Category Archives: chemo-prevention

Ursolic acid

Cancer:
Glioblastoma, Lung, breast, colorectal, gastric, esophageal squamous carcinoma, prostate

Action:

Mitochondrial function, reactive oxygen species (ROS) generation.

Cytostatic, anti-inflammatory, chemo-prevention, COX-2 inhibitor, suppresses NF- κ B, induces IL-1 β , induces apoptosis

Ursolic acid, a pentacyclic triterpene acid found ubiquitously in the plant kingdom, including Rosmarinus officinalis (L.), Salvia officinalis (L.), Prunella vulgaris (L.), Psychotria serpens (L.) and Hyptis capitata (Jacq.). It has been shown to suppress the expression of several genes associated with tumorigenesis resulting in anti-inflammatory, anti-tumorigenic and chemo-sensitizing effects (Liu, 1995).

Glioblastoma Cancer

Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human GBM DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate.

Ursolic acid effectively reversed TMZ resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptotic and autophagic-related signaling networks. The necrotic death was characterized by annexin V/PI double-positive detection and release of HMGB1 and LDH. These ursolic acid-elicited responses were accompanied by ROS generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. MPT is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by CypD, and ATP decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and -involved key regulators.

The study by Lu et al., (2014) is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.

Gastric Cancer

Ursolic acid (UA) inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. These results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis (Wang et al., 2011).

Esophageal Squamous Carcinoma

The anti-neoplastic effects of combinations of anti-cancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy- 4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2 cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell-cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells.

These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer (Yamai et al., 2009).

COX-2 Inhibitor

Subbaramaiah et al. (2000) studied the effects of ursolic acid, a chemo-preventive agent, on the expression of cyclooxygenase-2 (COX-2). Treatment with ursolic acid suppressed phorbol 12-myristate 13-acetate (PMA)-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Ursolic acid also suppressed the induction of COX-2 mRNA by PMA. Increased activator protein-1 activity and the binding of c-Jun to the cyclic AMP response element of the COX-2 promoter, effects were blocked by ursolic acid (Subbaramaiah et al., 2000).

Lung Cancer, Suppresses NF- κB

In terms of general anti-cancer mechanism, ursolic acid has also been found to suppress NF-κB activation induced by various carcinogens through the inhibition of the DNA binding of NF-κB. Ursolic acid also inhibits IκBα kinase and p65 phosphorylation (Shishodia et al., 2003). In particular, ursolic acid has been found to block cell-cycle progression and trigger apoptosis in lung cancer and may hence act as a chemoprevention agent for lung cancer (Hsu et al., 2004).

Breast Cancer

Ursolic acid is a potent inhibitor of MCF-7 cell proliferation. This triterpene exhibits both cytostatic and cytotoxic activity. It exerts an early cytostatic effect at G1 followed by cell death. Results suggest that alterations in cell-cycle phase redistribution of MCF-7 human breast cancer, by ursolic acid, may significantly influence MTT (colorimetric assays) reduction to formazan (Es-Saady et al., 1996).

Induces IL-1 β

Interleukin (IL)-1beta is a pro-inflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. It has recently been found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, Ikeda et al. (2008) investigated the ability of UA to induce IL-1beta production in pMphi from 4 different strains of female mice as well as an established macrophage line. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi.

Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, these results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility.

Induces Apoptosis: Breast Cancer, Prostate Cancer

Ursolic acid (UA) induced apoptosis and modulated glucocorticoid receptor (GR) and Activator Protein-1 (AP-1) in MCF-7 breast cancer cells. UA is a GR modulator and may be considered as a potential anti-cancer agent in breast cancer (Kassi et al., 2009).

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells (Kwon et al., 2010). In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition (Zhang et al., 2010). A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression (Yeh et al., 2010).

Ursolic acid additionally stimulates the release of cytochrome C in HL-60 cells and breast cancer MCF-7 cells. The activation of caspase-3 in a cytochrome C-dependent manner induces apoptosis via the mitochondrial pathway (Qian et al., 2011).

Colorectal Cancer

Ursolic acid (UA) has strong anti-proliferative and apoptotic effects on human colon cancer HT-29 cells. UA dose-dependently decreased cell proliferation and induced apoptosis, accompanied by activation of caspase 3, 8 and 9. The effects may be mediated by alkaline sphingomyelinase activation (Andersson et al., 2003).

Ursolic acid (UA), using the colorectal cancer (CRC) mouse xenograft model and the HT-29 human colon carcinoma cell line, was evaluated for its efficacy against tumor growth in vivo and in vitro, and its molecular mechanisms were investigated. It was found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation.

These data demonstrate that UA possesses a broad range of anti-cancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment (Lin et al., 2013).

Action: Anti-tumor, inhibits tumor cell migration and invasion

Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars’ attention. This review explained anti-tumor actions of UA, including (1) the protection of cells’ DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells.

Inhibition of Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Pathway
Activation of mitogen-activated protein kinase (MAPK) allows cell excessive proliferation involved in the carcinogenic process (Park et al., 1999). Subfamilies of MAPK, metastasis.(24) Otherwise, UA suppresses the activation of NF-κB and down-regulation of the MMP-9 protein, which in turn contributes to its inhibitory effects on IL-1β or tumor necrosis factor α (TNF-α)-induced C6 glioma cell invasion (Huang et al., 2009).

U A suppresses inter cellular adhesion molecules-1 (ICAM-1) expression of non-small cell lung cancer (NSCLC) H3255, A549, Calu-6 cells, and significantly inhibits fibronectin expression in a concentration-dependent way. UA significantly suppresses the expression of MMP-9 and MMP-2 and inhibits protein kinase C activity in test cell lines, at the same time, UA reduces cell invasion in a concentration-dependent manner (Huang et al., 2011).

Cancer: Multiple myeloma

Action: Anti-inflammatory, down-regulates STAT3

When dealing with the multiple myeloma, by the way of activating the proto-oncogene-mediated c-Src, JAK1, JAK2, and ERKs, ursolic acid (UA) can not only inhibit the expression of IL-6-induced STAT3 but also downregulates the STAT3 by regulating gene products, such as cyclin D1, Bcl-2, Bcl-xL, surviving, Mcl-1 and VEGF. Above all, UA can inhibit the proliferation of multiple myeloma cells and induce apoptosis, to arrest cells at G1 phase and G0 phase of cell cycle (Pathak et al., 2007).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Cancer: Colorectal

Wong et al., have previously reported Signal Transducer and Activator of Transcription 3 (STAT3) to be constitutively activated in aldehyde dehydrogenase (ALDH)(+)/cluster of differentiation-133 (CD133)(+) colon cancer-initiating cells. In the present study they tested the efficacy of inhibiting STAT3 signaling in human colon cancer-initiating cells by ursolic acid (UA), which exists widely in fruits and herbs.

ALDH(+)/CD133(+) colon cancer-initiating cells. UA also reduced cell viability and inhibited tumor sphere formation of colon cancer-initiating cells, more potently than two other natural compounds, resveratrol and capsaicin. UA also inhibited the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells. Furthermore, daily administration of UA suppressed HCT116 tumor growth in mice in vivo.

Their results suggest STAT3 to be a target for colon cancer prevention. UA, a dietary agent, might offer an effective approach for colorectal carcinoma prevention by inhibiting persistently activated STAT3 in cancer stem cells.

References

 

Andersson D, Liu JJ, Nilsson A, Duan RD. (2003). Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anti-cancer Research, 23(4):3317-22.

 

Es-Saady D, Simon A, Jayat-Vignoles C, Chulia AJ, Delage C. (1996). MCF-7 cell-cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anti-cancer Research, 16(1):481-6.

 

Hsu YL, Kuo PL, Lin CC. (2004). Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small-cell lung cancer A549 cells. Life Sciences, 75(19), 2303-2316.

 

Ikeda Y, Murakami A, Ohigashi H. (2008). Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci, 83(1-2):43-9. doi: 10.1016/j.lfs.2008.05.001.

 

Kassi E, Sourlingas TG, Spiliotaki M, et al. (2009). Ursolic Acid Triggers Apoptosis and Bcl-2 Down-regulation in MCF-7 Breast Cancer Cells. Cancer Investigation, 27(7):723-733. doi:10.1080/07357900802672712.

 

Kwon SH, Park HY, Kim JY, et al. (2010). Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett, 20:6435–6438. doi: 10.1016/j.bmcl.2010.09.073.

 

Lin J, Chen Y, Wei L, et al. (2013). Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol, (4):1235-43. doi: 10.3892/ijo.2013.2040.

 

Liu J. (1995). Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57-68.

 

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. (2003). Ursolic Acid Inhibits Nuclear Factor-OE ∫ B Activation Induced by Carcinogenic Agents through Suppression of IOE ∫ BOE± Kinase and p65 Phosphorylation. Cancer Research, 63(15), 4375-4383.

 

Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. (2000). Ursolic Acid Inhibits Cyclooxygenase-2 Transcription in Human Mammary Epithelial Cells. Cancer Res, 60:2399

 

Qian J, Li X, Guo GY, et al. (2011). Potent anti-tumor activity of emodin on CNE cells in vitro through apoptosis. J Zhejiang Sci-Tech Univ (Chin), 42:756-759

 

Wang X, Zhang F, Yang L, et al. (2011). Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo. J Biomed Biotechnol, 2011:419343. doi: 10.1155/2011/419343.

 

Yamai H, et al. (2009). Triterpenes augment the inhibitory effects of anti-cancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer, 125(4):952-60. doi: 10.1002/ijc.24433.

 

Yeh CT, Wu CH, Yen GC. (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res, 54:1285–1295. doi: 10.1002/mnfr.200900414.

 

Zhang Y, Kong C, Zeng Y, et al. (2010). Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog, 49:374–385.

 

Zhang LL, Wu BN, Lin Y et al. (2014) Research Progress of Ursolic Acid’s Anti-Tumor Actions. Chin J Integr Med 2014 Jan;20(1):72-79

 

Reference

 

Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009;48:517-531

 

Huang CY, Lin CY, Tsai CW, Yin MC. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro 2011;25:1274-1280.

 

Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999;81:1116-1121.

 

 

Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 2007;5:943-595

 

 

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

 

 

Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. (2013) Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84.

 
Lu C-C, Huang B-R, Liao P-J, Yen G-C. Ursolic acid triggers a non-programmed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Molecular Nutrition & Food Research. 2014 DOI: 10.1002/mnfr.201400051

 

 

 

Salvianolic acid-B / Salvinal

Cancer:
Head and neck squamous cell carcinoma, oral squamous cell carcinoma, glioma

Action: MDR, reduction of cardiotoxicity, COX-2 inhibitor, inflammatory-associated tumor development, anti-cancer

Salvia miltiorrhiza contains a variety of anti-tumor active ingredients, such as the water-soluble components, salvianolic acid A, salvianolic acid B, salvinal, and liposoluble constituents, tanshinone I, tanshinone IIA, dihydrotanshinone I, miltirone, cryptotanshinone, ailantholide, neo-tanshinlactone, and nitrogen-containing compounds. These anti-tumor active components play important roles in the different stages of tumor evolution, progression and metastasis (Zhang & Lu, 2010).

Anti-cancer/MDR

Aqueous extracts of Salvia miltiorrhizae Bunge have been extensively used in the treatment of cardiovascular disorders and cancer in Asia. Recently, a compound, 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde (salvinal), isolated from this plant showed inhibitory activity against tumor cell growth and induced apoptosis in human cancer cells. In the present study, we investigated the cytotoxic effect and mechanisms of action of salvinal in human cancer cell lines. Salvinal caused inhibition of cell growth (IC50 range, 4-17 microM) in a variety of human cancer cell lines.

In particular, salvinal exhibited similar inhibitory activity against parental KB, P-glycoprotein-overexpressing KB vin10 and KB taxol-50 cells, and multi-drug resistance-associated protein (MRP)-expressing etoposide-resistant KB 7D cells.

Taken together, our data demonstrate that salvinal inhibits tubulin polymerization, arrests cell-cycle at mitosis, and induces apoptosis. Notably, Salvinal is a poor substrate for transport by P-glycoprotein and MRP. Salvinal may be useful in the treatment of human cancers, particularly in patients with drug resistance (Chang et al., 2004).

Glioma

Salvianolic acid B (SalB) has been shown to exert anti-cancer effect in several cancer cell lines. SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment.

These findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anti-cancer agent for glioma prevention and treatment (Wang et al., 2013).

Reduced Cardiotoxicity

Clinical attempts to reduce the cardiotoxicity of arsenic trioxide (ATO) without compromising its anti-cancer activities remain an unresolved issue. In this study, Wang et al., (2013b) determined that Sal B can protect against ATO-induced cardiac toxicity in vivo and increase the toxicity of ATO toward cancer cells.

The combination treatment significantly enhanced the ATO-induced cytotoxicity and apoptosis of HepG2 cells and HeLa cells. Increases in apoptotic marker cleaved poly (ADP-ribose) polymerase and decreases in procaspase-3 expressions were observed through Western blot. Taken together, these observations indicate that the combination treatment of Sal B and ATO is potentially applicable for treating cancer with reduced cardiotoxic side effects.

Oral Cancer

Sal B has inhibitory effect on oral squamous cell carcinoma (OSCC) cell growth. The anti-tumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma.

Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited; expression of THBS2 was up-regulated (Yang et al., 2011).

Head and Neck Cancer

Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a non-steroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer-preventive agent. Concerns about the cardiotoxicity of celecoxib limit its use in long-term chemo-prevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China.

Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p < 0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E(2) synthesis, either with or without lipopolysaccharide stimulation. Taking these results together, Sal-B shows promise as a COX-2 targeted anti-cancer agent for HNSCC prevention and treatment (Hao et al., 2009).

Inflammatory-associated tumor development

A half-dose of daily Sal-B (40 mg/kg/d) and celecoxib (2.5 mg/kg/d) significantly inhibited JHU-013 xenograft growth relative to mice treated with a full dose of Sal-B or celecoxib alone. The combination was associated with profound inhibition of COX-2 and enhanced induction of apoptosis. Taken together, these results strongly suggest that a combination of Sal-B, a multifunctional anti-cancer agent, with low-dose celecoxib holds potential as a new preventive strategy in targeting inflammatory-associated tumor development (Zhao et al., 2010).

Squamous Cell Carcinoma

The results showed that Sal B significantly decreased the squamous cell carcinoma (SCC) incidence from 64.7 (11/17) to 16.7% (3/18) (P=0.004); angiogenesis was inhibited in dysplasia and SCC (P<0.01), with a simultaneous decrease in the immunostaining of hypoxia-inducible factor 1alpha and vascular endothelium growth factor protein (P<0.05). The results suggested that Sal B had inhibitory effect against the malignant transformation of oral precancerous lesion and such inhibition may be related to the inhibition of angiogenesis (Zhou, Yang, & Ge, 2006).

References

Chang JY, Chang CY, Kuo CC, et al. (2004). Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in Multi-drug-sensitive and -resistant human tumor cells. Mol Pharmacol, 65(1):77-84.


Hao Y, Xie T, Korotcov A, et al. (2009). Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer, 124(9):2200-9. doi: 10.1002/ijc.24160.


Wang ZS, Luo P, Dai SH, et al., (2013a). Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol, 33(7):921-8. doi: 10.1007/s10571-013-9958-z.


Wang M, Sun G, Wu P, et al. (2013b). Salvianolic Acid B prevents arsenic trioxide-induced cardiotoxicity in vivo and enhances its anti-cancer activity in vitro. Evid Based Complement Alternat Med, 2013:759483. doi: 10.1155/2013/759483.


Yang Y, Ge PJ, Jiang L, Li FL, Zhum QY. (2011). Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement Altern Med, 11:54. doi: 10.1186/1472-6882-11-54.


Zhang W, Lu Y. (2010). Advances in studies on anti-tumor activities of compounds in Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi, 35(3):389-92.


Zhao Y, Hao Y, Ji H, Fang Y, et al. (2010). Combination effects of salvianolic acid B with low-dose celecoxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev Res (Phila), 3(6):787-96. doi: 10.1158/1940-6207.CAPR-09-0243.


Zhou ZT, Yang Y, Ge JP. (2006). The preventive effect of salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters. Carcinogenesis, 27(4):826-32.

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Nelumbo Extract (NLE):Neferine

Cancer: Liver, osteosarcoma, breast, melanoma

Action: Anti-angiogenic, cytostatic

Neferine is a major bis-benzylisoquinoline alkaloid derived from the green seed embryos of the Indian lotus (Nelumbo nucifera (Gaertn.)).

Identification of natural products that have anti-tumor activity is invaluable to the chemo-prevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. Neferine is a major alkaloid component in lotus embryos.

Hepatitis

Experimental results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. Results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment.

These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes (Yoon et al., 2013).

Osteosarcoma

It was found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell-cycle arrest at G1. The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. Zhang et al. (2012) showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Their results for the first time showed a direct anti-tumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

Breast Cancer

Qualitative analysis showed that NLE contained several compounds, including polyphenols. The polyphenols identified in NLE consisted primarily of gallic acid, rutin, and quercetin. Cell cycle analysis revealed that breast cancer MCF-7 cells treated with NLE were arrested at the G0/G1 phase. In an in vivo analysis, treatment with NLE (0.5 and 1%) effectively reduced tumor volume and tumor weight in mice inoculated with MCF-7 cells compared to the control samples.

These results confirmed that cell-cycle arrest was sufficient to elicit tumor regression following NLE treatment (Yang et al., 2011).

Melanoma

Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. 3-30 µM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 µM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 µM nuciferine inhibited the expression of TRP-2 mRNA (Nakamura et al., 2013).

References

Nakamura S, Nakashima S, Tanabe G, et al. (2013). Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem, 21(3):779-87. doi: 10.1016/j.bmc.2012.11.038.


Yang MY, Chang YC, Chan KC et al. (2011). Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine, 3(3):153-163. doi:10.1016/j.eujim.2011.08.008


Yoon JS, Kim HM, Yadunandam AK, et al. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell-cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11):1013–1022. doi:10.1016/j.phymed.2013.03.024.


Zhang XY, Liu ZJ, Xu B, et al. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3):47–54.

Naringin

Cancer: TNBCa, melanoma, breast, colon, cervical

Action: Anti-inflammatory, anti-carcinogenic

Citrus plants are known to possess beneficial biological activities for human health. The total phenolics and flavonoids from a methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts of Citrus aurantium. The anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract.

Breast Cancer, Colon Cancer

The anti-cancer activity of the methanolic extract of Citrus aurantium was investigated in vitro against human cancer cell lines; breast cancer MCF-7; MDA-MB-231 cell lines, human colon adenocarcinoma HT-29 cell line and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to appreciable activities against all cell lines tested and the compounds present in the extracts are non-toxic which make them suitable as potential therapeutics (Karimi et al., 2012).

Triple Negative (ER-/PR-/HER2-)

Breast Cancer (TNBCa)

Camargo et al. (2012) demonstrated that naringin inhibited cell proliferation, and promoted cell apoptosis and G1 cycle arrest, accompanied by increased p21 and decreased survivin. Meanwhile, β-catenin signaling pathway was found to be suppressed by naringin.

Levels of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) are raised in patients with TNBCa. Inhibition of tumor growth, survival increase and the reduction of TNF-α and IL-6 levels in rats bearing W256 treated with naringin strongly suggest that this compound has potential as an anti-carcinogenic drug.

Results indicate that naringin could inhibit growth potential of Triple-negative (ER-/PR-/HER2-) breast cancer (TNBC) by modulating -catenin pathway, which suggests naringin might be used as a potential supplement for the prevention and treatment of breast cancer (Li et al., 2013).

Cervical Cancer

Fruit-based cancer prevention entities, such as flavonoids and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Ramesh & Alshatwi (2013) looked at the role of naringin-mediated chemo-prevention in relation to cervical carcinogenesis. The results suggest that the induction of apoptosis by naringin is through both death-receptor and mitochondrial pathways. Taken together, our results suggest that naringin might be an effective agent to treat human cervical cancer.

Melanoma

A study by Huang, Yang, Chiou (2011) investigated the molecular events of melanogenesis induced by naringenin in murine B16-F10 melanoma cells. Melanin content, tyrosinase activity and Western blot analysis were performed to elucidate the possible underlying mechanisms. Exposure of melanoma cells to naringenin resulted in morphological changes accompanied by the induction of melanocyte differentiation-related markers, such as melanin synthesis, tyrosinase activity, and the expression of tyrosinase and microphthalmia-associated transcription factor (MITF). They concluded that naringenin induced melanogenesis through the Wnt-β-catenin-signaling pathway.

References

Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H. (2013). Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anti-cancer Res, 32(1):129-33.


Huang YC, Yang CH, Chiou YL. (2011). Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/ β -catenin signaling in mouse melanoma cells. Phytomedicine. 18(14):1244-9. doi: 10.1016/j.phymed.2011.06.028.


Karimi E, Oskoueian E, Hendra R, Oskoueian A, Jaafar HZ. (2012). Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules, 17(2):1203-18. doi: 10.3390/molecules17021203.


Li HZ, Yang B, Huang J, et al. (2013). Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting -catenin signaling pathway. Toxicology Letters, 220(2013):219-228


Ramesh E, Alshatwi AA. (2013). Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 51:97-105. doi: 10.1016/j.fct.2012.07.033.

Moscatilin

Cancers:
Colon, lung, placenta, stomach, breast metastasis

Action: Anti-angiogenic, anti-metastatic, anti-tubulin, cytostatic, cytotoxic, cell-cycle arrest, anti-inflammatory

Stomach Cancer, Lung Cancer, Placental

The efficacy of using moscatilin, a natural anti-platelet agent extracted from the stems of Dendrobrium loddigesii, as an anti-cancer agent was studied. Results demonstrated that moscatilin exerts potent cytotoxic effect against cancer cell lines derived from different tissue origins, including those from the placenta, stomach, and lung, but not those from the liver. In addition, the mechanism of action of moscatilin may be related to its ability to induce a G2 phase arrest in responsive cells.

However, unlike some G2 arresting agents, moscatilin has no detectable inhibitory effect on cyclin B–cdc-2 kinase activity. Thus, the precise nature of its cytotoxic mechanism remains to be determined.

Results suggest that moscatilin is potentially efficacious for chemo-prevention and/or chemotherapy against some types of cancer (Ho & Chen, 2003).

Colorectal Cancer

The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on colorectal HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Moscatilin induced a time-dependent arrest of the cell-cycle at G2/M, with an increase of cells at sub-G1. Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. A parallel experiment showed that SP600125 significantly inhibits Taxol and vincristine induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents.

Collectively, results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage leading to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway (Chen et al., 2008).

Anti-inflammatory

Results showed that moscatilin (10-100 microM) had a significant inhibition in a concentration-dependent manner on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS (100 ng/mL) treatment.

Hypoxia-inducible factor 1 (HIF-1) alpha was reported to initiate inflammation under cytokine stimulation or hypoxic conditions. Moscatilin had significant inhibition on HIF-1 expression via down-regulation of HIF-1 mRNA without affecting cell viability, translation machinery, or proteasome-mediated degradation of HIF-1. Collective data demonstrarted that moscatilin inhibited both COX-2 and iNOS expressions after LPS treatment in RAW264.7. Furthermore, moscatilin's inhibitory effect appears to be dependent on the repression of HIF-1alpha accumulation and NF-kappaB activation (Liu et al., 2010).

Lung Cancer; Angiogenesis

Moscatilin significantly inhibited growth of lung cancer cell line A549 (NSCLC) and suppressed growth factor-induced neovascularization. In addition, VEGF- and bFGF-induced cell proliferation, migration, and tube formation of HUVECs was markedly inhibited by moscatilin. Western blotting analysis of cell signaling molecules indicated that moscatilin inhibited ERK1/2, Akt, and eNOS signaling pathways in HUVECs.

Results suggest that inhibition of angiogenesis by moscatilin may be a major mechanism in cancer therapy (Tsai et al., 2010).

Lung Cancer

Investigation demonstrated that non-toxic concentrations of moscatilin were able to inhibit human non-small-cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical was identified as a dominant species in the suppression of filopodia formation.

Results indicate a novel molecular basis of moscalitin inhibiting lung cancer cell motility and invasion. Moscalitin may have promising anti-metastatic potential as an agent for lung cancer therapy (Kowitdamrong, Chanvorachote, Sritularak & Pongrakhananon, 2013).

Breast Cancer; Metastasis

Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anti-cancer activity. The mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo was evaluated.

Moscatilin was found to significantly inhibit breast cancer MDA-MB-231 cell migration by using scratch assays and Boyden chambers.

In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity.

Results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways, consistent with moscatilin's anti-metastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis (Pai et al., 2013).

References

Chen TH, Pan SL, Guh JH, et al. (2008). Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clinical Cancer Research, 14(13), 4250-4258. doi: 10.1158/1078-0432.CCR-07-4578.


Ho CK, Chen CC. (2003). Moscatilin from the orchid Dendrobrium loddigesii is a potential anti-cancer agent. Cancer Investigation, 21(5), 729-736.


Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Research International., 2013, 765894. doi: 10.1155/2013/765894.


Liu YN, Pan SL, Peng CY, et al. (2010). Moscatilin repressed lipopolysaccharide-induced HIF-1alpha accumulation and NF-kappaB activation in murine RAW264.7 cells. Shock, 33(1), 70-5. doi: 10.1097/SHK.0b013e3181a7ff4a.


Pai HC, Chang LH, Peng CY, et al. (2013). Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway.

Journal of Molecular Medicine (Berlin), 91(3), 347-56. doi: 10.1007/s00109-012-0945-5.

Tsai AC, Pan SL, Liao CH, et al. (2010). Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Letters, 292(2), 163-70. doi: 10.1016/j.canlet.2009.11.020.

Aloe-emodin (See also Emodin)

Cancer:
Nasopharyngeal., ER α degradation, Lung, breast, oral., glioblastoma, liver cancer prevention

Action: Cytostatic, radio-sensitizing, chemo-sensitizing

Nasopharyngeal Carcinoma

Aloe-emodin (AE), a natural., biologically active compound from Aloe vera leaves has been shown to induce apoptosis in several cancer cell lines in vitro. Investigation showed that AE induced G2/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of nasopharyngeal carcinoma (NPC) cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression.

Collectively, results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells (Lin et al., 2010).

Glioblastoma

Aloe emodin arrested the cell-cycle in the S phase and promoted the loss of mitochondrial membrane potential in glioblastoma U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway. It plays an important role in the regulation of cell growth and death (Ismail et al., 2013).

Breast Cancer

The anthraquinones emodin and aloe-emodin are also abundant in the rhizome Rheum palmatum and can induce cytosolic estrogen receptor α (ER α) degradation; it primarily affected nuclear ER α distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ER α protein stability through distinct mechanisms (Huang et al., 2013).

Lung Cancer

Photoactivated aloe-emodin induced anoikis and changes in cell morphology, which were in part mediated through its effect on cytoskeleton in lung carcinoma H460 cells. The expression of protein kinase Cδ (PKCδ) was triggered by aloe-emodin and irradiation in H460 cells. Furthermore, the photoactivated aloe-emodin-induced cell death and translocation of PKCδ from the cytosol to the nucleus was found to be significantly inhibited by rottlerin, a PKCδ-selective inhibitor (Chang et al., 2012).

Oral Cancer; Radio-sensitizing, Chemo-sensitizing

The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intensively for their potential chemo-preventive properties and are pharmacologically safe.

These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities.

Treatment with aloe-emodin at 10 to 40 microM resulted in cell-cycle arrest at G2/M phase. The alkaline phosphatase (ALP) activity in KB cells increased upon treatment with aloe-emodin when compared to controls. This is one of the first studies to focus on the expression of ALP in human oral carcinomas cells treated with aloe-emodin. These results indicate that aloe-emodin has anti-cancer effect on oral cancer, which may lead to its use in chemotherapy and chemo-prevention of oral cancer (Xiao et al., 2007).

Liver Cancer Prevention

In Hep G2 cells, aloe-emodin-induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell-cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell-cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin-induced apoptosis by enhancing expression of Bax.

These findings suggest that aloe-emodin may be useful in liver cancer prevention (Lian et al., 2005).

References

Chang WT, You BJ, Yang WH, et al. (2012). Protein kinase C delta-mediated cytoskeleton remodeling is involved in aloe-emodin-induced photokilling of human lung cancer cells. Anti-cancer Res, 32(9):3707-13.

Huang PH, Huang CY, Chen MC, et al. (2013). Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ER α Inhibition. Evid Based Complement Alternat Med, 2013:376123. doi: 10.1155/2013/376123.

Ismail S, Haris K, Abdul Ghani AR, et al. (2013). Enhanced induction of cell-cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Nat Prod Res.

Lian LH, Park EJ, Piao HS, Zhao YZ, Sohn DH. (2005). Aloe Emodin‐Induced Apoptosis in Cells Involves a Mitochondria‐Mediated Pathway. Basic & Clinical Pharmacology & Toxicology, 96(6):495–502.

Lin, ML, Lu, YC, Chung, JG, et al. (2010). Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Letters, 291(1), 46-58. doi: 10.1016/j.canlet.2009.09.016.

Xiao B, Guo J, Liu D, Zhang S. (2007). Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase activation in human oral cancer KB cells. Oral Oncol, 43(9):905-10.

Carnosol

Cancer: Breast, prostate, skin, colon, leukemia, stomach

Action: Anti-inflammatrory, anti-angiogenic

Carnosol is found in certain Mediterranean meats, fruits, vegetables, and olive oil. In particular, it is sourced from rosemary (Rosmarinus officinalis (L.)) and desert sage (Salvia pachyphylla (Epling ex Munz)).

Prostate Cancer, Breast Cancer, Skin Cancer, Colon Cancer, Leukemia

One agent, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals.

This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent (Johnson, 2011).

Literature evidence from animal and cell culture studies demonstrates the anti-cancer potential of rosemary extract, carnosol, carnosic acid, ursolic acid, and rosmarinic acid to suppress the development of tumors in several organs including the colon, breast, liver, stomach, as well as melanoma and leukemia cells (Ngo et al., 2011).

Anti-inflammatory

Treatment with retinoic acid (RA) or carnosol, two structurally unrelated compounds with anti-cancer properties, inhibited phorbol ester (PMA)-mediated induction of activator protein-1 (AP-1) activity and cyclooxygenase-2 (COX-2) expression in human mammary epithelial cells. Treatment with carnosol but not RA blocked increased binding of AP-1 to the COX-2 promoter. Carnosol but not RA inhibited the activation of PKC, ERK1/2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinase. Overexpressing c-Jun but not CBP/p300 reversed the suppressive effect of carnosol on PMA-mediated stimulation of COX-2 promoter activity.

Carnosol inhibited the induction of COX-2 by blocking PKC signaling and thereby the binding of AP-1 to the CRE of the COX-2 promoter. Taken together, these results show that small molecules can block the activation of COX-2 transcription by distinct mechanisms (Subbaramaiah, 2002).

Breast Cancer

Two rosemary components, carnosol and ursolic acid, appear to be partly responsible for the anti-tumorigenic activity of rosemary. Supplementation of diets for 2 weeks with rosemary extract (0.5% by wt) but not carnosol (1.0%) or ursolic acid (0.5%) resulted in a significant decrease in the in vivo formation of rat mammary DMBA-DNA adducts, compared to controls. When injected intraperitoneally (i.p.) for 5 days at 200 mg/kg body wt, rosemary and carnosol, but not ursolic acid, significantly inhibited mammary adduct formation by 44% and 40%, respectively, compared to controls. Injection of this dose of rosemary and carnosol was associated with a significant 74% and 65% decrease, respectively, in the number of DMBA-induced mammary adenocarcinomas per rat, compared to controls. Ursolic acid injection had no effect on mammary tumorigenesis.

Therefore, carnosol is one rosemary constituent that can prevent DMBA-induced DNA damage and tumor formation in the rat mammary gland, and, thus, has potential for use as a breast cancer chemopreventative agent (Singletary et al., 1996).

Anti-angiogenic

The anti-angiogenic activity of carnosol and carnosic acid could contribute to the chemo-preventive, anti-tumoral and anti-metastatic activities of rosemary extracts and suggests that there is potential in the treatment of other angiogenesis-related malignancies (L-pez-JimŽnez et al., 2013).

References:

Johnson JJ. (2011). Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Letters, 305(1):1-7. doi:10.1016/j.canlet.2011.02.005.


L-pez-JimŽnez A, Garc'a-Caballero M, Medina Mç, Quesada AR. (2013). Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutr, 52(1):85-95. doi: 10.1007/s00394-011-0289-x.


Ngo SN, Williams DB, Head RJ. (2011). Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr, 51(10):946-54. doi: 10.1080/10408398.2010.490883.


Singletary K, MacDonald C & Wallig M. (1996). Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Letters, 104(1):43-8. doi: 10.1016/0304-3835(96)04227-9


Subbaramaiah K, Cole PA, Dannenberg AJ. (2002). Retinoids and Carnosol Suppress Cyclooxygenase-2 Transcription by CREB-binding Protein/p300-dependent and -independent Mechanisms. Cancer Res, 62:2522