.F., Guo, J.W. (2013). Reversal of Multi-drug resistance by the anti-malaria drug artesunate in the esophageal cancer Eca109/ABCG2 cell line. Oncol Lett, 6(5):1475-1481.


Liu, Y. & Cui, Y.F. (2013). Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pac J Cancer Prev, 14(9):5243-8.


Ma, H., Yaom Q., Zhang, A.M., et al. (2011). The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules, 16(12):10556–10569. doi: 10.3390/molecules161210556.


Marchion, D.C., Xiong, Y., Chon, H.S., et al. (2013). Gene expression data reveal common pathways that characterize the unifocal nature of ovarian cancer. Am J Obstet Gynecol, S0002-9378(13)00827-2. doi: 10.1016/j.ajog.2013.08.004.


Rasheed, S.A., Efferth, T., Asangani, I.A., Allgayer, H. (2010). First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer, 127(6):1475–1485. doi: 10.1002/ijc.25315.


Xu, Q., Li, Z.X., Peng, H.Q., et al. (2011). Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 12(4):247–255. doi: 10.1631/jzus.B1000373.


Zhao, Y., Jiang, W., Li, B., et al. (2011). Artesunate enhances radiosensitivity of human non-small-cell lung cancer A549 cells via increasing no production to induce cell-cycle arrest at G2/M phase. Int Immunopharmacol, 11(12):2039–2046. doi: 10.1016/j.intimp.2011.08.017.


Zeng, Y., Ni, X., Meng, W.T., Wen, Q., Jia, Y.Q. (2009). Inhibitive effect of artesunate on human lymphoblastic leukemia/lymphoma cells. Sichuan Da Xue Xue Bao Yi Xue Ban, 40(6):1038-43.


Zhou, C., Pan, W., Wang, X.P., Chen, T.S. (2012). Artesunate induces apoptosis via a bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol, 227(12):3778–3786. doi: 10.1002/jcp.24086.

Evodiamine

Cancer: Pancreatic, gastric, breast; ER+, ER-, lung

Action: Inhibits NF- κB, inhibits metastasis, increases intracellular ROS, apoptosis, cell-cycle arrest, anti-cancer, MDR

Evodiamine, a naturally occurring indole alkaloid, is one of the main bioactive ingredients of Evodia rutaecarpa [(Juss.) Benth.] (alkaloidal component of the extract). With respect to the pharmacological actions of evodiamine, more attention has been paid to beneficial effects in insults involving cancer, obesity, nociception, inflammation, cardiovascular diseases, Alzheimer's disease, infectious diseases and thermo-regulative effects. Evodiamine has evolved a superior ability to bind various proteins (Yu et al., 2013). Evodiamine exhibits anti-proliferative, anti-metastatic, and apoptotic activities.

Anti-cancer, MDR

Evodiamine possesses anti-anxiety, anti-obesity, anti-nociceptive, anti-inflammatory, anti-allergic, and anti-cancer effects. As well, it has thermoregulation, protection of myocardial ischemia-reperfusion injury and vessel-relaxing activities (Kobayashi, 2003; Shin et al., 2007; Ko et al., 2007; Ji, 2011). Evodiamine exhibits anti-cancer activities both in vitro and in vivo by inducing cell-cycle arrest or apoptosis, and inhibiting angiogenesis, invasion, and metastasis in a variety of cancer cell lines (Ogasawara et al., 2001; Ogasawara et al., 2002; Fei et al., 2003; Shyu et al., 2006). It presents anti-cancer potentials at micromolar concentrations and even at the nanomolar level in some cell lines in vitro (Lee et al., 2006; Wang, Li, & Wang, 2010). Evodiamine also stimulates autophagy, which serves as a survival function (Yang et al., 2008). Compared with other compounds, evodiamine is less toxic to normal human cells, such as human peripheral blood mononuclear cells (Fei et al., 2003; Zhang et al., 2004). It also inhibits the proliferation of adriamycin-resistant human breast cancer NCI/ADR-RES cells both in vitro and in Balb-c/nude mice (Liao et al., 2005).

Lung Cancer, Cell-cycle Arrest

Evodiamine (10  mg/kg) administrated orally twice daily significantly inhibits   tumor growth (Liao et al., 2005). Moreover, treatment with 10 mg/kg evodiamine from the 6th day after tumor inoculation into mice reduces lung metastasis and does not affect the body weight of mice during the experimental period (Ogasawara et al., 2001).

Cell-cycle Arrest

Evodiamine inhibits TopI enzyme, forms the DNA covalent complex with a similar concentration to that of irinotecan, and induces DNA damage (Chan et al., 2009; Tsai et al., 2010; Dong et al., 2010). However, TopI may not be the main target of this compound. Cancer cells treated with evodiamine exhibit G 2 / M phase arrest (Kan et al., 2004; Huang et al., 2004; Liao et al., 2005) rather than S phase arrest, which is not consistent with the mechanism of classic TopI inhibitors, such as irinotecan. Therefore, other targets aside from TopI may also be important for realizing the anti-cancer potentials of evodiamine. This statement is supported by the fact that evodiamine has effects on tubulin polymerization (Huang et al., 2004).

Increases Intracellular ROS, Apoptosis

Exposure to evodiamine rapidly increases intracellular ROS followed by an onset of mitochondrial depolarization (Yang et al., 2007). The generation of ROS and nitric oxide acts in synergy and triggers mitochondria-dependent apoptosis (Yang et al., 2008). Evodiamine also induces caspase-dependent and caspase-independent apoptosis, down-regulates Bcl-2 expression, and up-regulates Bax expression in some cancer cells (Zhang et al., 2003; Lee et al., 2006). The phosphatidylinositol 3-kinase/Akt/caspase and Fas ligand (Fas-L)/NF-κB signaling pathways might account for evodiamine-induced cell death. Moreover, these signals could be increased by the ubiquitin-proteasome pathway (Wang, Li, & Wang, 2010).

Inhibits Metastasis

Evodiamine has a marked inhibitory activity on tumor cell migration in vitro. When evodiamine at 10 mg/kg was administered into mice from the 6th day after tumor inoculation, the number of tumor nodules in lungs was decreased by 48% as compared to control. The inhibition rate was equivalent to that produced by cisplatin. Results suggest that evodiamine may be regarded as a promising agent in tumor metastasis therapy (Ogasawara et al., 2005).

Inhibits NF-κB

Evodiamine inhibited tumor necrosis factor (TNF)-induced Akt activation and its association with IKK. This down-regulation potentiated the apoptosis induced by cytokines and chemotherapeutic agents and suppressed TNF-induced invasive activity. Overall, these results indicate that evodiamine inhibits both constitutive and induced NF-κB activation and NF-κB-regulated gene expression (Takada et al., 2005).

Breast Cancer

Endocrine sensitivity, assessed by the expression of estrogen receptor (ER), has long been the predict factor to guide therapeutic decisions. Tamoxifen has been the most successful hormonal treatment in endocrine-sensitive breast cancer. However, in estrogen-insensitive cancer tamoxifen showed less effectiveness than in estrogen-sensitive cancer. It is interesting to develop new drugs against both hormone-sensitive and insensitive tumor. In this present study Wang et al. (2013) examined anti-cancer effects of evodiamine extracted from the Chinese herb, Evodiae fructus, in estrogen-dependent and -independent human breast cancer cells, MCF-7 and MDA-MB-231 cells, respectively.

Breast Cancer; ER+, ER-

The expression of ER α and β in protein and mRNA levels was down-regulated by evodiamine according to data from immunoblotting and RT-PCR analysis. Overall, results indicate that evodiamine mediates degradation of ER and induces caspase-dependent pathway leading to inhibition of proliferation of breast cancer cell lines. It suggests that evodiamine may in part mediate through ER-inhibitory pathway to inhibit breast cancer cell proliferation.

Evodiamine (10 mg/kg) significantly reduced tumor growth and pulmonary metastasis. In vitro, evodiamine inhibited cell migration and invasion abilities through down-regulation of MMP-9, urokinase-type plasminogen activator (uPA) and uPAR expression. Evodiamine-induced G0/G1 arrest and apoptosis were associated with a decrease in Bcl-2, cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression and an increase in Bax and p27Kip1 expression (Du et al., 201).

Gastric Cancer

A study by Rasul et al. (2012) was conducted to investigate the synchronized role of autophagy and apoptosis in evodiamine-induced cytotoxic activity on SGC-7901 human gastric adenocarcinoma cells and further to elucidate the underlying molecular mechanisms. Evodiamine significantly inhibited the proliferation of SGC-7901 cells and induced G2/M phase cell-cycle arrest.

Evodiamine-induced autophagy is partially involved in the death of SGC-7901 cells which was confirmed by using the autophagy inhibitor 3-methyladenine (3-MA). Evodiamine has therapeutic potential against cancers.

Pancreatic Cancer

In vitro application of the combination therapy triggered significantly higher frequency of pancreatic cancer cells apoptosis, inhibited the activities of PI3K, Akt, PKA, mTOR and PTEN, and decreased the activation of NF-κB and expression of NF- κB-regulated products. Evodiamine can augment the therapeutic effect of gemcitabine in pancreatic cancer through direct or indirect negative regulation of the PI3K/Akt pathway (Wei et al., 2012).

References

Chan ALF, Chang WS, Chen LM et al. (2009). Evodiamine stabilizes topoisomerase I-DNA cleavable complex to inhibit topoisomerase I activity. Molecules, (14):4:1342–1352.


Dong G, Sheng C, Wang CS, et al. (2010). Selection of evodiamine as a novel topoisomerase i inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as anti-tumor agents. Journal of Medicinal Chemistry, 53(21):7521–7531.


Du J, Wang XF, Zhou QM, et al. (2013). Evodiamine induces apoptosis and inhibits metastasis in MDA “American Typewriter”; “American Typewriter”;‑ MB-231 human breast cancer cells in vitro and in vivo. Oncol Rep, 30(2):685-94. doi: 10.3892/or.2013.2498.


Fei XF, Wang BX, T. Li TJ et al. (2003). Evodiamine, a constituent of Evodiae Fructus, induces anti-proliferating effects in tumor cells. Cancer Science, 94(1):92–98.


Huang YC, Guh JH, Teng CM. (2004). Induction of mitotic arrest and apoptosis by evodiamine in human leukemic T-lymphocytes. Life Sciences, 75(1):35–49.


Ji YB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application. People's Medical Publishing House Co., LTD. Connecticut USA


Kan SF, Huang WJ, Lin LC, Wang PS. (2004). Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. International Journal of Cancer, 110(5):641–651.


Ko HC, Wang YH, Liou KT et al. (2007). Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. European Journal of Pharmacology, 555(2-3):211–217.


Kobayashi Y. (2003). The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Medica, 69(5):425–428.


Lee TJ, Kim EJ, Kim S et al. (2006). Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells. Molecular Cancer Therapeutics, 5(9):2398–2407.


Liao CH, Pan SL, Guh JH et al. (2005). Anti-tumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis, 26(5):968–975.


Ogasawara M, Matsubara T, Suzuki H. (2001). Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biological and Pharmaceutical Bulletin, 24(8):917–920.


Ogasawara M, Matsunaga T, Takahashi S, Saiki I, Suzuki H. (2002). Anti-invasive and metastatic activities of evodiamine. Biological and Pharmaceutical Bulletin, 25(11):1491–1493.


Rasul A, Yu B, Zhong L, et al. (2012). Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol Rep, 27(5):1481-7. doi: 10.3892/or.2012.1694


Shin YW, Bae EA, Cai XF, Lee JJ, and Kim DH. (2007). In vitro and in vivo antiallergic effect of the fructus of Evodia rutaecarpa and its constituents, Biological and Pharmaceutical Bulletin, 30(1):197–199, 2007.


Shyu KG, Lin S, Lee CC et al. (2006). Evodiamine inhibits in vitro angiogenesis: implication for anti-tumorgenicity. Life Sciences, 78(19):2234–2243.


Takada Y, Kobayashi Y, Aggarwal BB. (2005). Evodiamine Abolishes Constitutive and Inducible NF- κB Activation by Inhibiting IκBα Kinase Activation, Thereby Suppressing NF-κ B-regulated Antiapoptotic and Metastatic Gene Expression, Up-regulating Apoptosis, and Inhibiting Invasion. The Journal of Biological Chemistry, 280:17203-17212. doi: 10.1074/jbc.M500077200.


Tsai HP, Lin LW, Lai ZY et al. (2010). Immobilizing topoisomerase I on a surface plasmon resonance biosensor chip to screen for inhibitors. Journal of Biomedical Science, 17(1):49.


Wang C, Li S, Wang MW. (2010). Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF- κ B signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicology in Vitro, 24(3):898–904.


Wang KL, Hsia SM, Yeh JY, et al. (2013). Anti-Proliferative Effects of Evodiamine on Human Breast Cancer Cells. PLoS One, 8(6):e67297.


Wei WT, Chen H, Wang ZH, et al. (2012). Enhanced anti-tumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway. Int J Biol Sci, 8(1):1-14.


Yu H, Jin H, Gong W, Wang Z, Liang H. (2013). Pharmacological actions of multi-target-directed evodiamine. Molecules, 18(2):1826-43. doi: 10.3390/molecules18021826.


Yang J, Wu LJ, Tashino SI, et al. (2007). Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis. Free Radical Research, 41(10):1099–1108.


Zhang Y, Wu LJ, Tashiro SI, Onodera S, Ikejima T. (2003). Intracellular regulation of evodiamine-induced A375-S2 cell death. Biological and Pharmaceutical Bulletin, 26(11):1543–1547.


Zhang Y, Zhang QH, Wu LJ, et al. (2004). Atypical apoptosis in L929 cells induced by evodiamine isolated from Evodia rutaecarpa. Journal of Asian Natural Products Research, 6(1):19–27.

Apigenin

Cancer:
Breast, gastrointestinal., prostate, ovarian, pancreatic

Action: Anti-proliferative effect, induces apoptosis, chemo-sensitizer

Apigenin (4′,5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. There is evidence that the actions of apigenin might hinder the ability of gastrointestinal cancers to progress and spread.

Induces Apoptosis, Anti-metastatic

Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease (Lefort, 2013).

Chemo-sensitizer, Induces Apoptosis

Choi & Kim (2009) investigated the effects of combined treatment with 5-fluorouracil and apigenin on proliferation and apoptosis, as well as the underlying mechanism, in human breast cancer MDA-MB-453 cells. The MDA-MB-453 cells, which have been shown to overexpress ErbB2, were resistant to 5-fluorouracil; 5-fluorouracil exhibited a small dose-dependent anti-proliferative effect, with an IC50 of 90 microM. Interestingly, combined treatment with apigenin significantly decreased the resistance. Cellular proliferation was significantly inhibited in cells exposed to 5-fluorouracil at its IC50 and apigenin (5, 10, 50 and 100 microM), compared with proliferation in cells exposed to 5-fluorouracil alone.

This inhibition in turn led to apoptosis, as evidenced by an increased number of apoptotic cells and the activation of caspase-3. Moreover, compared with 5-fluorouracil alone, 5-fluorouracil in combination with apigenin at concentrations >10 microM exerted a pro-apoptotic effect via the inhibition of Akt expression.

Taken together, results suggest that 5-fluorouracil acts synergistically with apigenin inhibiting cell growth and inducing apoptosis via the down-regulation of ErbB2 expression and Akt signaling (Choi, 2009).

Breast Cancer, Prostate Cancer

Two flavonoids, genistein and apigenin, have been implicated as chemo-preventive agents against prostate and breast cancers; however, the mechanisms behind their respective cancer-protective effects may vary significantly. It was thought that the anti-proliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) β is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17β-estradiol, exhibited anti-proliferative effects and pro-apoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERβ transactivation, particularly at lower concentrations.

However, in mammalian assay, apigenin was found to be more ERβ-selective than genistein, which has equal potency in inducing transactivation through ERα and ERβ. Small interfering RNA-mediated down-regulation of ERβ abrogated the anti-proliferative effect of apigenin in both cancer cells but did not reverse that of genistein. These results unveil that the anti-cancer action of apigenin is mediated, in part, by ERβ. The differential use of ERα and ERβ signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anti-cancer properties (Mak, 2006).

Ovarian Cancer

Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. It has been demonstrated that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin has been found to suppress the expression of Id1 through activating transcription factor 3 (ATF3). These results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells (Li, 2009).

Pancreatic Cancer

Simultaneous treatment or pre-treatment (0, 6, 24 and 42 hours) of apigenin and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Simultaneous treatment with apigenin (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of apigenin, followed by Gem for 36 hours was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of apigenin for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of apigenin hence effectively aids in the anti-proliferative activity of chemotherapeutic drugs (Johnson, 2013).

Induces Apoptosis, Inhibits Angiogenesis and Metastasis.

Preclinical studies have also shown that Ocimum sanctum L. and some of the phytochemicals it contains (including apigenin) prevents chemical-induced skin, liver, oral., and lung cancers. These effects are thought to be mediated by increasing the anti-oxidant activity, altering gene expression, inducing apoptosis, and inhibiting angiogenesis and metastasis. The aqueous extract of Ocimum sanctum L. has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. In particular, important phytochemicals like apigenin have also been shown to prevent radiation-induced DNA damage. This warrants its future research to establish its activity and utility in cancer prevention and treatment (Baliga, 2013).

Lung Cancer

Apigenin has been found to induce apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 µM for 48 hours treatment. Target identification investigations using A549 cells and in cell-free systems demonstrate that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 µM. Interestingly, apigenin also showed synergistic anti-cancer effects with another natural anti-tubulin agent, curcumin. Apigenin and curcumin synergistically induce cell death and apoptosis and also block cell-cycle progression at G2/M phase of A549 cells.

Understanding the mechanism of the synergistic effect of apigenin and curcumin could help to develop anti-cancer combination drugs from cheap and readily available nutraceuticals (Choudhury, 2013).

Induces Apoptosis

It has been shown that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by up-regulation of DR5, making it a potential cancer therapeutic agent. Apigenin has been found to enhance Apo2L/TRAIL-induced apoptosis in cancer cells by inducing DR5 expression through binding ANT2. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by up-regulating DR5 expression at the post-transcriptional level.

Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin Up-regulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. ANT2 inhibitors like apigenin may hence contribute to Apo2L/TRAIL therapy (Oishi, 2013).

Colorectal Cancer

Apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumor growth and anti-metastasis effects. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression.

This research provides direct evidence that apigenin inhibits tumor growth and metastasis both in vitro and in vivo. Apigenin up-regulates TAGLN and down-regulates MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cancer cell proliferation and migration (Chunhua, 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum Sanctum L (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

 

 

Choi EJ, Kim GH. (2009). 5-Fluorouracil combined with apigenin enhances anti-cancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep, 22(6):1533-7.

 

Choudhury D, Ganguli A, Dastidar DG, et al. (2013). Apigenin shows synergistic anti-cancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6):1297-309. doi: 10.1016/j.biochi.2013.02.010.

 

Chunhua L, Donglan L, Xiuqiong F, et al. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. doi: 10.1016/j.jnutbio.2013.03.006.

 

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 20:83-91. doi: 10.1016/j.fct.2013.07.036.

 


Lefort ƒC, Blay J. (2013). Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res, 57(1):126-44. doi: 10.1002/mnfr.201200424.

 

Li ZD, Hu XW, Wang YT & Fang J. (2009). Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Letters, 583(12):1999-2003 doi:10.1016/j.febslet.2009.05.013.

 

Mak P, Leung YK, Tang WY, Harwood C & Ho SM. (2006). Apigenin suppresses cancer cell growth through ERβ. Neoplasia, 8(11):896–904.

 

Oishi M, Iizumi Y, Taniguchi T, et al. (2013). Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2. PLoS One, 8(2):e55922. doi: 10.1371/journal.pone.0055922.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.