Category Archives: p21

Tetrandrine

Cancer:
Breast, leukemia, Oral cancer, renal cell carcinoma, colon

Action: Anti-inflammatory, tamoxifen resistance, cell-cycle arrest, anti-metastatic, MDR

Tetrandrine, a bisbenzylisoquinoline alkaloid from the root of Stephania tetrandra (S, Moore), exhibits a broad range of pharmacological activities, including immunomodulating, anti-hepatofibrogenetic, anti-inflammatory, anti-arrhythmic, anti-portal hypertension, anti-cancer and neuro-protective activities (Li, Wang, & Lu, 2001; Ji, 2011). Tetrandrine has anti-inflammatory and anti-fibrogenic actions, which make tetrandrine and related compounds potentially useful in the treatment of lung silicosis, liver cirrhosis, and rheumatoid arthritis (Kwan & Achike, 2002).

Tetrandrine generally presents its anti-cancer effects in micromolar concentrations. Tetrandrine induces different phases of cell-cycle arrest, depends on cancer cell types (Kuo & Lin, 2003; Meng et al., 2004; Ng et al., 2006) and also induces apoptosis in many human cancer cells, including leukemia, bladder, colon, hepatoma, and lung (Lai et al., 1998; Ng et al., 2006; Wu et al., 2010; He et al., 2011).

In vivo experiments have also demonstrated the potential value of tetrandrine against cancer activity. For example, the survival of mice subcutaneously inoculated with CT-26 cells is extended after daily oral gavage of 50 mg/kg or 150  mg/kg of tetrandrine (Wu et al., 2010). Tetrandrine also inhibits the expression of VEGF in glioma cells, has cytotoxic effect on ECV304 human umbilical vein endothelial cells, and suppresses in vivo angiogenesis (Chen et al., 2009). Tetrandrine-treated mice (10  mg/kg/day) have fewer metastases than vehicle-treated mice, and no acute toxicity or obvious changes can be observed in the body weight of both groups (Chang et al., 2004).

Leukemia

Tetrandrine citrate is a novel orally active tetrandrine salt with potent anti-tumor activity against IM-resistant K562 cells and chronic myeloid leukemia. Tetrandrine citrate-induced growth inhibition of leukemia cells may be involved in the depletion of p210Bcr-Abl mRNA and β-catenin protein (Xu et al., 2012).

Comparative in vitro studies show that tetrandrine has significantly greater suppressive effects on adherence, locomotion and 3H-deoxyglucose uptake of neutrophils, as well as the mitogen-induced lymphocyte responses and mixed lymphocyte reactions. By contrast, berbamine demonstrated a significantly greater capacity for inhibition of NK cell cytotoxicity. These results show that tetrandrine is superior to berbamine in most aspects of anti-inflammatory and immunosuppressive activity.

Since these two alkaloids differ by only one substitution in the side chain of one of the benzene rings, these findings may provide further insight into structure-activity relationships and clues to the synthesis and development of active analogues of this promising class of drugs for the treatment of chronic inflammatory diseases (Li et al., 1989).

MDR, Breast Cancer

Tetrandrine also has been found to have extensive pharmacological activity, including positive ion channel blockade and inhibition of multiple drug resistance proteins. These activities are very similar to that of salinomycin, a known drug targeting breast cancer initiation cells (TICs). Tetrandrine has been probed for this activity, targeting of breast cancer TICs. SUM-149, an inflammatory breast cancer cell line, and SUM-159, a non-inflammatory metaplastic breast cancer cell line, were used in these studies.

In summary, tetrandrine demonstrates significant efficacy against in vitro surrogates for inflammatory and aggressive breast cancer TICs (Xu et al., 2011).

Leukemia, MDR

The potential mechanism of the chemotherapy resistance in acute myeloid leukemia (AML) is the multi-drug resistance (MDR-1) gene product P-glycoprotein (P-gp), which is often overexpressed in myeloblasts from acute myeloid leukemia. In a multi-center clinical trial, 38 patients with poor risk forms of AML were treated with tetrandrine (TET), a potent inhibitor of the MDR-1 efflux pump, combined with daunorubicin (DNR), etoposide and cytarabine (TET–DEC). Overall, postchemotherapy marrow hypoplasia was achieved in 36 patients. Sixteen patients (42%) achieved complete remission or restored chronic phase, 9 achieved partial remission (PR) and 13 failed therapy.

These data indicate that TET–DEC was relatively well tolerated in these patients with poor risk AML, and had encouraging anti-leukemic effects (Xu et al., 2006).

Tamoxifen

Tetrandrine (Tet) had a significant reversal of tamoxifen drug resistance breast cancer cells resistant (MCF-7/TAM). The non-cytotoxic dose (0. 625 microg/mL) reversed the resistance by 2.0 folds. MRP1 was reduced at gene (P <0.05) and protein levels when Tet effected on MCF-7ITAM cells. Tet could reverse the drug resistance of MCF-7/TAM cells, and the reverse mechanism may be related to down-regulating MRP1 expression (Chen & Chen, 2013).

Colon Cancer

Tetrandrine (TET) exhibits anti-colon cancer activity. Gao et al. (2013) compared TET with chemotherapy drug doxorubicin in 4T1 tumor-bearing BALB/c mice model and found that TET exhibits anti-cancer metastatic and anti-angiogenic activities better than those of doxorubicin. Local blood perfusion of tumor was markedly decreased by TET after 3 weeks.

Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF- κ B levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1 α, integrin β 5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo (Chen & Chen, 2013).

Tetrandrine significantly decreased the viability of SAS human oral cancer cells in a concentration- and time-dependent manner. Tet induced nuclear condensation, demonstrated by DAPI staining, and induces apoptosis and autophagy of SAS human cancer cells via caspase-dependent and LC3-I and LC3-II “American Typewriter”; “American Typewriter”;‑dependent pathways (Huang et al., 2013).

Renal Cancer

Tetrandrine treatment showed growth-inhibitory effects on human renal cell carcinoma (RCC) in a time- and dose-dependent manner. Additionally, flow cytometric studies revealed that tetrandrine was capable of inducing G1 cell-cycle arrest and apoptosis in RCC cells. Tet triggered apoptosis and cell-cycle arrest in RCC 786-O, 769-P and ACHN cells in vitro; these events are associated with caspase cascade activation and up-regulation of p21 and p27 (Chen, Ji, & Chen, 2013).

References

Chang KH, Liao HF, Chang HH, et al. (2004). Inhibitory effect of tetrandrine on pulmonary metastases in CT26 colorectal adenocarcinoma-bearing BALB/c mice. American Journal of Chinese Medicine, 32(6):863–872.


Chen HY, Chen XY. (2013). Tetrandrine reversed the resistance of tamoxifen in human breast cancer MCF-7/TAM cells: an experimental research. Zhongguo Zhong Xi Yi Jie He Za Zhi, 33(4):488-91.


Chen T, Ji B, Chen Y. (2013). Tetrandrine triggers apoptosis and cell-cycle arrest in human renal cell carcinoma cells. J Nat Med.


Chen Y, Chen JC, Tseng SH. (2009). Tetrandrine suppresses tumor growth and angiogenesis of gliomas in rats. International Journal of Cancer, 124(10):2260–2269.


Gao JL, Ji X, He TC, et al. (2013). Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor-bearing Mice. Evid Based Complement Alternat Med, 2013:265061. doi: 10.1155/2013/265061.


He BC, Gao JL, Zhang BQ, et al. (2011). Tetrandrine inhibits Wnt/beta-catenin signaling and suppresses tumor growth of human colorectal cancer. Molecular Pharmacology, 79(2):211–219.


Huang AC, Lien JC, Lin MW, et al. (2013). Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol, 43(2):485-94. doi: 10.3892/ijo.2013.1952.


Ji YB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Co., LTD, 2011.


Kwan CY, Achike FI. (2002). Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: cardiovascular effects and mechanisms of action. Acta Pharmacol Sin, 23(12):1057-68.


Kuo PL and Lin CC. (2003). Tetrandrine-induced cell-cycle arrest and apoptosis in Hep G2 cells. Life Sciences, 73(2):243–252.


Lai YL, Chen YJ, Wu TY, et al. (1998). Induction of apoptosis in human leukemic U937 cells by tetrandrine. Anti-Cancer Drugs, 9(1):77–81.


Li SY, Ling LH, The BS, Seow WK and Thong YH. (1989). Anti-inflammatory and immunosuppressive properties of the bis-benzylisoquinolines: In vitro comparisons of tetrandrine and berbamine. International Journal of Immunopharmacology, 11(4):395-401 doi:10.1016/0192-0561(89)90086-6.


Meng LH, Zhang H, Hayward L, et al. (2004). Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G 1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Research, 64(24):9086–9092.


Ng LT, Chiang LC, Lin YT, and C. C. Lin CC. (2006). Anti-proliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. American Journal of Chinese Medicine, 34(1):125–135.


Wu JM, Chen Y, Chen JC, Lin TY, Tseng SH. (2010). Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Letters, 287(2):187–195.


Xu WL, Shen HL, Ao ZF, et al. (2006). Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia. Leukemia Research, 30(4):407-413.


Xu W, Debeb BG, Lacerda L, Li J, Woodward WA. (2011). Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs) In Vitro. Cancers, 3:2274-2285; doi:10.3390/cancers3022274.


Xu XH, Gan YC, Xu GB, et al. (2012). Tetrandrine citrate eliminates imatinib-resistant chronic myeloid leukemia cells in vitro and in vivo by inhibiting Bcr-Abl/ β-catenin axis. Journal of Zhejiang University SCIENCE B, 13(11):867-874.

Teng Long Bu Zhong Tang

Cancer: Colon

Action: Induces apoptosis, inhibits angiogenesis

CT26 colon carcinoma was established in BALB/c mice and treated with Teng Long Bu Zhong Tang (TLBZT), 5-Fu, or TLBZT plus 5-Fu. The tumor volumes were observed. TLBZT significantly inhibited CT26 colon carcinoma growth. TLBZT elicited apoptosis in CT26 colon carcinoma, accompanied by Caspase-3, 8, and 9 activation and PARP cleavage, and down-regulation of XIAP and Survivin. TLBZT also induced cell senescence in CT26 colon carcinoma, with concomitant up-regulation of p16 and p21 and down-regulation of RB phosphorylation.

In addition, angiogenesis and VEGF expression in CT26 colon carcinoma was significantly inhibited by TLBZT treatment. TLBZT exhibited significant anti-cancer effect, and enhanced the effects of 5-Fu in CT26 colon carcinoma, which may correlate with induction of apoptosis and cell senescence, and angiogenesis inhibition (Deng et al., 2013).

Reference

Deng S, Hu B, An HM, et al. (2013). Teng-Long-Bu-Zhong-Tang, a Chinese herbal formula, enhances anti-cancer effects of 5 – Fluorouracil in CT26 colon carcinoma. BMC Complement Altern Med, 13:128. doi: 10.1186/1472-6882-13-128.

Schisandrin

Cancer: Leukemia, breast

Action: Anti-metastatic, cardio-protective, MDR, CYP3A, cell-cycle arrest

Leukemia

Schisandrin B (Sch B) has previously been demonstrated to be a novel P-glycoprotein (P-gp) inhibitor. Recent investigation revealed that Sch B was also an effective inhibitor of the multi-drug resistance-associated protein 1 (MRP1). Sch B's ability to reverse MRP1-mediated drug resistance was tested using HL60/ADR and HL60/MRP human promyelocytic leukemia cell lines, with the overexpression of MRP1 but not P-gp. At the equimolar concentration, Sch B demonstrated significantly stronger potency than the drug probenecid, a MRP1 inhibitor (Sun, Xu, Lu, Pan & Hu, 2007).

Up-regulates CYP3A

The ability of Schisandrin B (Sch B) to modulate cytochrome P450 3A activity (CYP3A) and alter the pharmacokinetic profiles of CYP3A substrate (midazolam) was investigated in vivo in treated rats. Rats were routinely administered with physiological saline (negative control group), ketoconazole (75mg/kg, positive control group), or varying doses of Sch B (experimental groups) for 3 consecutive days. Thereafter, changes in hepatic microsomal CYP3A activity and the pharmacokinetic profiles of midazolam and 1′-hydroxy midazolam in plasma were studied to evaluate CYP3A activity.

The results indicated that Sch B had a significant dose-dependent effect on inhibition of rat hepatic microsomal CYP3A activity. These results suggest that a 3-day treatment of Sch B could increase concentration and oral bioavailability of drugs metabolized by CYP3A (Li, Xin, Yu, & Wu, 2013).

Attenuates Metastasis

NADPH oxidase 4 (NOX4) is a potential target for intervention of cancer metastasis, as reactive oxygen species (ROS) generated by this enzyme plays important roles in TGF-β signaling, an important inducer of cancer metastasis. Zhang, Liu & Hu (2013) show that TGF-β induces ROS production in breast cancer 4T1 cells and enhances cell migration; that the effect of TGF- β depends on NOX4 expression; and that knockdown of NOX4 via RNAi significantly decreases the migration ability of 4T1 cells in the presence or absence of TGF-β and significantly attenuates distant metastasis of 4T1 cells to lung and bone.

Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis. Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of the mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion (Liu et al., 2012).

Cardiotoxicity Protective/ Attenuates Metastasis

Sch B is capable of protecting Dox-induced chronic cardiotoxicity and enhancing its anti-cancer activity. To the best of our knowledge, Sch B is the only molecule ever proved to function as a cardio-protective agent as well as a chemotherapeutic sensitizer, which is potentially applicable for cancer treatment.

Pre-treatment with Sch B significantly attenuated Dox-induced loss of cardiac function and damage of cardiomyocytic structure. Sch B substantially enhanced Dox cytotoxicities toward S180 in vitro and in vivo in mice, and increased Dox cytotoxcity against 4T1 in vitro. Although we did not observe this enhancement against the implanted 4T1 primary tumor, the spontaneous metastasis to lung was significantly reduced in combined treatment group compared to Dox alone group (Xu et al., 2011).

Cell-cycle Arrest/Breast Cancer

Schizandrin inhibits cell proliferation through the induction of cell-cycle arrest with modulating cell-cycle-related proteins in human breast cancer cells. Schizandrin exhibited growth-inhibitory activities in cultured human breast cancer cells, and the effect was the more profound in estrogen receptor (ER)-positive T47D cells than in ER-negative MDA-MB-231 cells. When treated with the compound in T47D cells, schizandrin induced the accumulation of a cell population in the G0/G1 phase, which was further demonstrated by the induction of CDK inhibitors p21 and p27 and the inhibition of the expression of cell-cycle checkpoint proteins including cyclin D1, cyclin A, CDK2 and CDK4 (Kim et al., 2010).

References

Kim SJ, Min HY, Lee EJ, et al. (2010). Growth inhibition and cell-cycle arrest in the G0/G1 by schizandrin, a dibenzocyclooctadiene lignan isolated from Schisandra chinensis, on T47D human breast cancer cells. Phytother Res, 24(2):193-7. doi: 10.1002/ptr.2907.


Li WL, Xin HW, Yu AR, Wu XC. (2013). In vivo effect of Schisandrin B on cytochrome P450 enzyme activity. Phytomedicine, 20(8), 760-765


Liu Z, Zhang B, Liu K, Ding Z, Hu X. (2012). Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One, 7(7):e40480. doi: 10.1371/journal.pone.0040480.


Sun M, Xu X, Lu Q, Pan Q, Hu X. (2007). Schisandrin B: A dual inhibitor of P-glycoprotein and Multi-drug resistance-associated protein 1. Cancer Letters, 246(1-2), 300-307.


Xu Y, Liu Z, Sun J, et al. (2011). Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anti-cancer activity in vivo. PLoS One, 6(12):e28335. doi: 10.1371/journal.pone.0028335.


Zhang B, Liu Z, Hu X. (2013). Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol, 86(2):253-66. doi: 10.1016/j.bcp.2013.05.011.

Saikosaponin

Cancers:
Cervical, colon, liver, lung, ovarian, liver, breast, hepatocellular

Action: Anti-angiogenic, anti-metastatic, chemo-sensitizer, pro-oxidative, cell-cycle arrest

T cell-mediated autoimmune, induces apoptosis, immune regulating, radio-sensitizer

Induces Apoptosis

Long dan xie gan tang, a well known Chinese herbal formulation, is commonly used by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell-cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Breast

Saikosaponin-A treatment of MDA-MB-231 for 3 hours and of MCF-7 cells for 2 hours, respectively, caused an obvious increase in the sub G1 population of cell-cycles.

Apoptosis in MDA-MB-231 cells was independent of the p53/p21 pathway mechanism and was accompanied by an increased ratio of Bax to Bcl-2 and c-myc levels and activation of caspase-3. In contrast, apoptosis of MCF-7 cells may have been initiated by the Bcl-2 family of proteins and involved p53/p21 dependent pathway mechanism, and was accompanied by an increased level of c-myc protein. The apoptosis of both MDA-MB-231 and MCF-7 cells showed a difference worthy of further research (Chen, Chang, Chung, & Chen, 2003).

Hepatocellular Carcinoma

The signaling pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herbal compund Saikosaponin A was investigated.

Expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin A between 30 minutes to 6 hours of treatment. Pre-treatment of 20 microg/ml PD98059, an inhibitor of MEK (the upstream kinase of ERK), prevents the TPA and Saikosaponin A triggered HepG2 growth inhibition by 50% and 30%, respectively. In addition, AP-1 DNA-binding assay, using non-isotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF), demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin A, which can be reduced by PD98059 pre-treatment.

Results suggest that activation of ERK, together with its downstream transcriptional machinery, mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition (Wen-Sheng, 2003).

The effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rats with hepatocellular carcinoma (HCC) was investigated.

The model group had more malignant nodules than the SSd group. Model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01).

The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates.

SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue (Jia et al., 2012).

T Cell-mediated Autoimmune

Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects.

Results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers, such as IL-2 receptor (CD25), were also down-regulated along with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma.

Results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd. Ssd could be a potential candidate for further study in treating T cell-mediated autoimmune conditions (Wong, Zhou, Cheung, Li, & Liu, 2009).

Cervical Cancer

Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of a combination of saikosaponins with chemotherapeutic drugs have never been addressed. Investigated as to whether these two saikosaponins have chemo-sensitization effect on cisplatin-induced cancer cell cytotoxicity was carried out.

Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small-cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation.

Results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy (Wang et al., 2010).

Colon Cancer

Saikosaponin-a (SSa)-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation.

Results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis (Kim & Hong, 2011).

Immune Regulating

Tumor necrosis factor-alpha (TNF- α ) was reported as an anti-cancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF- α on activating NF- κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF- α -mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), exhibited a variety of pharmacological activities such as anti-inflammatory, anti-bacterial, anti-viral and anti-cancer.

Investigation found that Ssd could potentially inhibit activated T lymphocytes via suppression of NF- κ B, NF-AT and AP-1 signaling. Ssd significantly potentiated TNF- α -mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF- α -induced NF- κ B activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency in abolishing TNF- α -induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells.

Collectively, findings indicate that Ssd has significant potential to be developed as a combined adjuvant remedy with TNF- α for cancer patients (Wong et al., 2013).

Radio-sensitizer

Saikosaponin-d (SSd), a monomer terpenoid purified from the Chinese herbal drug Radix bupleuri, has multiple effects, including anti-cancer properties. Treatment with SSd alone and radiation alone inhibited cell growth and increased apoptosis rate at the concentration used. These effects were enhanced when SSd was combined with radiation. Moreover, SSd potentiated the effects of radiation to induce G0/G1 arrest in SMMC-7721 hepatocellular carcinoma cells, and reduced the G2/M-phase population under hypoxia. SSd potentiates the effects of radiation on SMMC-7721 cells; thus, it is a promising radio-sensitizer. The radio-sensitizing effect of SSd may contribute to its effect on the G0/G1 and G2/M checkpoints of the cell-cycle (Wang et al., 2013).

References

Chen JC, Chang NW, Chung JG, Chen KC. (2003). Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. The American Journal of Chinese Medicine, 31(3), 363-77.


Chou CC, Pan SL, Teng CM, Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Jia X, Dang S, Cheng Y, et al. (2012). Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. Journal of Traditional Chinese Medicine, 32(3), 415-22.


Kim BM, Hong SH. (2011). Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 16(2), 184-197. doi: 10.1007/s10495-010-0557-x.


Wang BF, Dai ZJ, Wang XJ, et al. (2013). Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell-cycle. BMC Complementary and Alternative Medicine, 13:263. doi:10.1186/1472-6882-13-263


Wang Q, Zheng XL, Yang L, et al. (2010). Reactive oxygen species-mediated apoptosis contributes to chemo-sensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental & Clinical Cancer Research, 9(29), 159. doi: 10.1186/1756-9966-29-159.


Wen-Sheng, W. (2003). ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin A. Oncogene, 22(7), 955-963.


Wong VK, Zhang MM, Zhou H, et al. (2013). Saikosaponin-d Enhances the Anti-cancer Potency of TNF- α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signaling in Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013(2013), 745295. doi: 10.1155/2013/745295.


Wong VK, Zhou H, Cheung SS, Li T, Liu L. (2009). Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. Journal of Cellular Biochemistry, 107(2), 303-15. doi: 10.1002/jcb.22126.

RG3 (See also Ginsenosides)

Cancer: Glioblastoma, prostate, breast, colon

Action: Anti-angiogenesis, MDR, enhances chemotherapy, MDR, enhanced paclitaxel absorption, anti-metastatic

RG3 is a ginsenoside isolated from red ginseng (Panax ginseng (L.)), after being peeled, heated, and dried.

Angiosuppressive Activity

Aberrant angiogenesis is an essential step for the progression of solid tumors. Thus anti-angiogenic therapy is one of the most promising approaches to control tumor growth.

Rg3 was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) with an IC50 of 10 nM in Trypan blue exclusion assay.

Rg3 (1-10(3) nM) also dose-dependently suppressed the capillary tube formation of HUVEC on the Matrigel in the presence or absence of 20 ng/ml vascular endothelial growth factor (VEGF). The Matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which play an important role in the degradation of basement membrane in angiogenesis and tumor metastasis present in the culture supernatant of Rg3-treated aortic ring culture were found to decrease in their gelatinolytic activities. Taken together, these data underpin the anti-tumor properties of Rg3 through its angiosuppressive activity (Yue et al., 2006).

Glioblastoma

Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. Our data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of glioblastoma multiforme (GBM) (Choi et al., 2013).

Sin, Kim, & Kim (2012) report that chronic treatment with Rg3 in a sub-lethal concentration induced senescence-like growth arrest in human glioma cells. Rg3-induced senescence was partially rescued when the p53/p21 pathway was inactivated. Data indicate that Rg3 induces senescence-like growth arrest in human glioma cancer through the Akt and p53/p21-dependent signaling pathways.

MDR/Enhanced Paclitaxel Absorption

The penetration of paclitaxel through the Caco-2 monolayer from the apical side to the basal side was facilitated by 20(s)-ginsenoside Rg3 in a concentration-dependent manner. Rg3 also inhibited P-glycoprotein (P-gp), and the maximum inhibition was achieved at 80 µM (p < 0.05). The relative bioavailability (RB)% of paclitaxel with 20(s)-ginsenoside Rg3 was 3.4-fold (10 mg/kg) higher than that of the control. Paclitaxel (20 mg/kg) co-administered with 20(s)-ginsenoside Rg3 (10 mg/kg) exhibited an effective anti-tumor activity with the relative tumor growth rate (T/C) values of 39.36% (p <0.05).

The results showed that 20(s)-ginsenoside Rg3 enhanced the oral bioavailability of paclitaxel in rats and improved the anti-tumor activity in nude mice, indicating that oral co-administration of paclitaxel with 20(s)-ginsenoside Rg3 could provide an effective strategy in addition to the established i.v. route (Yang et al., 2012).

Prostate Cancer

The anti-proliferation effect of Rg3 on prostate cancer cells has been well reported. Rg3 treatment triggered the activation of p38 MAPK; and SB202190, a specific inhibitor of p38 MAPK, antagonized the Rg3-induced regulation of AQP1 and cell migration, suggesting a crucial role for p38 in the regulation process. Rg3 effectively suppresses migration of PC-3M cells by down-regulating AQP1 expression through p38 MAPK pathway and some transcription factors acting on the AQP1 promoter (Pan et al., 2012).

Enhances Chemotherapy

The clinical use of cisplatin (cis-diamminedichloroplatinum II) has been limited by the frequent emergence of cisplatin-resistant cell populations and numerous other adverse effects. Therefore, new agents are required to improve the therapy and health of cancer patients. Oral administration of ginsenoside Rg3 significantly inhibited tumor growth and promoted the anti-neoplastic efficacy of cisplatin in mice inoculated with CT-26 colon cancer cells. In addition, Rg3 administration remarkably inhibited cisplatin-induced nephrotoxicity, hepatotoxicity and oxidative stress.

Rg3 promotes the efficacy of cisplatin by inhibiting HO-1 and NQO-1 expression in cancer cells and protects the kidney and liver against tissue damage by preventing cisplatin-induced intracellular ROS generation (Lee et al., 2012).

Colon Cancer

Rg3-induced apoptosis in HT-29 cells is mediated via the AMPK signaling pathway, and that 20(S)-Rg3 is capable of inducing apoptosis in colon cancer. Rg3-treated cells displayed several apoptotic features, including DNA fragmentation, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) and morphological changes. 20(S)-Rg3 down-regulated the expression of anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl2), up-regulated the expression of pro-apoptotic protein of p53 and Bcl-2-associated X protein (Bax), and caused the release of mitochondrial cytochrome c, PARP, caspase-9 and caspase-3 (Yuan et al., 2010).

Anti-metastatic

Studies have linked Rg3 with anti-metastasis of cancer in vivo and in vitro and the CXC receptor 4 (CXCR4) is a vital molecule in migration and homing of cancer to the docking regions. At a dosage without obvious cytotoxicity, Rg3 treatment elicits a weak CXCR4 stain color, decreases the number of migrated cells in CXCL12-elicited chemotaxis and reduces the width of the scar in wound healing and Rg3 is a new CXCR4 inhibitor (Chen et al., 2011).

References

Chen XP, Qian LL, Jiang H, Chen JH. (2011). Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol, 16(5):519-23. doi: 10.1007/s10147-011-0222-6.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep. doi: 10.3892/or.2013.2555.


Lee CK, Park KK, Chung AS, Chung WY. (2012). Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem Toxicol, 50(7):2565-74. doi: 10.1016/j.fct.2012.01.005.


Pan XY, Guo H, Han J, et al. (2012). Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol, 683(1-3):27-34. doi: 10.1016/j.ejphar.2012.02.040.


Sin S, Kim SY, Kim SS. (2012). Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol., 41(5):1669-74. doi: 10.3892/ijo.2012.1604.


Yang LQ, Wang B, Gan H, et al. (2012). Enhanced oral bioavailability and anti-tumor effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos., 33(8):425-36. doi: 10.1002/bdd.1806.


Yuan HD, Quan HY, Zhang Y, et al. (2010). 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep., 3(5):825-31. doi: 10.3892/mmr.2010.328.


Yue PY, Wong DY, Wu PK, et al. (2006). The angiosuppressive effects of 20 (R)-ginsenoside Rg3. Biochem Pharmacol, 72(4):437-45.

Piperine

Cancer: Breast, prostate

Action: Autophagy inhibitor, anti-proliferative effect

Breast Cancer Stem Cells

Mammosphere formation assays were performed after curcumin, piperine and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging and percent of ALDH+ cells, by 50% at 5 µM and completely at 10 µM concentration in normal and malignant breast cells. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer-preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer-preventive agent efficacy and Wnt signaling assessment a mechanistic biomarker for use in human clinical trials (Kakarala et al., 2010).

HER-2 Overexpressing Breast Cancer

Results showed that piperine strongly inhibited proliferation and induced apoptosis of HER2-overexpressing breast cancer cells through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level.   Piperine pre-treatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression (Do et al., 2013).

Prostate Cancer

Piperine treatment resulted in a dose-dependent inhibition of the proliferation of prostate cancer DU145, PC-3 and LNCaP cell lines. Cell-cycle arrest at G₀/G₁ was induced and cyclin D1 and cyclin A were down-regulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell-cycle arrest in the former two cell lines than the latter one. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell-cycle arrest and autophagy (Ouyang et al., 2013).

References

Do MT, Kim HG, Choi JH, et al. (2013). Anti-tumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem, 141(3):2591-9. doi: 10.1016/j.foodchem.2013.04.125.


Kakarala M, Brenner DE, Korkaya H, et al. (2010). Targeting breast stem cells with the cancer-preventive compounds curcumin and piperine. Breast Cancer Res Treat, 122(3): 777–785.


Ouyang DY, Zeng LH, Pan H, et al. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell-cycle arrest and autophagy. Food Chem Toxicol, 60:424-30. doi: 10.1016/j.fct.2013.08.007.

Oleanolic Acid (OA)

Cancer:
Pancreatic, hepatocellular carcinoma, prostate, lung, gastric, breast

Action: Radio-sensitizer, pro-apoptotic with 5-FU

Oleanolic acid (OA), a pentacyclic triterpenoid isolated from several plants, including Rosa woodsii (Lindl.), Prosopis glandulosa (Torr.), Phoradendron juniperinum (Engelm. ex A. Gray), Syzygium claviflorum (Roxburgh), Hyptis capitata (Jacq.) and Ternstromia gymnanthera (L.) exhibits potential anti-tumor activity against many tumor cell lines. Mistletoe contains water-insoluble triterpenoids, mainly oleanolic acid, that have anti-tumorigenic effects (StrŸh et al., 2013).

Pancreatic Cancer

Results of a study by Wei et al. (2012) showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml−1. The study also showed that OA could induce remarkable apoptosis and revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells.

These results provide evidence that OA arrests the cell-cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cell.

The effects of the combination of OA and 5-fluorouracil (5-FU) on Panc-28 human pancreatic cells showed that combined use synergistically potentiated cell death effects on these cells, and that the pro-apoptotic effects were also increased. The expression of apoptosis related proteins was also affected in cells treated with the combination of OA and 5-FU, including activation of caspases-3 and the expression of Bcl-2/Bax, survivin and NF-κB (Wei et al., 2012).

Radio-sensitizer

The combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the down-regulation of γ-GCS activity. Therefore, the utilization of OA as a radio-sensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer (Wang et al., 2013).

Prostate Cancer, Lung Cancer, Gastric Cancer, Breast Cancer

Twelve derivatives of oleanolic acid (OA) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50=0.39 µM) and compound 28 displayed the best activity against A549 cell line (IC50=0.22 µM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines (Hao et al., 2013).

Hepatocellular Carcinoma

OA induced G2/M cell-cycle arrest through p21-mediated down-regulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell-cycle arrest. OA demonstrated significant anti-tumor activities in hepatocellular carcinoma (HCC) in vivo and in vitro models. These data provide new insights into the mechanisms underlying the anti-tumor effect of OA (Wang et al., 2013).

References

Hao J, Liu J, Wen X, Sun H. (2013). Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg Med Chem Lett, 23(7):2074-7. doi: 10.1016/j.bmcl.2013.01.129.


StrŸh CM, JŠger S, Kersten A, et al. (2013). Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One, 8(4):e62168. doi: 10.1371/journal.pone.0062168.


Wang J, Yu M, Xiao L, et al. (2013). Radio-sensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep, 30(2):917-24. doi: 10.3892/or.2013.2510.


Wang X, Bai H, Zhang X, et al. (2013). Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell-cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis, 34(6):1323-30. doi: 10.1093/carcin/bgt058.


Wei JT, Liu M, Liuz, et al. (2012). Oleanolic acid arrests cell-cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 33(8):756–765. doi: 10.1002/jat.2725


Wei J, Liu H, Liu M, et al. (2012). Oleanolic acid potentiates the anti-tumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol Rep, 28(4):1339-45. doi: 10.3892/or.2012.1921.

Nomilin

Cancer: Melanoma, breast cancer

Action: Anti-angiogenic

Nomilin is a triterpenoid present in common edible citrus fruits (Citrus grandis [(L.) Osb.], Citrus unshiu [(Swingle) Marcow.] and Citrus reticulata (Blanco)) with putative anti-cancer properties.

Melanoma

Nomilin possess anti-metastatic action, inducing metastasis in C57BL/6 mice through the lateral tail vein using highly metastatic B16F-10 melanoma cells. Administration of nomilin inhibited tumor nodule formation in the lungs (68%) and markedly increased the survival rate of the metastatic tumor–bearing animals. Nomilin showed an inhibition of tumor cell invasion and activation of matrix metalloproteinases. Treatment with nomilin induced apoptotic response.

Nomilin treatment also exhibited a down-regulated Bcl-2 and cyclin-D1 expression and up-regulated p53, Bax, caspase-9, caspase-3, p21, and p27 gene expression in B16F-10 cells. Pro-inflammatory cytokine production and gene expression were found to be down-regulated in nomilin-treated cells. The study also reveals that nomilin could inhibit the activation and nuclear translocation of anti-apoptotic transcription factors such as nuclear factor (NF)-κB, CREB, and ATF-2 in B16F-10 cells (Pratheeshkumar et al., 2011).

Breast Cancer; ER+

A panel of 9 purified limonoids, including limonin, nomilin, obacunone, limonexic acid (LNA), isolimonexic acid (ILNA), nomilinic acid glucoside (NAG), deacetyl nomilinic acid glucoside (DNAG), limonin glucoside (LG) and obacunone glucoside (OG) as well as 4 modified compounds such as limonin methoxime (LM), limonin oxime (LO), defuran limonin (DL), and defuran nomilin (DN), were screened for their cytotoxicity on estrogen receptor (ER)-positive (MCF-7) or ER-negative (MDA-MB-231) human breast cancer cells. Findings indicated that the citrus limonoids may have potential for the prevention of estrogen-responsive breast cancer (MCF-7) via caspase-7 dependent pathways (Lin et al., 2013).

Blocks Angoigenesis

Nomilin significantly inhibited tumor-directed capillary formation. Serum pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and GM-CSF and also serum NO levels were significantly reduced by the treatment of nomilin. Administration of nomilin significantly reduced the serum level of VEGF, a pro-angiogenic factor and increased the anti-angiogenic factors IL-2 and TIMP-1. Nomilin significantly retarded endothelial cell proliferation, migration, invasion and tube formation. These data clearly demonstrate the anti-angiogenic potential of nomilin by down-regulating the activation of MMPs, production of VEGF, NO and pro-inflammatory cytokines as well as up-regulating IL-2 and TIMP (Pratheeshkumar et al., 2011).

References

Kim J, Jayaprakasha GK, Patil BS. (2013). Limonoids and their anti-proliferative and anti-aromatase properties in human breast cancer cells. Food Funct, 4(2):258-65. doi: 10.1039/c2fo30209h.


Pratheeshkumar P, Raphael TJ & Kuttan G. (2011). Nomilin Inhibits Metastasis via Induction of Apoptosis and Regulates the Activation of Transcription Factors and the Cytokine Profile in B16F-10 Cells. Integr Cancer Ther. doi: 10.1177/1534735411403307


Pratheeshkumar P, Kuttan G. (2011). Nomilin inhibits tumor-specific angiogenesis by down-regulating VEGF, NO and pro-inflammatory cytokine profile and also by inhibiting the activation of MMP-2 and MMP-9. Eur J Pharmacol, 668(3):450-8. doi: 10.1016/j.ejphar.2011.07.029.

Nelumbo Extract (NLE):Neferine

Cancer: Liver, osteosarcoma, breast, melanoma

Action: Anti-angiogenic, cytostatic

Neferine is a major bis-benzylisoquinoline alkaloid derived from the green seed embryos of the Indian lotus (Nelumbo nucifera (Gaertn.)).

Identification of natural products that have anti-tumor activity is invaluable to the chemo-prevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. Neferine is a major alkaloid component in lotus embryos.

Hepatitis

Experimental results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. Results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment.

These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes (Yoon et al., 2013).

Osteosarcoma

It was found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell-cycle arrest at G1. The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. Zhang et al. (2012) showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Their results for the first time showed a direct anti-tumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

Breast Cancer

Qualitative analysis showed that NLE contained several compounds, including polyphenols. The polyphenols identified in NLE consisted primarily of gallic acid, rutin, and quercetin. Cell cycle analysis revealed that breast cancer MCF-7 cells treated with NLE were arrested at the G0/G1 phase. In an in vivo analysis, treatment with NLE (0.5 and 1%) effectively reduced tumor volume and tumor weight in mice inoculated with MCF-7 cells compared to the control samples.

These results confirmed that cell-cycle arrest was sufficient to elicit tumor regression following NLE treatment (Yang et al., 2011).

Melanoma

Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. 3-30 µM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 µM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 µM nuciferine inhibited the expression of TRP-2 mRNA (Nakamura et al., 2013).

References

Nakamura S, Nakashima S, Tanabe G, et al. (2013). Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem, 21(3):779-87. doi: 10.1016/j.bmc.2012.11.038.


Yang MY, Chang YC, Chan KC et al. (2011). Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine, 3(3):153-163. doi:10.1016/j.eujim.2011.08.008


Yoon JS, Kim HM, Yadunandam AK, et al. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell-cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11):1013–1022. doi:10.1016/j.phymed.2013.03.024.


Zhang XY, Liu ZJ, Xu B, et al. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3):47–54.

Naringin

Cancer: TNBCa, melanoma, breast, colon, cervical

Action: Anti-inflammatory, anti-carcinogenic

Citrus plants are known to possess beneficial biological activities for human health. The total phenolics and flavonoids from a methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts of Citrus aurantium. The anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract.

Breast Cancer, Colon Cancer

The anti-cancer activity of the methanolic extract of Citrus aurantium was investigated in vitro against human cancer cell lines; breast cancer MCF-7; MDA-MB-231 cell lines, human colon adenocarcinoma HT-29 cell line and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to appreciable activities against all cell lines tested and the compounds present in the extracts are non-toxic which make them suitable as potential therapeutics (Karimi et al., 2012).

Triple Negative (ER-/PR-/HER2-)

Breast Cancer (TNBCa)

Camargo et al. (2012) demonstrated that naringin inhibited cell proliferation, and promoted cell apoptosis and G1 cycle arrest, accompanied by increased p21 and decreased survivin. Meanwhile, β-catenin signaling pathway was found to be suppressed by naringin.

Levels of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) are raised in patients with TNBCa. Inhibition of tumor growth, survival increase and the reduction of TNF-α and IL-6 levels in rats bearing W256 treated with naringin strongly suggest that this compound has potential as an anti-carcinogenic drug.

Results indicate that naringin could inhibit growth potential of Triple-negative (ER-/PR-/HER2-) breast cancer (TNBC) by modulating -catenin pathway, which suggests naringin might be used as a potential supplement for the prevention and treatment of breast cancer (Li et al., 2013).

Cervical Cancer

Fruit-based cancer prevention entities, such as flavonoids and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Ramesh & Alshatwi (2013) looked at the role of naringin-mediated chemo-prevention in relation to cervical carcinogenesis. The results suggest that the induction of apoptosis by naringin is through both death-receptor and mitochondrial pathways. Taken together, our results suggest that naringin might be an effective agent to treat human cervical cancer.

Melanoma

A study by Huang, Yang, Chiou (2011) investigated the molecular events of melanogenesis induced by naringenin in murine B16-F10 melanoma cells. Melanin content, tyrosinase activity and Western blot analysis were performed to elucidate the possible underlying mechanisms. Exposure of melanoma cells to naringenin resulted in morphological changes accompanied by the induction of melanocyte differentiation-related markers, such as melanin synthesis, tyrosinase activity, and the expression of tyrosinase and microphthalmia-associated transcription factor (MITF). They concluded that naringenin induced melanogenesis through the Wnt-β-catenin-signaling pathway.

References

Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H. (2013). Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anti-cancer Res, 32(1):129-33.


Huang YC, Yang CH, Chiou YL. (2011). Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/ β -catenin signaling in mouse melanoma cells. Phytomedicine. 18(14):1244-9. doi: 10.1016/j.phymed.2011.06.028.


Karimi E, Oskoueian E, Hendra R, Oskoueian A, Jaafar HZ. (2012). Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules, 17(2):1203-18. doi: 10.3390/molecules17021203.


Li HZ, Yang B, Huang J, et al. (2013). Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting -catenin signaling pathway. Toxicology Letters, 220(2013):219-228


Ramesh E, Alshatwi AA. (2013). Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 51:97-105. doi: 10.1016/j.fct.2012.07.033.

Magnolol

Cancer:
Bladder, breast, colon, prostate, glioblastoma, ovarian, leukemia, lung

Action: Anti-inflammatory, apoptosis, inhibits angiogenesis, anti-metastatic

Magnolol (Mag), an active constituent isolated from the Chinese herb hou po (Magnolia officinalis (Rehder & Wilson)) has long been used to suppress inflammatory processes. It has anti-cancer activity in colon, hepatoma, and leukemia cell lines.

Anti-inflammatory

Magnolol (Mag) suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. Pre-treatment of ECs with Mag dose-dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pre-treatment of these ECs dose-dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs).

In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis (Chen et al., 2006).

Bladder Cancer; Inhibits Angiogenesis

In the present study, Chen et al. (2013) demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo, evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane, and Matrigel plug.

In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the downstream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model.

Collectively, these findings strongly indicate that the anti-angiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy.

Colon Cancer; Induces Apoptosis

Emerging evidence has suggested that activation of AMP-activated protein kinase (AMPK), a potential cancer therapeutic target, is involved in apoptosis in colon cancer cells. However, the effects of magnolol on human colon cancer through activation of AMPK remain unexplored.

Magnolol displayed several apoptotic features, including propidium iodide labeling, DNA fragmentation, and caspase-3 and poly(ADP-ribose) polymerase cleavages. Park et al. (2012) showed that magnolol induced the phosphorylation of AMPK in dose- and time-dependent manners.

Magnolol down-regulated expression of the anti-apoptotic protein Bcl2, up-regulated expression of pro-apoptotic protein p53 and Bax, and caused the release of mitochondrial cytochrome c. Magnolol-induced p53 and Bcl2 expression was abolished in the presence of compound C. Magnolol inhibited migration and invasion of HCT-116 cells through AMPK activation. These findings demonstrate that AMPK mediates the anti-cancer effects of magnolol through apoptosis in HCT-116 cells.

Ovarian Cancer

Treatment of HER-2 overexpressing ovarian cancer cells with magnolol down-regulated the HER-2 downstream PI3K/Akt signaling pathway, and suppressed the expression of downstream target genes, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2) and cyclin D1. Consistently, magnolol-mediated inhibition of MMP2 activity could be prevented by co-treatment with epidermal growth factor. Migration assays revealed that magnolol treatment markedly reduced the motility of HER-2 overexpressing ovarian cancer cells. These findings suggest that magnolol may act against HER-2 and its downstream PI3K/Akt/mTOR-signaling network, thus resulting in suppression of HER-2mediated transformation and metastatic potential in HER-2 overexpressing ovarian cancers. These results provide a novel mechanism to explain the anti-cancer effect of magnolol (Chuang et al., 2011).

Lung Cancer

Magnolol has been found to inhibit cell growth, increase lactate dehydrogenase release, and modulate cell cycle in human lung carcinoma A549 cells. Magnolol induced the activation of caspase-3 and cleavage of Poly-(ADP)-ribose polymerase, and decreased the expression level of nuclear factor-κB/Rel A in the nucleus. In addition, magnolol inhibited basic fibroblast growth factor-induced proliferation and capillary tube formation of human umbilical vein endothelial cells. These data indicate that magnolol is a potential candidate for the treatment of human lung carcinoma (Seo et al., 2011).

Prostate Cancer; Anti-metastatic

Matrix metalloproteinases (MMPs) are enzymes involved in various steps of metastasis development. The objective of this study was to study the effects of magnolol on cancer invasion and metastasis using PC-3 human prostate carcinoma cells. Magnolol inhibited cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, magnolol showed 33 and 98% inhibition of cancer cell at 10 microM and 20 microM concentrations, respectively, compared to the control. The protein and mRNA levels of both MMP-2 and MMP-9 were down-regulated by magnolol treatment in a dose-dependent manner.

These results demonstrate the anti-metastatic properties of magnolol in inhibiting the adhesion, invasion, and migration of PC-3 human prostate cancer cells (Hwang et al., 2010).

Glioblastoma Cancer

Magnolol has been found to concentration-dependently (0-40 microM) decrease the cell number in a cultured human glioblastoma cancer cell line (U373) and arrest the cells at the G0/G1 phase of the cell-cycle.

Pre-treatment of U373 with p21/Cip1 specific antisense oligodeoxynucleotide prevented the magnolol-induced increase of p21/Cip1 protein levels and the decrease of DNA synthesis. Magnolol at a concentration of 100 microM induced DNA fragmentation in U373. These findings suggest the potential applications of magnolol in the treatment of human brain cancers (Chen et al. 2011).

Inhibits Angiogenesis

Magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs.

In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases (Kim et al., 2013).

References

Chen LC, Liu YC, Liang YC, Ho YS, Lee WS. (2009). Magnolol inhibits human glioblastoma cell proliferation through up-regulation of p21/Cip1. J Agric Food Chem, 57(16):7331-7. doi: 10.1021/jf901477g.


Chen MC, Lee CF, Huang WH, Chou TC. (2013). Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1 α /VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol, 85(9):1278-87. doi: 10.1016/j.bcp.2013.02.009.


Chen SC, Chang YL, Wang DL, Cheng JJ. (2006). Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol, 148(2): 226–232. doi: 10.1038/sj.bjp.0706647


Chuang TC, Hsu SC, Cheng YT, et al. (2011). Magnolol down-regulates HER2 gene expression, leading to inhibition of HER2-mediated metastatic potential in ovarian cancer cells. Cancer Lett, 311(1):11-9. doi: 10.1016/j.canlet.2011.06.007.


Hwang ES, Park KK. (2010). Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem, 74(5):961-7.


Kim KM, Kim NS, Kim J, et al. (2013). Magnolol Suppresses Vascular Endothelial Growth Factor-Induced Angiogenesis by Inhibiting Ras-Dependent Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways. Nutr Cancer.


Park JB, Lee MS, Cha EY, et al. (2012). Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull, 35(9):1614-20.


Seo JU, Kim MH, Kim HM, Jeong HJ. (2011). Anti-cancer potential of magnolol for lung cancer treatment. Arch Pharm Res, 34(4):625-33. doi: 10.1007/s12272-011-0413-8.

Lunasin

Cancer: Colon, breast, liver metastasis

Action: Induces apoptosis, MDR

Lunasin is a peptide found in soy, barley, wheat, and rye, including Glycine max [(L.) Merr.], Hordeum vulgare L., Triticum (L.) genus and Secale cereale L.

Colon Cancer; Metastasis

Lunasin bound with α(5)β(1) integrin and internalized into the nucleus of KM12L4 human colon cancer cells. Lunasin (10µM) inhibited the activation of focal adhesion kinase (FAK) by 28%, 39% and 60% in RKO, HCT-116 and KM12L4 human colon cancer cells, respectively. Lunasin caused an increase in the expression of the inhibitor of kappa B alpha (IκB-α), a decrease in nuclear p50 NF-κB and a reduction in the migration of cancer cells. Lunasin (4mg/kg bw) inhibited metastasis and potentiated the effect of oxaliplatin by reducing the expression of proliferating cell nuclear antigen.

Liver metastatic nodules were reduced from 28 (PBS) to 14 (lunasin, P=0.047) while combination of lunasin and oxaliplatin to 5 (P=0.004). The tumor burden was reduced from 0.13 (PBS) to 0.10 (lunasin, P=0.039) to 0.04 (lunasin+oxaliplatin, P<0.0001). Moreover, lunasin potentiated the effect of oxaliplatin in modifying expression of proteins involved in apoptosis and metastasis including Bax, Bcl-2, IKK-α and p-p65. Lunasin inhibited metastasis of human colon cancer cells by direct binding with α(5)β(1) integrin suppressing FAK/ERK/NF-κB signaling, and potentiated the effect of oxaliplatin in preventing the outgrowth of metastasis (Dia et al., 2011).

Induces Apoptosis

Galvez et al. (2001) demonstrated previously that transfection of mammalian cells with the lunasin gene arrests mitosis, leading to cell death. Here they show that exogenous application of the lunasin peptide inhibits chemical carcinogen-induced transformation of murine fibroblast cells to cancerous foci. The results suggest a mechanism whereby lunasin selectively induces apoptosis, mostly in cells undergoing transformation, by preventing histone acetylation. In support of this, lunasin selectively induces apoptosis in E1A-transfected cells but not in nontransformed cells. Finally, in the SENCAR mouse skin cancer model, dermal application of lunasin (250 microg/week) reduces skin tumor incidence by approximately 70%, decreases tumor yield/mouse, and delays the appearance of tumors by 2 weeks relative to the positive control. These results point to the role of lunasin as a new chemo-preventive agent that functions possibly via a chromatin modification mechanism.

Breast Cancer

Combinations of two or more chemo-preventive agents are currently being used to achieve greater inhibitory effects on breast cancer cells. This study reveals that both aspirin and lunasin inhibit, in a dose-dependent manner, human estrogen-independent breast cancer MDA-MB-231 cell proliferation.

These compounds arrest the cell-cycle in the S- and G1-phases, respectively, acting synergistically to induce apoptosis. The cell growth-inhibitory effect of a lunasin/aspirin combination is achieved, at least partially, by modulating the expression of genes encoding G1 and S-phase regulatory proteins. Lunasin/aspirin therapy exerts its potent pro-apoptotic effect, at least partially achieved through modulating the extrinsic-apoptosis dependent pathway.

Therefore, our results suggest that a combination of these two compounds is a promising strategy to prevent/treat breast cancer (Hsieh et al., 2010).

Colon Cancer; MDR

Various human colon cancer cell lines which underwent metastasis were evaluated in vitro using cell flow cytometry and fluorescence microscopy. Lunasin cytotoxicity to different colon cancer cells correlated with the expression of α5b1 integrin was investigated, being most potent to KM12L4 cells (IC50 = 13 µM). Lunasin arrested cell-cycle at G2/M phase with concomitant increase in the expression of cyclin-dependent kinase inhibitors p21 and p27. Lunasin (5–25 µM) activated the apoptotic mitochondrial pathway as evidenced by changes in the expressions of Bcl-2, Bax, nuclear clusterin, cytochrome c and caspase-3 in KM12L4 and KM12L4-OxR.

Lunasin increased the activity of initiator caspase-9 leading to the activation of caspase-3 and also modified the expression of human extracellular matrix and adhesion genes, down-regulating integrin α5, SELE, MMP10, integrin β2 and COL6A1 by 5.01-, 6.53-, 7.71-, 8.19- and 10.10-fold, respectively, while up-regulating COL12A1 by 11.61-fold. Lunasin can be used in cases where resistance to chemotherapy developed (Dia et al., 2011).

References

Dia VP, Gonzalez de Mejia E. (2011). Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κ B signaling, Cancer Lett, 313(2):167-80.


Dia VP, Gonzalez de Mejia E. (2011). Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol Nutr Food Res, 55(4):623-34. doi: 10.1002/mnfr.201000419.


Galvez AF, Chen N, Macasieb J, de Lumen BO. (2001). Chemo-preventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res, 61(20):7473-8.


Hsieh CC, Hern‡ndez-Ledesma B, de Lumen BO. (2010). Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell-cycle and induced apoptosis. Chem Biol Interact, 186(2):127-34. doi: 10.1016/j.cbi.2010.04.027.

Hispolon

Cancer: Bladder, breast, liver, gastric

Action: Anti-inflammatory, cytostatic, cytotoxic, pro-oxidative, anti-proliferative

Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have anti-oxidant, anti-inflammatory, and anti-cancer activities.

Liver Cancer

Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell-cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells.

These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell-cycle arrest and apoptosis in Hep3B cells (Huang et al., 2011).

Gastric Cancer, Breast Cancer, Bladder Cancer

Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. Hispolon has also been found to inhibit breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment.

Lu et al. (2009) also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126.

In conclusion, hispolon ubiquitinates and down-regulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

Gastric Cancer

The efficacy of hispolon in human gastric cancer cells and cell death mechanism was explored. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells.

The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione anti-oxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer.

These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anti-cancer agents (Chen et al., 2008).

Anti-proliferative Activity

Hispolon, which lacks one aromatic unit in relation to curcumin, exhibits enhanced anti-inflammatory and anti-proliferative activities. Dehydroxy hispolon was least potent for all three activities. Overall the results indicate that the substitution of a hydroxyl group for a methoxy group at the meta positions of the phenyl rings in curcumin significantly enhanced the anti-inflammatory activity, and the removal of phenyl ring at the 7(th) position of the heptadiene back bone and addition of hydroxyl group significantly increased the anti-proliferative activity of curcumin and hispolon (Ravindran et al., 2010).

References

Chen W, Zhao Z, Li L, et al. (2008). Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med, 45(1):60-72. doi: 10.1016/j.freeradbiomed.2008.03.013.


Huang GJ, Deng JS, Huang SS, Hu ML. (2011). Hispolon induces apoptosis and cell-cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem, 59(13):7104-13. doi: 10.1021/jf201289e.


Lu TL, Huang GJ, Lu TJ, et al. (2009). Hispolon from Phellinus linteus has anti-proliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol, 47(8):2013-21. doi: 10.1016/j.fct.2009.05.023.


Ravindran J, Subbaraju GV, Ramani MV, et al. (2010). Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol, 79(11):1658-66. doi: 10.1016/j.bcp.2010.01.033.

Hedyotis Diffusa Extract

Cancer: Colon

Action: CYP3A4 induction, inhibits angiogenesis

Hedyotis diffusa is a herb native to East Asia, particularly China, Japan, and Nepal.

Inhibition of tumor angiogenesis has become an attractive target of anti-cancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor-associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer.

Inhibits Angiogenesis

The angiogenic effects of the ethanol extract of EEHDW were investigated, in order to find a molecular mechanism for its anti-cancer activity. It was found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, EEHDW dose- and time-dependently inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) by blocking the cell-cycle G1 to S progression.

Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. These findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy (Lin et al., 2011).

Colorectal Cancer

Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). The ethanol extract of Hedyotis diffusa Willd (EEHDW) reduced tumor volume and tumor weight, and suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax (Cai et al., 2012).

EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. Lin et al. (2012) observed that EEHDW treatment blocked the cell-cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21 (Lin et al., 2012).

Recently, Lin et al. (2013) reported that HDW could inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of anti-tumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2 (Lin et al., 2013).

CYP3A4 Induction

Patients are warned against the concomitant use of Oldenlandia diffusa and Rehmannia glutinosa, which could result in induction of CYP3A4, leading to a reduced efficacy of drugs that are CYP3A4 substrates and have a narrow therapeutic window (Lau et al., 2013).

References

Cai Q, Lin J, Wei L, Zhang L, et al. (2012). Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway. Int J Mol Sci, 13(5):6117-28. doi: 10.3390/ijms13056117.


Lau C, Mooiman KD, Maas-Bakker RF, et al. (2013). Effect of Chinese herbs on CYP3A4 activity and expression in vitro. J Ethnopharmacol, 149(2):543-9. doi: 10.1016/j.jep.2013.07.014.


Lin J, Wei L, Xu W, et al. (2011). Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis. Mol Med Report, 4(6):1283-8. doi: 10.3892/mmr.2011.577.


Lin M, Lin J, Wei L, et al. (2012). Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell-cycle arrest. Exp Ther Med, 4(2):307-310.


Lin J, Wei L, Shen A, et al. (2013). Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis. Int J Oncol, 42(2):651-6. doi: 10.3892/ijo.2012.1753.

Geniposide –Penta-acetyl Geniposide (Ac)5GP

Cancers:
Glioma, melanoma, liver, hepatocarcinogenesis, hepatoma, prostate, cervical

Action: Cytostatic, induces apoptosis

Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia fructus , exhibits anti-tumor effect.

Hepatocarcinogenesis, Glioma

It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis, induced by aflatoxin B1 (AFB1), by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells, especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest.

Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. It arrested the cell-cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F.

Data from in vivo experiments indicated that (Ac)5GP is not harmful to the liver, heart and kidney. (Ac)5GP is strongly suggested to be an anti-tumor agent for development in the future (Peng, Huang, & Wang, 2005).

Induces Apoptosis

Previous studies have demonstrated the apoptotic cascades protein kinase C (PKC) delta/c-Jun NH2-terminal kinase (JNK)/Fas/caspases induced by penta-acetyl geniposide [(Ac)5GP]. However, the upstream signals mediating PKCdelta activation have not yet been clarified. Ceramide, mainly generated from the degradation of sphingomyelin, was hypothesized upstream above PKCdelta in (Ac)5GP-transduced apoptosis.

After investigation, (Ac)5GP was shown to activate neutral sphingomyelinase (N-SMase) immediately, with its maximum at 15 min. The NGF and p75 enhanced by (Ac)5GP was inhibited when combined with GW4869, the N-SMase inhibitor, indicating NGF/p75 as the downstream signals of N-SMase/ceramide. To evaluate whether N-SMase is involved in (Ac)5GP-transduced apoptotic pathway, cells were treated with (Ac)5GP, alone or combined with GW4869. It was demonstrated that N-SMase inhibition blocked FasL expression and caspase 3 activation. Similarly, p75 antagonist peptide attenuated the FasL/caspase 3 expression. It indicated that N-SMase activation is pivotal in (Ac)5GP-mediated apoptosis.

SMase and NGF/p75 are suggested to mediate upstream above PKCdelta, thus transducing FasL/caspase cascades in (Ac)5GP-induced apoptosis (Peng, Huang, Hsu, & Wang, 2006).

Glioma

Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepato-protective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. The anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line C6 glioma cells were investigated.

Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun.

Findings suggest (Ac)(5)GP is highly likely to be an inhibiting cancer migration agent to be further developed in the future (Huang et al., 2009).

Melanoma

A new iridoid glycoside, 10-O-(4'-O-methylsuccinoyl) geniposide, and two new pyronane glycosides, jasminosides Q and R, along with nine known iridoid glycosides, and two known pyronane glycosides, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae).

The structures of new compounds were elucidated on the basis of extensive spectroscopic analyzes and comparison with literature. Upon evaluation of these compounds on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 µM, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 µM) (Akisha et al., 2012).

Hepatoma, Prostate Cancer, Cervical Cancer

Genipin is a metabolite of geniposide isolated from an extract of Gardenia fructus. Some observations suggested that genipin could induce cell apoptosis in hepatoma cells and PC3 human prostate cancer cells. Genipin could remarkably induce cytotoxicity in HeLa cells and inhibit its proliferation. Induction of the apoptosis by genipin was confirmed by analysis of DNA fragmentation and induction of sub-G(1) peak through flow cytometry.

The results also showed that genipin-treated HeLa cells cycle was arrested at G(1) phase. Western blot analysis revealed that the phosphorylated c-Jun NH(2)-terminal kinase (JNK) protein, phospho-Jun protein, p53 protein and bax protein significantly increased in a dose-dependent manner after treatment of genipin for 24 hours; the activation of JNK may result in the increase of the p53 protein level; the increase of the p53 protein led to the accumulation of bax protein; and bax protein further induced cell apoptotic death eventually (Cao et al., 2010).

References

Akihisa T, Watanabe K, Yamamoto A, et al. (2012). Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chemistry & Biodiversity, 9(8), 1490-9. doi: 10.1002/cbdv.201200030.


Cao H, Feng Q, Xu W, et al. (2010). Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol Pharm Bull, 33(8):1343-8.


Huang HP, Shih YW, Wu CH, et al. (2009). Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways. Chemico-biological Interactions, 181(1), 8-14. doi: 10.1016/j.cbi.2009.05.009.


Peng CH, Huang CN, Hsu SP, Wang CJ. (2006). Penta-acetyl geniposide induce apoptosis in C6 glioma cells by modulating the activation of neutral sphingomyelinase-induced p75 nerve growth factor receptor and protein kinase Cdelta pathway. Molecular Pharmacology, 70(3), 997-1004.


Peng CH, Huang CN, Wang CJ. (2005). The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Current Cancer Drug Targets, 5(4), 299-305.

Chrysin

Cancer:
Lung cancer, breast cancer, leukemia, gastric, colon

Action: Anti-inflammatory, induces apoptosis, inhibits HIF-1 α, immunomodulatory

Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants (including Scutellaria baicalensis (Georgi), Passiflora caerulea (L.), Passiflora incarnate (L.))., honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbs cell-cycle progression. Chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21 (Waf1/Cip1) expression (Weng et al., 2005).

MDR; NSCLC

Chrysin is a major flavonoid in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. Novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in human non-small lung cancer have been demonstrated, and the protein kinase C pathway may play an important role in this process. It is thought that chrysin may act as a potential adjuvant therapy for drug-resistant non-small lung cancer, especially for those with AKR1C1/1C2 overexpression (Wang et al., 2007).

Gastric Cancer, Colon Cancer

Additionally, derivatives of chrysin have been shown to have strong activities against SGC-7901 human gastric cell line and HT-29 human colon cancer cell lines (Zheng et al., 2003).

Breast Cancer

While Chrysin is a potent breast cancer resistance protein inhibitor, it was found to have no significant effect on toptecan pharmacokinetics in rats (Zhang et al., 2005).

VEGF, HIF-1

Chrysin was found to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through AKT signaling. Inhibition of HIF-1α by chrysin resulted in abrogation of vascular endothelial growth factor expression (Fu et al., 2007).

Leukemia

Chrysin has been shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells (Khoo et al., 2010).

Immune

The chemo-preventive action of chrysin has been found to specifically inhibit the enzymatic activity of IDO-1 but not mRNA expression in human neuronal stem cells (hNSC), confirmed by cell-based assay and qRT-PCR. These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

References

Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Fu B, Xue J, Li Z, et al. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1 α through reducing hypoxia-inducible factor-1 α stability and inhibiting its protein synthesis. Mol Cancer Ther, 6:220. doi: 10.1158/1535-7163.MCT-06-0526


Khoo BY, Chua SL, Balaram P. (2010). Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci, 11(5), 2188-2199. doi:10.3390/ijms11052188


Wang HW, Lin CP, Chiu JH, et al. (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. International Journal of Cancer, 120(9), 2019-2027.


Weng MS, Ho YS, Lin JK. (2005). Chrysin induces G1 phase cell-cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol, 69(12):1815-27.


Zhang S, Wang X, Sagawa K, Morris ME. (2005). Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (,äì/,äì) mice. Drug Metabolism and Disposition, 33(3), 341-348.


Zheng X, Meng WD, Xu YY, Cao JG, & Qing FL. (2003). Synthesis and anti-cancer effect of chrysin derivatives. Bioorganic & Medicinal Chemistry Letters, 13(5), 881-884.

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

Aloe-emodin (See also Emodin)

Cancer:
Nasopharyngeal., ER α degradation, Lung, breast, oral., glioblastoma, liver cancer prevention

Action: Cytostatic, radio-sensitizing, chemo-sensitizing

Nasopharyngeal Carcinoma

Aloe-emodin (AE), a natural., biologically active compound from Aloe vera leaves has been shown to induce apoptosis in several cancer cell lines in vitro. Investigation showed that AE induced G2/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of nasopharyngeal carcinoma (NPC) cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression.

Collectively, results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells (Lin et al., 2010).

Glioblastoma

Aloe emodin arrested the cell-cycle in the S phase and promoted the loss of mitochondrial membrane potential in glioblastoma U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway. It plays an important role in the regulation of cell growth and death (Ismail et al., 2013).

Breast Cancer

The anthraquinones emodin and aloe-emodin are also abundant in the rhizome Rheum palmatum and can induce cytosolic estrogen receptor α (ER α) degradation; it primarily affected nuclear ER α distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ER α protein stability through distinct mechanisms (Huang et al., 2013).

Lung Cancer

Photoactivated aloe-emodin induced anoikis and changes in cell morphology, which were in part mediated through its effect on cytoskeleton in lung carcinoma H460 cells. The expression of protein kinase Cδ (PKCδ) was triggered by aloe-emodin and irradiation in H460 cells. Furthermore, the photoactivated aloe-emodin-induced cell death and translocation of PKCδ from the cytosol to the nucleus was found to be significantly inhibited by rottlerin, a PKCδ-selective inhibitor (Chang et al., 2012).

Oral Cancer; Radio-sensitizing, Chemo-sensitizing

The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intensively for their potential chemo-preventive properties and are pharmacologically safe.

These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities.

Treatment with aloe-emodin at 10 to 40 microM resulted in cell-cycle arrest at G2/M phase. The alkaline phosphatase (ALP) activity in KB cells increased upon treatment with aloe-emodin when compared to controls. This is one of the first studies to focus on the expression of ALP in human oral carcinomas cells treated with aloe-emodin. These results indicate that aloe-emodin has anti-cancer effect on oral cancer, which may lead to its use in chemotherapy and chemo-prevention of oral cancer (Xiao et al., 2007).

Liver Cancer Prevention

In Hep G2 cells, aloe-emodin-induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell-cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell-cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin-induced apoptosis by enhancing expression of Bax.

These findings suggest that aloe-emodin may be useful in liver cancer prevention (Lian et al., 2005).

References

Chang WT, You BJ, Yang WH, et al. (2012). Protein kinase C delta-mediated cytoskeleton remodeling is involved in aloe-emodin-induced photokilling of human lung cancer cells. Anti-cancer Res, 32(9):3707-13.

Huang PH, Huang CY, Chen MC, et al. (2013). Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ER α Inhibition. Evid Based Complement Alternat Med, 2013:376123. doi: 10.1155/2013/376123.

Ismail S, Haris K, Abdul Ghani AR, et al. (2013). Enhanced induction of cell-cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Nat Prod Res.

Lian LH, Park EJ, Piao HS, Zhao YZ, Sohn DH. (2005). Aloe Emodin‐Induced Apoptosis in Cells Involves a Mitochondria‐Mediated Pathway. Basic & Clinical Pharmacology & Toxicology, 96(6):495–502.

Lin, ML, Lu, YC, Chung, JG, et al. (2010). Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Letters, 291(1), 46-58. doi: 10.1016/j.canlet.2009.09.016.

Xiao B, Guo J, Liu D, Zhang S. (2007). Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase activation in human oral cancer KB cells. Oral Oncol, 43(9):905-10.

Acetyl-keto-beta-boswellic acid (AKBA)

Cancer: Colorectal, prostate, gastric

Action: Anti-cancer

Apoptotic

Acetyl-keto-beta-boswellic acid (AKBA), a triterpenoid isolated from Boswellia carterri Birdw and Boswellia serrata, has been found to inhibit tumor cell growth and to induce apoptosis. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation, and independent of Fas/Fas ligand interaction in colon cancer HT-29 cells (Liu et al., 2002).

Colon Cancer

Although there is increasing evidence showing that boswellic acid might be a potential anti-cancer agent, the mechanisms involved in its action are unclear. It has been shown that acetyl-keto-beta-boswellic acid (AKBA) inhibits cellular growth in several colon cancer cell lines. Cell cycle analysis by flow cytometry showed that cells were arrested at the G1 phase after AKBA treatment.

These results demonstrate that AKBA inhibits cellular growth in colon cancer cells. These findings may have implications for the use of boswellic acids as potential anti-cancer agents in colon cancer (Liu et al., 2006).

AKBA significantly inhibited human colon adenocarcinoma growth, showing arrest of the cell-cycle in G1-phase and induction of apoptosis. AKBA administration in mice effectively delayed the growth of HT-29 xenografts without signs of toxicity (Yuan et al., 2013).

Gastric Cancer

AKBA exhibited anti-cancer activity in vitro and in vivo. With oral application in mice, AKBA significantly inhibited gastric cancer cells line SGC-7901 and MKN-45 xenografts without toxicity.

This effect might be associated with its roles in cell-cycle arrest and apoptosis induction. The results also showed activation of p21(Waf1/Cip1) and p53 in mitochondria and increased cleaved caspase-9, caspase-3, and PARP and Bax/Bcl-2 ratio after AKBA treatment. Upon AKBA treatment, β-catenin expression in nuclei was inhibited, and membrane β-catenin was activated (Zhang et al., 2013).

Prostate

The apoptotic effects and the mechanisms of action of AKBA were studied in LNCaP and PC-3 human prostate cancer cells. AKBA induced apoptosis in both cell lines at concentrations above 10 microg/mL. AKBA-induced apoptosis was correlated with the activation of caspase-3 and caspase-8 as well as with poly(ADP)ribose polymerase (PARP) cleavage.

AKBA treatment increased the levels of CAAT/enhancer binding protein homologous protein (CHOP) and activated a DR5 promoter reporter but did not activate a DR5 promoter reporter with the mutant CHOP binding site. These results suggest that AKBA induces apoptosis in prostate cancer cells through a DR5-mediated pathway, which probably involves the induced expression of CHOP (Lu et al., 2008).

References

Liu J-J, Nilsson A, Oredsson S, et al. (2002). Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 23(12): 2087–2093. doi:10.1093/carcin/23.12.2087.

 

 

Liu JJ, Huang B, Hooi SC. (2006). Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol, 148(8):1099-107.

 

Lu M, Xia L, Hua H, Jing Y. (2008). Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res, 68(4):1180-6. doi: 10.1158/0008-5472.CAN-07-2978.

 

Yuan Y, Cui SX, Wang Y, et al. (2013). Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta, 1830(10):4907-16. doi: 10.1016/j.bbagen.2013.06.039.

 

Zhang YS, Xie JZ, Zhong JL, et al. (2013) Acetyl-11-keto-β-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/β -catenin signaling pathway. Biochim Biophys Acta, 1830(6):3604-15. doi: 10.1016/j.bbagen.2013.03.003.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.