Category Archives: Sarcoma

Wogonin

Cancer:
Breast, lung (NSCLC), gallbladder carcinoma, osteosarcoma, colon, cervical

Action: Neuro-protective, anti-lymphangiogenesis, anti-angiogenic, anti-estrogenic, chemo-sensitizer, pro-oxidative, hypoxia-induced drug resistance, anti-metastatic, anti-tumor, anti-inflammatory

Wogonin is a plant monoflavonoid isolated from Scutellaria rivularis (Benth.) and Scutellaria baicalensis (Georgi).

Breast Cancer; ER+ & ER-

Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell-cycle progression, and apoptosis. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by up-regulation of PARP and Caspase 3 cleavages as well as pro-apoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the down-regulation of the Akt-mediated canonical Wnt signaling pathway.

ER expression was down-regulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemo-preventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types (Chung et al., 2008).

Neurotransmitter Action

Kim et al. (2011) found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.

Anti-metastasic

The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Wogonin at the dose of 1–10 µM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin.

These findings suggest that wogonin inhibits cell mobility and invasion by up-regulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemo-protective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis (Dong et al., 2011).

Anti-tumor and Anti-metastatic

Kimura & Sumiyoshi (2012) examined the effects of wogonin isolated from Scutellaria baicalensis roots on tumor growth and metastasis using a highly metastatic model in osteosarcoma LM8-bearing mice. Wogonin (25 and 50mg/kg, twice daily) reduced tumor growth and metastasis to the lung, liver and kidney, angiogenesis (CD31-positive cells), lymphangiogenesis (LYVE-1-positive cells), and TAM (F4/80-positive cell) numbers in the tumors of LM8-bearing mice. Wogonin (10–100µM) also inhibited increases in IL-1β production and cyclooxygenase (COX)-2 expression induced by lipopolysaccharide in THP-1 macrophages. The anti-tumor and anti-metastatic actions of wogonin may be associated with the inhibition of VEGF-C-induced lymphangiogenesis through a reduction in VEGF-C-induced VEGFR-3 phosphorylation by the inhibition of COX-2 expression and IL-1β production in Tumor-associated macrophages (TAMs).

Anti-inflammatory

Wogonin extracted from Scutellariae baicalensis and S. barbata is a cell-permeable and orally available flavonoid that displays anti-inflammatory properties. Wogonin is reported to suppress the release of NO by iNOS, PGE2 by COX-2, pro-inflammatory cytokines, and MCP-1 gene expression and NF-kB activation (Chen et al., 2008).

Hypoxia-Induced Drug Resistance (MDR)

Hypoxia-induced drug resistance is a major obstacle in the development of effective cancer therapy. The reversal abilities of wogonin on   hypoxia resistance were examined and the underlying mechanisms discovered. MTT assay revealed that hypoxia increased maximal 1.71-, 2.08-, and 2.15-fold of IC50 toward paclitaxel, ADM, and DDP in human colon cancer cell lines HCT116, respectively. Furthermore, wogonin showed strong reversal potency in HCT116 cells in hypoxia and the RF reached 2.05. Hypoxia-inducible factor-1α (HIF-1α) can activate the expression of target genes involved in glycolysis. Wogonin decreased the expression of glycolysis-related proteins (HKII, PDHK1, LDHA), glucose uptake, and lactate generation in a dose-dependent manner.

In summary, wogonin could be a good candidate for the development of a new multi-drug resistance (MDR) reversal agent and its reversal mechanism probably is due to the suppression of HIF-1α expression via inhibiting PI3K/Akt signaling pathway (Wang et al., 2013).

NSCLC

Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. In this study, the effect of a combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay.

The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL.

These results show for the first time that wogonin enhances TRAIL's anti-tumor activity in vivo, suggesting this strategy has an application potential for clinical anti-cancer therapy (Yang et al., 2013).

Colon Cancer

Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest in the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner compared with the control. Furthermore, the induction of apoptosis was accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a dose-dependent manner.

The administration of baicalein to mice resulted in the inhibition of the growth of HT-29 xenografts without any toxicity following 5 weeks of treatment. The results indicated that baicalein induced apoptosis via Akt activation in a p53-dependent manner in the HT-29 colon cancer cells and that it may serve as a chemo-preventive or therapeutic agent for HT-29 colon cancer (Kim et al., 2012).

Breast

The involvement of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth was determined. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis.

These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model (Ma et al., 2012).

Chemoresistance; Cervical Cancer, NSCLC

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF.

In this study, the non-small-cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells.

Results provided important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy (He et al., 2012).

References

Chen LG, Hung LY, Tsai KW, et al. (2008). Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res. 52:1349-1357.


Chung H, Jung YM, Shin DH, et al. (2008). Anti-cancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer, 122(4):816-22.


Dong P, Zhang Y, Gu J, et al. (2011). Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol, 137(3):1373-80. doi: 10.1016/j.jep.2011.08.005.


He F, Wang Q, Zheng XL, et al. (2012). Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports, 28(2), 601-605. doi: 10.3892/or.2012.1841.


Kim EJ, Kang D, Han J. (2011). Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiologica, 202(2):185–192. doi: 10.1111/j.1748-1716.2011.02263.x.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6(6):1443-9. doi: 10.3892/mmr.2012.1085.


Kimura Y & Sumiyoshi M. (2012). Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 20(3-4):328-336. doi:10.1016/j.phymed.2012.10.016


Ma X, Xie KP, Shang F, et al. (2012). Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane. Sheng Li Xue Bao, 64(2):207-12.


Wang H, Zhao L, Zhu LT, et al. (2013). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via down-regulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. doi: 10.1002/mc.22052.


Yang L, Wang Q, Li D, et al. (2013). Wogonin enhances anti-tumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated down-regulation of cFLIPL and IAP proteins. Apoptosis, 18(5):618-26. doi: 10.1007/s10495-013-0808-8.

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Pinosylvin

Cancer: Colorectal, lung

Action: Anti-cancer, anti-inflammatory and anti-oxidant, chemo-preventive, anti-metastatic effect

Pinosylvin is a naturally occurring chemo-preventive trans-stilbenoid mainly found in plants of the Pinus genus (Pinus (L.) and Gnetum cleistostachyum (C. Y. Cheng)).

Anti-cancer, Anti-inflammatory and Anti-oxidant

Stilbenes are small molecular weight (approximately 200-300 g/mol), naturally occurring compounds and are found in a wide range of plant sources, aromatherapy products, and dietary supplements. These molecules are synthesized via the phenylpropanoid pathway and share some structural similarities to estrogen. Upon environmental threat, the plant host activates the phenylpropanoid pathway and stilbene structures are produced and subsequently secreted. Stilbenes act as natural protective agents to defend the plant against viral and microbial attack, excessive ultraviolet exposure, and disease. Stilbene compounds, piceatannol, pinosylvin, rhapontigenin, and pterostilbene possess potent anti-cancer, anti-inflammatory and anti-oxidant activities (Roupe et al., 2006).

Colorectal

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, has exhibited a potential cancer chemo-preventive activity. The anti-proliferative activity of pinosylvin was investigated in human colorectal HCT 116 cancer cells.

Pinosylvin was also found to attenuate the activation of proteins involved in focal adhesion kinase (FAK)/c-Src/extracellular signal-regulated kinase (ERK) signaling, and phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK-3β) signaling pathway. Subsequently, pinosylvin suppressed the nuclear translocation of β-catenin, one of downstream molecules of PI3K/Akt/GSK-3β signaling, and these events led to the sequential down-regulation of β-catenin-mediated transcription of target genes including BMP4, ID2, survivin, cyclin D1, MMP7, and c-Myc. These findings demonstrate that the anti-proliferative activity of pinosylvin might be associated with the cell-cycle arrest and down-regulation of cell proliferation regulating signaling pathways in human colorectal cancer cells (Park et al., 2013).

Anti-metastatic

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibits a potential cancer chemo-preventive activity and also inhibits the growth of various human cancer cell lines via the regulation of cell-cycle progression. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. Park et al. (2012) found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems.

The analysis of tumor in lung tissues indicated that the anti-metastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

References

Park EJ, Park HJ, Chung HJ, et al. (2012). Anti-metastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem, 23(8):946-52. doi: 10.1016/j.jnutbio.2011.04.021.


Park EJ, Chung HJ, Park HJ, et al. (2013). Suppression of Src/ERK and GSK-3/ β-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol, 55:424-33. doi:10.1016/j.fct.2013.01.007.


Roupe KA, Remsberg CM, Yá–ez JA, Davies NM. (2006). Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol, 1(1):81-101.

Pheophorbide

Cancer: Liver, lung, uterine sarcoma

Action: MDR

MDR

Pheoborbide is isolated from Scutellaria barbata, a Traditional Chinese Medicine native in southern China, and has been widely used for treating liver diseases.   Pheophorbide a (Pa), an active component from S. barbata, has been shown to have anti-proliferative and Multi-drug-resistant (MDR) effects on the human hepatoma cell line R-HepG2.

Significant reduction of P-glycoprotein expression on Pa-treated R-HepG2 cells was found at both transcriptional and translational levels, leading to reduction of P-glycoprotein activity. In addition, mechanistic study elucidated that Pa induced cell-cycle arrest at G2/M phase and inhibited the expressions of G2/M phase cell-cycle regulatory proteins, cyclin-A1 and cdc2 in a dose-dependent manner (Tang et al., 2007).

Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. The chemical constituents of Typhonium flagelliforme, particularly those which have anti-proliferative properties towards human cancer cell lines, have been investigated. Purification of the chemical constituents by various chromatographic procedures was guided by the anti-proliferative activity. Four pheophorbide related compounds, namely pheophorbide-a, pheophorbide-a', pyropheophorbide-a and methyl pyropheophorbide-a were identified in the most active fraction, D/F19.

These constituents exhibited anti-proliferative activity against cancer cells and activity increased following photoactivation. However, anti-proliferative activity exhibited by D/F19 alone, relative to the combined effect of pheophorbides and their subfractions, suggests some form of synergistic action between the constituents. The inhibitory effect of D/F19 and the pheophorbides was apoptotic in the absence of light. Most of the chemical constituents identified in this plant have not been reported previously (Lai, Mas, Nair, Mansor, & Navaratnam, 2010).

Prolonged cancer chemotherapy is associated with the development of multi-drug resistance (MDR), which is a major cause of treatment failure. Photodynamic therapy (PDT) has been applied as anti-cancer therapy and a means of circumventing MDR. The anti-proliferative effect of pheophorbide a-mediated photodynamic therapy (Pa-PDT) has been demonstrated in several human cancer cell lines, including the uterine sarcoma cell line, MES-SA.

Combined therapy using Pa-PDT and Dox, a common chemotherapeutic drug, was found to be synergistic in the cell line, MES-SA/Dx5. Both activity and expression of MDR1 and P-gp were reduced by Pa-PDT treatment and such reductions were attenuated by α-tocopherol, the scavenger of reactive oxygen species (ROS), suggesting that the effect of Pa-PDT was mediated by the generation of intracellular ROS (Cheung et al., 2013).

References

Cheung KK, Chan JY, Fung KP. (2013). Anti-proliferative effect of pheophorbide a-mediated photodynamic therapy and its synergistic effect with doxorubicin on multiple drug-resistant uterine sarcoma cell MES-SA/Dx5. Drug Chem Toxicol, 36(4):474-83. doi: 10.3109/01480545.2013.776584.


Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V. (2010). Chemical constituents and in vitro anti-cancer activity of Typhonium flagelliforme (Araceae).


Journal of Ethnopharmacology, 127(2), 486-94. doi: 10.1016/j.jep.2009.10.009.


Tang PM, Chan JY, Zhang DM, et al. (2007). Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated Multi-drug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther, 6(4):504-9.

Oxymatrine (Ku Shen)

Cancer:
Sarcoma, pancreatic, breast, liver, lung, oral, colorectal, stomach, gastric, adenoid cystic carcinoma

Action: Anti-angiogenesis, anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, immunotolerance, induces apoptosis, decreases side-effects of Intensity Modulated Radiation Therapy (IMRT), Transcatheter Hepatic Arterial Chemoembolization (TACE)

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012).

Angiogenesis

Oxymatrine has been found to inhibit angiogenesis when administered by injection. The tumor-inhibitory rate and the vascular density were tested in animal tumor model with experimental treatment. The expression of VEGF and bFGF were measured by immunistological methods. When high doses were used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group, and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

Immunotolerance

Matrine, a small molecule derived from the root of Sophora flavescens AIT, was demonstrated to be effective in inducing T cell anergy in human Jurkat cells. Induction of immunotolerance has become a new strategy for treating autoimmune conditions in recent decades. However, so far there is no ideal therapeutics available for clinical use. Medicinal herbs are a promising potential source of immunotolerance inducers. Bioactive compounds derived from medicinal plants were screened for inducing T cell anergy in comparison with the effect of well-known T cell anergy inducer, ionomycin.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells, could influence the ability of T cell anergy induction. The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy, when the cells were stimulated by antigens, anti-OKT3 plus anti-CD28. Mechanistic study showed that ionomycin and matrine could up-regulate the anergy-associated gene expressions of CD98 and Jumonji and activate nuclear factor of activated T-cells (NFAT) nuclear translocation in absence of cooperation of AP-1 in Jurkat cells. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Induces Apoptosis

The cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential ( Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit.

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Induces Apoptosis in Pancreatic Cancer

Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was up-regulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c, and activation of caspase-3 (Ling et al., 2011).

Decreases Side-effects of Intensity Modulated Radiation Therapy (IMRT)

The levels of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer were measured after treatment with the compound matrine, in combination with radiation. Eighty-four patients diagnosed with rectal carcinoma were randomly divided into two groups: therapeutic group and control group.

The patients in the therapeutic group were treated with compound matrine and intensity- modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT. The clinical effects and the levels of IL-8 and sIL-2R tested by ELISA pre-radiation and post-radiation were compared. In addition, 42 healthy people were singled out from the physical examination center in the People's Hospital of Yichun city, which were considered as healthy controls.

The clinical effect and survival rate in the therapeutic group was significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress, in the therapeutic group. However, the control group had 12 improvements, 14 stabilized, and 16 progress.

The quality of life in the therapeutic group was higher than tthat in the control group, by rank sum test. SIL-2R and IL-8 examination found that serum levels of sIL-2R and IL-8 were higher in rectal cancer patients before treatments than those in the healthy groups, by student test.

However, sIL-2R and IL-8 serum levels were found significantly lower in the 84 rectal cancer patients after radiotherapy. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post-radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post- therapy, according to the student test. Side-effects of hepatotoxicity (11.9%) and radiation proctitis (9.52%) were fewer in the therapeutic group.

Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

The clinical effect of matrine injection, combined with S-1 and cisplatin (SP), in the treatment of advanced gastric cancer was investigated. Seventy-six cases of advanced gastric cancer were randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively.

The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively. Therapeutic effect of the two groups of patients did not differ significantly. Occurrence rate of symptom indexes in the treatment group were lower than those of control group, with exception of nausea and vomiting, in which there was no significant difference.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

The effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells was investigated.

Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). IC50 of ACC-2 was 0.84 g/ml. Flow cytometry indicated that radix Sophorae flavescentis injection could arrest ACC-2 cells at the G0/G1 phase, with a gradual decrease of presence in the G2/M period and S phase. With an increase in dosage, ACC-2 cell apoptosis rate increased significantly (P < 0.05 or P < 0.01).

Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer Post-operative Chemotherapy

A retrospective analysis of oncological data of 70 post-operative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days to a cycle) were compared.

The objective remission rate of therapy group compared with that of control group was not statistically significant (P > 0.05), while the difference of the disease control rate in two groups was statistically significant (P < 0.05). The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An & Wu, 2012).

Lung Cancer Pleural Effusions

The therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected fufangkushen plus IL-2, fufangkushen plus α-tFN, and IL-2 plus α-IFN, respectively. The control group was divided into three groups and injected fufangkushen, IL-2 and α-IFN, respectively. Therapeutic efficiency and adverse reactions were observed after four weeks.

The effective rate of fufangkushen, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. In adverse reactions, the incidence of fever, chest pains, and the reaction of gastrointestinal tract in the treatment group were significantly less than in the matched group.

The effect of fufangkushen, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of fufangknshen plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Colorectal Cancer Immunologic Function

The effects of compound Kushen (Radix sophorae flavescentis) injection on the immunologic function of patients after colorectal cancer resection, were studied.

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mL·d-1 compound Kushen injection, for 10 days during chemotherapy.

In the control group the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells, NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

After chemotherapy, the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio were higher in the experimental group than in the control group (P0.05), while the number of CD8+T lymphocyte was similar between two groups. Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

Stage III and IV non-small-cell lung cancer (NSCLC)

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The chemotherapy was performed for 4 cycles of 3 weeks, and the therapeutic efficacy was evaluated every 2 weeks. The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference. (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group.

The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05). The serum lgA levels were not significantly different in the two groups.

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Suppression effects of different concentrations of matrine injection and matrine injection combined with anti-tumor drugs on lung cancer cells were measured by methyl thiazolyl tetrazolium (MTT) colorimetric assay.

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone.

Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Transcatheter Hepatic Arterial Chemoembolization (TACE)

The effect of composite Kushen injection combined with transcatheter hepatic arterial chemoembolization (TACE) on unresectable primary liver cancer, was studied.

Fifty-seven patients with unresectable primary liver cancer were randomly divided into two groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. The clinical curative effects were observed after treatment in both groups.

One-, 2-, and 3-year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

References

An AJ, An GW, Wu YC. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen G, Yu B, Yuan SJ, Yuan Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013) Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF- κ B-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan CX, Lin CL, Liang L, et al. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Hu DJ, Mei, XD. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α -IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Kong QZ, Huang DS, Huang T, et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Shi B, Xu H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012;2012:373219. doi: 10.1155/2012/373219.


Wang HM, Cheng XM. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin WH, Sheng JW, Xia HM, et al. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhu MY, Jiang ZH, Lu YW, Guo Y, Gan JJ. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Nelumbo Extract (NLE):Neferine

Cancer: Liver, osteosarcoma, breast, melanoma

Action: Anti-angiogenic, cytostatic

Neferine is a major bis-benzylisoquinoline alkaloid derived from the green seed embryos of the Indian lotus (Nelumbo nucifera (Gaertn.)).

Identification of natural products that have anti-tumor activity is invaluable to the chemo-prevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. Neferine is a major alkaloid component in lotus embryos.

Hepatitis

Experimental results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. Results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment.

These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes (Yoon et al., 2013).

Osteosarcoma

It was found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell-cycle arrest at G1. The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. Zhang et al. (2012) showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Their results for the first time showed a direct anti-tumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

Breast Cancer

Qualitative analysis showed that NLE contained several compounds, including polyphenols. The polyphenols identified in NLE consisted primarily of gallic acid, rutin, and quercetin. Cell cycle analysis revealed that breast cancer MCF-7 cells treated with NLE were arrested at the G0/G1 phase. In an in vivo analysis, treatment with NLE (0.5 and 1%) effectively reduced tumor volume and tumor weight in mice inoculated with MCF-7 cells compared to the control samples.

These results confirmed that cell-cycle arrest was sufficient to elicit tumor regression following NLE treatment (Yang et al., 2011).

Melanoma

Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. 3-30 µM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 µM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 µM nuciferine inhibited the expression of TRP-2 mRNA (Nakamura et al., 2013).

References

Nakamura S, Nakashima S, Tanabe G, et al. (2013). Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem, 21(3):779-87. doi: 10.1016/j.bmc.2012.11.038.


Yang MY, Chang YC, Chan KC et al. (2011). Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine, 3(3):153-163. doi:10.1016/j.eujim.2011.08.008


Yoon JS, Kim HM, Yadunandam AK, et al. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell-cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11):1013–1022. doi:10.1016/j.phymed.2013.03.024.


Zhang XY, Liu ZJ, Xu B, et al. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3):47–54.

Eugenol

Cancer:
Melanoma, osteosarcoma, leukemia, gastric, colon, liver, oral., lung

Action: Radio-protective

Eugenol is a natural compound available in honey and various plants extracts; in particular, cloves (Syzygium aromaticum (L.) Merrill & Perry).

Melanoma, Skin Tumors, Osteosarcoma, Leukemia, Gastric Cancer

Eugenol (4-allyl-2-methoxyphenol), a phenolic phytochemicals, is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature show eugenol possesses anti-oxidant, anti-mutagenic, anti-genotoxic, anti-inflammatory and anti-cancer properties.

The molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented and highlights the anti-proliferative activity and molecular mechanism of eugenol-induced apoptosis against the cancer cells and animal model (Jaganathan et al., 2012).

Colon Cancer

Since most of the drugs used in cancer are apoptosis-inducers, the apoptotic effect and anti-cancer mechanism of eugenol were investigated against colon cancer cells. MTT assay signified the anti-proliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyzes.

These results demonstrate the molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemo-preventive agent against colon cancer (Jaganathan et al., 2011).

Radio-protective, Skin Cancer, Liver Cancer, Oral Cancer, Lung Cancer

Ocimum sanctum L. or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in the various Indian languages, is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia, and another plant from which eugenol is extracted. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. Preclinical studies have also shown that Ocimum and some of its phytochemicals including eugenol prevented chemical-induced skin, liver, oral., and lung cancers and to mediate these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

The aqueous extract of Ocimum and its flavanoids, orintin and vicenin, are shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. This action is related to the important phytochemicals it contains like eugenol, which are also shown to prevent radiation-induced DNA damage.

References

Baliga MS, Jimmy R, Thilakchan KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.


Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. (2011). Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int, 35(6):607-15. doi: 10.1042/CBI20100118.


Jaganathan SK, Supriyanto E. (2012). Anti-proliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells. Molecules, 17(6):6290-6304. doi:10.3390/molecules17066290.

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Dehydrocostus (See also costunolide)

Cancers: Breast, cervical., lung, prostate, sarcoma

Action: Anti-metastatic, cytostatic, lymphangiogenesis inhibitors

Saussurea lappa has been used in Chinese traditional medicine for the treatment of abdominal pain, tenesmus, nausea, and cancer. Previous studies have shown that S. lappa also induces G2 growth arrest and apoptosis in gastric cancer cells.

Prostate Cancer

The effects of hexane extracts of S. lappa (HESLs) on the migration of DU145 and TRAMP-C2 prostate cancer cells were investigated. DU145 and TRAMP-C2 cells were cultured in the presence of 0-4 µg/mL HESL with or without 10 ng/mL epidermal growth factor (EGF).

The active compound, dehydrocostus lactone (DHCL), in fraction 7, dose-dependently inhibited the basal and EGF-induced migration of prostate cancer cells. HESL and DHCL reduced matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 secretion but increased TIMP-2 levels in both the absence and presence of EGF.

Results demonstrated that the inhibition of MMP-9 secretion, and the stimulation of TIMP-2 secretion, contribute to reduced migration of DU145 cells treated with HESL and DHCL. This indicates that HESL containing its active principle, DHCL, has potential as an anti-metastatic agent in the treatment of prostate cancer (Kim et al., 2012).

Sarcoma

Human soft tissue sarcomas represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment. The effects of the costunolide and dehydrocostus lactone, which have been isolated from Saussurea lappa using activity-guided isolation, were studied on three soft tissue sarcoma cell lines of various origins. The effects on cell proliferation, cell-cycle distribution, apoptosis induction, and ABC transporter expression were analyzed. Both compounds inhibited cell viability dose- and time-dependently.

IC50 values ranged from 6.2 µg/mL to 9.8 µg/mL. Cells treated with costunolide showed no changes in cell-cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 hours. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase.

These data demonstrate for the first time that dehydrocostus lactone affects cell viability, cell-cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumors (Kretschmer et al., 2012).

The effects of the sesquiterpene lactones, costunolide and dehydrocostus, on the cell-cycle, MMP expression, and invasive potential of three human STS cell lines of various origins. Both compounds reduced cell proliferation in a time- and dose-dependent manner.

Dehydrocostus lactone significantly inhibited cell proliferation, arrested the cells at the G2/M interface and caused a decrease in the expression of the cyclin-dependent kinase CDK2 and the cyclin-dependent kinase inhibitor p27 (Kip1).

In the presence of costunolide, MMP-2 and MMP-9 levels were significantly increased in SW-982 and TE-671 cells. Dehydrocostus lactone treatment significantly reduced MMP-2 and MMP-9 expression in TE-671 cells, but increased MMP-9 level in SW-982 cells. In addition, the invasion potential was significantly reduced after treatment with both sesquiterpene lactones as investigated by the HTS FluoroBlock insert system (Lohberger et al., 2013).

Breast Cancer

Several Chinese herbs, namely, pu gong ying (Taraxacum officinale), gan cao (Glycyrrhizae uralensis), chai hu (Bupleurum chinense), mu xiang (Auklandia lappa), gua lou (Trichosanthes kirilowii) and huang yao zi (Dioscoreae bulbiferae), are frequently used in complex traditional Chinese medicine formulas, for breast hyperplasia and breast tumor therapy. The effects of these Chinese herbs are all described as 'clearing heat-toxin and resolving masses' in traditional use. However, the chemical profiles of anti-breast cancer constituents in these herbs have not been investigated thus far.

Two potential anti-breast cancer compounds, costunolide (Cos) and dehydrocostus lactone (Dehy), were identified in mu xiang. The combination of the two compounds showed a synergistic effect on inhibiting the proliferation of MCF-7 cells in vitro, exhibiting potential application in the treatment of breast cancer (Peng, Wang, Gu, Wen & Yan, 2013).

Lymphangiogenesis Inhibitors

In this study, we investigated lymphangiogenesis inhibitors from crude drugs used in Japan and Korea. The three crude drugs Saussureae Radix, Psoraleae Semen and Aurantti Fructus Immaturus significantly inhibited the proliferation of temperature-sensitive rat lymphatic endothelial (TR-LE) cells in vitro. These compounds might offer clinical benefits as lymphangiogenesis inhibitors and may be good candidates for novel anti-cancer and anti-metastatic agents (Jeong, 2013).

References

Jeong D, Watari K, Shirouzu T, et al. (2013). Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biological & Pharmaceutical Bulletin, 36(1), 152-7.


Kim EJ, Hong JE, Lim SS, et al. (2012). The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. Journal of Medicinal Food, 15(1), 24-32. doi: 10.1089/jmf.2011.1735.


Kretschmer N, Rinner B, Stuendl N, et al. (2012). Effect of costunolide and dehydrocostus lactone on cell-cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells. Planta Medica, 78(16), 1749-1756. doi: 10.1055/s-0032-1315385.


Lohberger B, Rinner B, Stuendl N, et al. (2013). Sesquiterpene lactones downregulate g2/m cell-cycle regulator proteins and affect the invasive potential of human soft tissue sarcoma cells. PLoS One, 8(6), e66300. doi: 10.1371/journal.pone.0066300.


Peng ZX, Wang Y, Gu X, Wen YY, Yan C. (2013). A platform for fast screening potential anti-breast cancer compounds in traditional Chinese medicines. Biomedical Chromatography. doi: 10.1002/bmc.2990.

Corosolic acid

Cancer:
Myeloid leukemia, cervical., glioblastoma, gastric, sarcoma

Action: Immunosuppressive activity

Corosolic Acid is isolated from Lagerstroemia speciosa [(L.) Pers.] and Crataegus pinnatifida var. psilosa (C. K. Schneider).

Sarcoma; Immunosuppressive Activity

The results from an in vivo study showed that Corosolic acid (CA) administration did not suppress the tumor proliferation index, but significantly impaired subcutaneous tumor development and lung metastasis.

CA administration inhibited signal transducer and activator of transcription-3 (Stat3) activation and increased in the number of infiltrating lymphocytes in tumor tissues. Ex vivo analysis demonstrated that a significant immunosuppressive effect of MDSC in tumor-bearing mice was abrogated and the mRNA expressions of cyclooxygenase-2 and CCL2 in MDSC were significantly decreased by CA administration.

Furthermore, CA enhanced the anti-tumor effects of adriamycin and cisplatin in vitro. Since Stat3 is associated with tumor progression not only in osteosarcoma, but also in other malignant tumors, these findings indicate that CA might be widely useful in anti-cancer therapy by targeting the immunosuppressive activity of MDSC and through its synergistic effects with anti-cancer agents (Horlad et al., 2013).

Cervical Cancer

Xu et al. (2009) investigated the response of human cervix adenocarcinoma HeLa cells to Corosolic acid (CRA) treatment. These results showed that CRA significantly inhibited cell viability in both a dose- and a time-dependent manner. CRA treatment induced S cell-cycle arrest and caused apoptotic death in HeLa cells. It was found that CRA increased in Bax/Bcl-2 ratios by up-regulating Bax expression, disrupted mitochondrial membrane potential and triggered the release of cytochrome c from mitochondria into the cytoplasm.

These results, taken together, indicate CRA could have strong potentials for clinical application in treating human cervix adenocarcinoma and improving cancer chemotherapy.

Glioblastoma

Tumor-associated macrophages (TAMs) of M2 phenotype promote tumor proliferation and are associated with a poor prognosis in patients with glioblastoma.

The natural compounds possessing inhibitory effects on M2 polarisation in human monocyte-derived macrophages were investigated. Among 130 purified natural compounds examined, corosolic acid significantly inhibited the expression of CD163, one of the phenotype markers of M2 macrophages, as well as suppressed the secretion of IL-10, one of the anti-inflammatory cytokines preferentially produced by M2 macrophages, thus suggesting that corosolic acid suppresses M2 polarisation of macrophages.

Furthermore, corosolic acid inhibited the proliferation of glioblastoma cells, U373 and T98G, and the activation of Signal transducer and activator of transcription-3 (STAT3) and Nuclear Factor-kappa B (NF-κB), in both human macrophages and glioblastoma cells. These results indicate that corosolic acid suppresses the M2 polarisation of macrophages and tumor cell proliferation by inhibiting both STAT3 and NF-κB activation. Therefore, corosolic acid may be a new tool for tumor prevention and therapy (Fujiwara et al., 2010).

Gastric Cancer

Corosolic acid (CRA) suppresses HER2 expression, which in turn promotes cell-cycle arrest and apoptotic cell death of gastric cancer cells, providing a rationale for future clinical trials of CRA in the treatment of HER2-positive gastric cancers. CRA combined with adriamycin and 5-fluorouracil enhanced this growth inhibition, but not with docetaxel and paclitaxel (Lee et al., 2010).

Leukemia

Corosolic acid displayed about the same potent cytotoxic activity as ursolic acid against several human cancer cell lines. In addition, the compound displayed antagonistic activity against the phorbol ester-induced morphological modification of K-562 leukemic cells, indicating the suppression of protein kinase C (PKC) activity by the cytotoxic compound (Ahn et al., 1998).

References

Ahn KS, Hahm MS, Park EJ, Lee HK, Kim IH. (1998). Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med, 64(5):468-70.


Fujiwara Y, Komohara Y, Ikeda T, Takeya M. (2010). Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Science. doi: 10.1111/j.1349-7006.2010.01772.x


Horlad H, Fujiwara Y, Takemura K, et al. (2013). Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Molecular Nutrition & Food Research, 57(6):1046-1054. doi: 10.1002/mnfr.201200610


Lee MS, Cha EY, Thuong PT, et al. (2010). Down-regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell-cycle arrest and apoptosis in NCI-N87 human gastric cancer cells. Biol Pharm Bull, 33(6):931-7.


Xu YF, Ge RL, Du J, et al. (2009). Corosolic acid induces apoptosis through mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells. Cancer Letters, 284(2):229-237. doi:10.1016/j.canlet.2009.04.028.

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

Alisol B Acetate

Cancer:
Liver, melanoma, ovarian, sarcoma, gastric cancer

Action: Cytostatic, cytotoxic

Four prostane-type triterpenes were isolated from a methanol extract of Alismatis Rhizoma by bioassay-guided isolation using in vitro cytotoxic assay. The compounds were identified as alisol B 23-acetate (1), alisol C 23-acetate (2), alisol B (3), alisol A 24-acetate (4) by spectroscopic methods. Amongst the compounds, alisol B (3) showed significant cytotoxicity against SK-OV3, B16-F10, and HT1080 cancer cell lines with ED50 values of 7.5, 7.5, 4.9 microg/ml, respectively (Lee et al., 2001).

Hepatocellular Carcinoma

Long dan xie gan tang (pinyin) is one of the most commonly used herbal formulas by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Gastric Cancer

The cytotoxic effect of alisol B acetate on SGC7901 cells was measured by MTT assay and phase-contrast and electron microscopy. Cell-cycle and mitochondrial transmembrane potential (Deltapsim) were determined by flow cytometry and Western blotting was used to detect the expression of apoptosis-regulated gene Bcl-2, Bax, Apaf-1, caspase-3, caspase-9, Akt, P-Akt and phosphatidylinositol 3-kinases (PI3K).

Alisol B acetate inhibited the proliferation of SGC7901 cell line in a time- and dose-dependent manner. Alisol B acetate exhibits an anti-proliferative effect in SGC7901 cells by inducing apoptosis. Apoptosis of SGC7901 cells involves mitochondria-caspase and PI3K/Akt dependent pathways (Xu, Zhao & Li, 2009).

References

Chou CC, Pan SL, Teng CM, & Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.

 

 

Lee S, Kho Y, Min B, et al. (2001). Cytotoxic triterpenoides from Alismatis rhizome. Archives of Pharmacal Research. 24(6), 524-526.

 

Xu YH, Zhao LJ, & Li Y. (2009). Alisol B acetate induces apoptosis of SGC7901 cells via mitochondrial and phosphatidylinositol 3-kinases/Akt signaling pathways.

 

World Journal of Gastroenterology, 15(23), 2870-2877.

Decursin

Cancer: Prostate, breast, fibrosarcoma, sarcoma

Action: MDR, inflammation, anti-cancer, angiogenesis

Decursin is isolated from Angelica gigas (Nakai).

Angelica gigas NAKAI is used to treat dysmenorrhea, amenorrhea, menopause, abdominal pain, injuries, migraine, and arthritis. The physicochemical and toxicological characterization of compounds in A. gigas NAKAI, decursin, decursinol angelate, diketone decursin, ether decursin, epoxide decursin and oxim decursin, have been extensively studied (Mahat et al., 2012).

Sarcoma; Anti-cancer

The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities (Lee et al., 2003).

Fibrosarcoma

Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumor necrosis factor α) in the presence or absence of CSL-32. Treatment of HT1080 cells with a derivative of decursin (CSL-32) inhibited their proliferation, without affecting cell viability, and TNF α-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8) (Lee et al., 2012).

Prostate Cancer

Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to patients. As current chemotherapy is largely ineffective for PCa and has serious toxic side-effects, a collaborative effort has been initiated to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. The discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent has been highlighted and the mechanisms to account for the specific anti-AR actions have been identified: rapid block of AR nuclear translocation, inhibition of binding of 5-dihydrotestesterone to AR, and increased proteasomal degradation of AR protein. Structure-activity analyzes reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell-cycle arrest and pro-apoptotic activities.

This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/AR agents from complex herbal mixtures (Lu et al., 2007).

MDR

Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, Jang et al (2013) investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. The combined treatment reduced mitochondrial membrane potential., suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells.

Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells.

Breast Cancer

Decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Kim et al (2013) found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between peptidyl-prolyl cis/trans isomerase Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, the study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1.

References

Jang J, Jeong SJ, Kwon HY, Jung JH, et al. (2013). Decursin and Doxorubicin Are in Synergy for the Induction of Apoptosis via STAT3 and/or mTOR Pathways in Human Multiple Myeloma Cells. Evid Based Complement Alternat Med. 2013:506324. doi: 10.1155/2013/506324.

Kim JH, Jung JH, Kim SH, Jeong SJ. (2013). Decursin Exerts Anti-cancer Activity in MDA-MB-231 Breast Cancer Cells Via Inhibition of the Pin1 Activity and Enhancement of the Pin1/p53 Association.Phytother Res. doi: 10.1002/ptr.4986.

Lee S, Lee YS, Jung SH, et al. (2003). Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res, 26(9):727-30.

Lee SH, Lee JH, Kim EJ, et al. (2012). A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF- κB activities in HT1080 cells. Cell Biol Int, 36(7):683-8. doi: 10.1042/CBI20110257.

Lu JX, Kim SH, Jiang C, Lee JJ, Guo JM. (2007). Oriental herbs as a source of novel anti-androgen and prostate cancer chemo-preventive agents. Acta Pharmacologica Sinica, 28, 1365–1372. doi:10.1111/j.1745-7254.2007.00683.x

Mahat B, Chae JW, Baek IH, et al. (2012). Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas. Biol Pharm Bull, 35(7):1084-90.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.

Qingkailing

Cancer: Leukemia, sarcoma

Action: Antibiotic, anti-apoptotic, anti-inflammatory, neuro-protective, pro-apoptotic, immunomodulating, MMPs regulation

Anti-inflammatory and Immunomodulating

Qingkailing and Shuanghuanglian (SHHL) are two commonly used Chinese herbal preparations with reported anti-inflammatory activity. The effects of these two preparations on the capacity of staphylococcal toxic shock syndrome toxin 1 (TSST-1), to stimulate the production of cytokines (IL-1β, IL-6, TNF-α, IFN-γ) and chemokines (MIP-1α, MIP-1β and MCP-1) by peripheral blood mononuclear cell (PBMC), was tested. Their effect on LPS-stimulated NF-κB transcriptional activity in a THP-1 cell line, and on human monocyte chemotactic response to chemoattractants, was also evaluated.

The results suggested that the pharmacological basis for the anti-inflammatory effects of Qingkailing and SHHL is the result of suppression of NF-κB regulated gene transcription, leading to suppressed production of pro-inflammatory cytokines and chemokines. Interference with leukocyte chemotaxis also contributes to the anti-inflammatory and immunomodulating effects of these medicinals. Identification of the responsible components in these two herbal preparations may yield compounds suitable for structural modification into potent novel drugs (Chen et al., 2002).

Leukemia

The MTT assay, cell morphology, DNA gel electrophoresis, and flow-cytometry were utilized to study the apoptotic effect of Qingkailing, and its active compounds, on the human acute promyelocytic leukemia (HL-60) cell line.

Qingkailing and its active compounds, Baicalin and hyodeoxycholic acid, exhibited strong cytotoxicity in inhibiting HL-60 cells, while Bezoar cholic acid showed a weaker effect. Apoptosis could be induced after being treated for 6 h by the former two compounds, displaying a typical apoptosis peak under flow-cytometry, but could not be induced by the latter.

Qingkailing could induce apoptosis in leukemia cells in vitro, which could serve as a mechanism of Qingkailing in the treatment of acute promyelocytic leukemia (Chen, Dong, & Zhang, 2001).

Qingkailing injection could prevent the decrease of MMP induced by injury of hypoxia-hypoglycemia-reoxygenation, stabilize MMP, inhibit cell apoptosis, and protect hippocampal neurons (Tsing, 2006).

Matrix Metalloproteinases (MMPs) Regulation

Matrix metalloproteinases (MMPs) play vital roles in many pathological conditions, including cancer, cardiovascular disease, arthritis and inflammation. Modulating MMP activity may therefore be a useful therapeutic approach in treating these diseases. Qingkailing is a popular Chinese anti-inflammatory formulation used to treat symptoms such as rheumatoid arthritis, acute hypertensive cerebral hemorrhage, hepatitis and upper respiratory tract infection.

One of the components of Qingkailing, Fructus gardeniae, strongly inhibits MMP activity. The IC50 values for the primary herbal extract and water extract against MMP-16 were 32 and 27 µg/ml, respectively. In addition, the herbal extracts influenced HT1080 human fibrosarcoma cell growth and morphology.

These data may provide molecular mechanisms for the therapeutic effects of Qingkailing and herbal medicinal Fructus gardenia (Yang et al., 2008).

Sources

Chen X, Howard OM, Yang X, Wang L, Oppenheim JJ, Krakauer T. (2002). Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sciences, 70(24), 2897-2913.


Chen ZT, Dong Q, Zhang L. (2001). Study on the effect of Qingkailing injection and its active principle in inducing cell apoptosis in human acute promyelocytic leukemia. Chinese Journal of Integrated Traditional and Western Medicine, 21(11), 840-842.


Tsing H. (2006). Influences of Qingkailing Injection on neuron apoptosis and mitochondrial membrane potential. Journal of Beijing University of Traditional Chinese Medicine, 2006(2), R285.5.


Yang JG, Shen YH, Hong Y, Jin FH, Zhao SH, Wang MC, Shi XJ,   Fang XX. (2008). Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology. Journal of Ethnopharmacology, 117(2), 285-289.

Qingkailing

Cancer: Leukemia, sarcoma

Action: Antibiotic, anti-apoptotic, anti-inflammatory, neuro-protective, pro-apoptotic, immunomodulating, MMPs regulation

Anti-inflammatory and Immunomodulating

Qingkailing and Shuanghuanglian (SHHL) are two commonly used Chinese herbal preparations with reported anti-inflammatory activity. The effects of these two preparations on the capacity of staphylococcal toxic shock syndrome toxin 1 (TSST-1), to stimulate the production of cytokines (IL-1β, IL-6, TNF-α, IFN-γ) and chemokines (MIP-1α, MIP-1β and MCP-1) by peripheral blood mononuclear cell (PBMC), was tested. Their effect on LPS-stimulated NF-κB transcriptional activity in a THP-1 cell line, and on human monocyte chemotactic response to chemoattractants, was also evaluated.

The results suggested that the pharmacological basis for the anti-inflammatory effects of Qingkailing and SHHL is the result of suppression of NF-κB regulated gene transcription, leading to suppressed production of pro-inflammatory cytokines and chemokines. Interference with leukocyte chemotaxis also contributes to the anti-inflammatory and immunomodulating effects of these medicinals. Identification of the responsible components in these two herbal preparations may yield compounds suitable for structural modification into potent novel drugs (Chen et al., 2002).

Leukemia

The MTT assay, cell morphology, DNA gel electrophoresis, and flow-cytometry were utilized to study the apoptotic effect of Qingkailing, and its active compounds, on the human acute promyelocytic leukemia (HL-60) cell line.

Qingkailing and its active compounds, Baicalin and hyodeoxycholic acid, exhibited strong cytotoxicity in inhibiting HL-60 cells, while Bezoar cholic acid showed a weaker effect. Apoptosis could be induced after being treated for 6 h by the former two compounds, displaying a typical apoptosis peak under flow-cytometry, but could not be induced by the latter.

Qingkailing could induce apoptosis in leukemia cells in vitro, which could serve as a mechanism of Qingkailing in the treatment of acute promyelocytic leukemia (Chen, Dong, & Zhang, 2001).

Qingkailing injection could prevent the decrease of MMP induced by injury of hypoxia-hypoglycemia-reoxygenation, stabilize MMP, inhibit cell apoptosis, and protect hippocampal neurons (Tsing, 2006).

Matrix Metalloproteinases (MMPs) Regulation

Matrix metalloproteinases (MMPs) play vital roles in many pathological conditions, including cancer, cardiovascular disease, arthritis and inflammation. Modulating MMP activity may therefore be a useful therapeutic approach in treating these diseases. Qingkailing is a popular Chinese anti-inflammatory formulation used to treat symptoms such as rheumatoid arthritis, acute hypertensive cerebral hemorrhage, hepatitis and upper respiratory tract infection.

One of the components of Qingkailing, Fructus gardeniae, strongly inhibits MMP activity. The IC50 values for the primary herbal extract and water extract against MMP-16 were 32 and 27 µg/ml, respectively. In addition, the herbal extracts influenced HT1080 human fibrosarcoma cell growth and morphology.

These data may provide molecular mechanisms for the therapeutic effects of Qingkailing and herbal medicinal Fructus gardenia (Yang et al., 2008).

Sources

Chen X, Howard OM, Yang X, Wang L, Oppenheim JJ, Krakauer T. (2002). Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sciences, 70(24), 2897-2913.


Chen ZT, Dong Q, Zhang L. (2001). Study on the effect of Qingkailing injection and its active principle in inducing cell apoptosis in human acute promyelocytic leukemia. Chinese Journal of Integrated Traditional and Western Medicine, 21(11), 840-842.


Tsing H. (2006). Influences of Qingkailing Injection on neuron apoptosis and mitochondrial membrane potential. Journal of Beijing University of Traditional Chinese Medicine, 2006(2), R285.5.


Yang JG, Shen YH, Hong Y, Jin FH, Zhao SH, Wang MC, Shi XJ,   Fang XX. (2008). Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology. Journal of Ethnopharmacology, 117(2), 285-289.

Oxymatrine or Compound Matrine (Ku Shen)

Cancer: Sarcoma, pancreatic, breast, liver, lung, oral., rectal., stomach, leukemia, adenoid cystic carcinoma

Action: Anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, anti-angiogenesis

Ingredients: ku shen (Sophora flavescens), bai tu ling (Heterosmilax chinensis).

TCM functions: Clearing Heat, inducing diuresis, cooling Blood, removing Toxin, dispersing lumps and relieving pain (Drug Information Reference in Chinese: See end, 2000-12).

Indications: Pain and bleeding caused by cancer.

Dosage and usage:

Intramuscular injection: 2-4 ml each time, twice daily; intravenous drip: 12 ml mixed in 200 ml NaCl injection, once daily. The total amount of 200 ml administration makes up a course of treatment. 2-3 consecutive courses can be applied.

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012). The four major alkaloids in compound Ku Shen injection are matrine, sophoridine, oxymatrine and oxysophocarpine (Qi, Zhang, & Zhang, 2013).

Sarcoma

When a high dose was used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

T Cell Leukemia

Matrine, a small molecule derived from the root of Sophora flavescens AIT was demonstrated to be effective in inducing T cell anergy in human T cell leukemia Jurkat cells.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells could influence the ability of T cell anergy induction.

The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Osteosarcoma

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing osteosarcoma MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3 (Ling et al., 2011).

Rectal Carcinoma

Eighty-four patients diagnosed with rectal carcinoma at the People”s Hospital of Yichun city in Jiangxi province from September 2006 to September 2011, were randomly divided into two groups: therapeutic group and control group. The patients in the therapeutic group were treated with compound matrine and intensity modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT.

The clinical effect and survival rate in the therapeutic group were significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress in the therapeutic group.

However, the control group had 12 improvements, 14 stabilized, and 16 disease progress. Quality of life in the therapeutic group was higher than that in the control group by rank sum test. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post therapy, according to the student test. Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

Seventy-six cases of advanced gastric cancer were collected from June 2010 to November 2011, and randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively. The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

Adenoid cystic carcinoma (ACC-2) cells were cultured in vitro. MTT assay was used to measure the cell proliferative effect. Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer; Chemotherapy

A retrospective analysis of oncological data of 70 postoperative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days for a cycle) were compared.

The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An, & Wu, 2012).

Lung cancer; Pleural Effusion

The therapeutic efficiency of Fufang Kushen Injection Liquid (FFKSIL), IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected FFKSIL plus IL-2, FFKSIL plus α-tFN, and IL-2 plus α>-IFN, respectively. The control group was divided into three groups and injected FFKSIL, IL-2 and α>-IFN, respectively. The effective rate of FFKSIL, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. The effect of FFKSIL, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of FFKSIL plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Gastric Cancer

Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-αlevels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity (Zhou et al., 2012).

Colorectal Cancer; Chemotherapy

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mLád-1 compound Kushen injection, for 10d during chemotherapy. In the control group the numbers of CD3+,CD4+T cells,NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells ,NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

NSCLC; Chemotherapy

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term  efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group. The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05).

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone. Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Liver Cancer

Fifty-seven patients with unresectable primary liver cancer were randomly divided into 2 groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. One, two, and three year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

Chemotherapy

Ten RCTs were included in a meta-analysis, whose results suggest that compared with chemotherapy alone, the combination had a statistically significant benefit in healing efficacy and improving quality of life. As well,  the combination also had a statistically significant benefit in myelosuppression, white blood cell, hematoblast, liver function and in reducing the gastroenteric reaction, decreasing the of CD3, CD4, CD4/CD8, and NK cells (Huang et al., 2011).

Colorectal Cancer, NSCLC, Breast Cancer; Chemotherapy

Fufang kushen Injection might improve the efficacies of chemotherapy in patients with colorectal cancer, NSCLC and breast cancer.

The results of a meta-analysis of 33 studies of randomized controlled trials with a total of 2,897 patients demonstrated that the short-term efficacies in patients with colorectal cancer, NSCLC, and breast cancer receiving Fufangkushen Injection plus chemotherapy were significantly better than for those receiving chemotherapy alone. However the results for patients with gastric cancer on combined chemotherapy were not significantly different from those for patients on chemotherapy alone (Fang, Lin, & Fan, 2011).

References

An, A.J., An, G.W., & Wu, Y.C. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People”s Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen, G., Yu, B., Yuan, S.J., & Yuan, Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013). Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan, C.X., Lin, C.L., Liang, L., Zhao, Y.Y., Liu, J., Cui, J., Yang, Q.M., Wang, Y.L., & Zhang, A.R. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Fang, L., Lin, N.M., Fan, Y. (2011). Short-term  efficacies of Fufangkushen Injection plus chemotherapy in patients with solid tumors: a meta-analysis of randomized trials. Zhonghua Yi Xue Za Zhi, 91(35):2476-81.


Hu, D.J., & Mei, X.D. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Huang S, Fan W, Liu P, Tian J. (2011). Meta-analysis of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer. Zhongguo Zhong Yao Za Zhi, 36(22):3198-202.


Kong, Q-Z., Huang, D-S., Huang, T. et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Qi, L., Zhang, J., Zhang, Z. (2013). Determination of four alkaloids in Compound Kushen Injection by high performance liquid chromatography with ionic liquid as mobile phase additive. Chinese Journal of Chromatography, 31(3): 249-253. doi: 10.3724/SP.J.1123.2012.10039.


Shi, B., & Xu, H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012:373219. doi: 10.1155/2012/373219.


Wang, H.M., & Cheng, X.M. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia, G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin, W.H., Sheng, J.W., Xia, H.M., Chen, J., Wu, Y.W., & Fan, H.Z. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhou, S-K., Zhang, R-L., Xu, Y-F., Bi, T-N. (2012) Anti-oxidant and Immunity Activities of Fufang Kushen Injection Liquid. Molecules 2012, 17(6), 6481-6490; doi:10.3390/molecules17066481


Zhu, M.Y., Jiang, Z.H., Lu, Y.W., Guo, Y., & Gan, J.J. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Honokiol

Cancer: Sarcoma

Honokiol, isolated from the Chinese traditional herb magnolia, is a poorly water-soluble component and has been found to have anti-tumor properties.

Sarcoma

In the current study, honokiol submicron lipid emulsions (HK-SLEs) were prepared by high-pressure homogenization technology. After HK-SLEs were physically characterized, their pharmacokinetics, tissue distribution and anti-tumor activity after intravenous (i.v.) administration to tumor-burdened mice were examined, using honokiol solution (HK-SOL) as the control.

Both honokiol submicron lipid emulsions (HK-SLEs) and honokiol solution (HK-SOL) tended to accumulate in brain tissue. In vivo study showed that HK-SLEs treatment caused significant inhibition of mouse sarcoma S180 tumor growth compared to HK-SOL. These results suggest that HK-SLEs might be an effective parenteral carrier for honokiol delivery in cancer treatment (Zheng et al., 2013).

Reference

Zheng J, Tang Y, Sun M, et al. (2013). Characterization, pharmacokinetics, tissue distribution and anti-tumor activity of honokiol submicron lipid emulsions in tumor-burdened mice. Pharmazie, 68(1):41-6.

Decursin

Cancer: Prostate, breast, fibrosarcoma, sarcoma

Action: MDR, inflammation, anti-cancer, angiogenesis

Decursin is isolated from Angelica gigas (Nakai).

Angelica gigas NAKAI is used to treat dysmenorrhea, amenorrhea, menopause, abdominal pain, injuries, migraine, and arthritis. The physicochemical and toxicological characterization of compounds in A. gigas NAKAI, decursin, decursinol angelate, diketone decursin, ether decursin, epoxide decursin and oxim decursin, have been extensively studied (Mahat et al., 2012).

Sarcoma; Anti-cancer

The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities (Lee et al., 2003).

Fibrosarcoma

Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumor necrosis factor α) in the presence or absence of CSL-32. Treatment of HT1080 cells with a derivative of decursin (CSL-32) inhibited their proliferation, without affecting cell viability, and TNF α-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8) (Lee et al., 2012).

Prostate Cancer

Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to patients. As current chemotherapy is largely ineffective for PCa and has serious toxic side-effects, a collaborative effort has been initiated to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. The discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent has been highlighted and the mechanisms to account for the specific anti-AR actions have been identified: rapid block of AR nuclear translocation, inhibition of binding of 5-dihydrotestesterone to AR, and increased proteasomal degradation of AR protein. Structure-activity analyzes reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell-cycle arrest and pro-apoptotic activities.

This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/AR agents from complex herbal mixtures (Lu et al., 2007).

MDR

Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, Jang et al (2013) investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. The combined treatment reduced mitochondrial membrane potential., suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells.

Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells.

Breast Cancer

Decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Kim et al (2013) found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between peptidyl-prolyl cis/trans isomerase Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, the study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1.

References

Jang J, Jeong SJ, Kwon HY, Jung JH, et al. (2013). Decursin and Doxorubicin Are in Synergy for the Induction of Apoptosis via STAT3 and/or mTOR Pathways in Human Multiple Myeloma Cells. Evid Based Complement Alternat Med. 2013:506324. doi: 10.1155/2013/506324.

Kim JH, Jung JH, Kim SH, Jeong SJ. (2013). Decursin Exerts Anti-cancer Activity in MDA-MB-231 Breast Cancer Cells Via Inhibition of the Pin1 Activity and Enhancement of the Pin1/p53 Association.Phytother Res. doi: 10.1002/ptr.4986.

Lee S, Lee YS, Jung SH, et al. (2003). Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res, 26(9):727-30.

Lee SH, Lee JH, Kim EJ, et al. (2012). A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF- κB activities in HT1080 cells. Cell Biol Int, 36(7):683-8. doi: 10.1042/CBI20110257.

Lu JX, Kim SH, Jiang C, Lee JJ, Guo JM. (2007). Oriental herbs as a source of novel anti-androgen and prostate cancer chemo-preventive agents. Acta Pharmacologica Sinica, 28, 1365–1372. doi:10.1111/j.1745-7254.2007.00683.x

Mahat B, Chae JW, Baek IH, et al. (2012). Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas. Biol Pharm Bull, 35(7):1084-90.