Category Archives: IGF-1

Wogonin

Cancer:
Breast, lung (NSCLC), gallbladder carcinoma, osteosarcoma, colon, cervical

Action: Neuro-protective, anti-lymphangiogenesis, anti-angiogenic, anti-estrogenic, chemo-sensitizer, pro-oxidative, hypoxia-induced drug resistance, anti-metastatic, anti-tumor, anti-inflammatory

Wogonin is a plant monoflavonoid isolated from Scutellaria rivularis (Benth.) and Scutellaria baicalensis (Georgi).

Breast Cancer; ER+ & ER-

Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell-cycle progression, and apoptosis. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by up-regulation of PARP and Caspase 3 cleavages as well as pro-apoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the down-regulation of the Akt-mediated canonical Wnt signaling pathway.

ER expression was down-regulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemo-preventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types (Chung et al., 2008).

Neurotransmitter Action

Kim et al. (2011) found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.

Anti-metastasic

The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Wogonin at the dose of 1–10 µM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin.

These findings suggest that wogonin inhibits cell mobility and invasion by up-regulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemo-protective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis (Dong et al., 2011).

Anti-tumor and Anti-metastatic

Kimura & Sumiyoshi (2012) examined the effects of wogonin isolated from Scutellaria baicalensis roots on tumor growth and metastasis using a highly metastatic model in osteosarcoma LM8-bearing mice. Wogonin (25 and 50mg/kg, twice daily) reduced tumor growth and metastasis to the lung, liver and kidney, angiogenesis (CD31-positive cells), lymphangiogenesis (LYVE-1-positive cells), and TAM (F4/80-positive cell) numbers in the tumors of LM8-bearing mice. Wogonin (10–100µM) also inhibited increases in IL-1β production and cyclooxygenase (COX)-2 expression induced by lipopolysaccharide in THP-1 macrophages. The anti-tumor and anti-metastatic actions of wogonin may be associated with the inhibition of VEGF-C-induced lymphangiogenesis through a reduction in VEGF-C-induced VEGFR-3 phosphorylation by the inhibition of COX-2 expression and IL-1β production in Tumor-associated macrophages (TAMs).

Anti-inflammatory

Wogonin extracted from Scutellariae baicalensis and S. barbata is a cell-permeable and orally available flavonoid that displays anti-inflammatory properties. Wogonin is reported to suppress the release of NO by iNOS, PGE2 by COX-2, pro-inflammatory cytokines, and MCP-1 gene expression and NF-kB activation (Chen et al., 2008).

Hypoxia-Induced Drug Resistance (MDR)

Hypoxia-induced drug resistance is a major obstacle in the development of effective cancer therapy. The reversal abilities of wogonin on   hypoxia resistance were examined and the underlying mechanisms discovered. MTT assay revealed that hypoxia increased maximal 1.71-, 2.08-, and 2.15-fold of IC50 toward paclitaxel, ADM, and DDP in human colon cancer cell lines HCT116, respectively. Furthermore, wogonin showed strong reversal potency in HCT116 cells in hypoxia and the RF reached 2.05. Hypoxia-inducible factor-1α (HIF-1α) can activate the expression of target genes involved in glycolysis. Wogonin decreased the expression of glycolysis-related proteins (HKII, PDHK1, LDHA), glucose uptake, and lactate generation in a dose-dependent manner.

In summary, wogonin could be a good candidate for the development of a new multi-drug resistance (MDR) reversal agent and its reversal mechanism probably is due to the suppression of HIF-1α expression via inhibiting PI3K/Akt signaling pathway (Wang et al., 2013).

NSCLC

Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. In this study, the effect of a combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay.

The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL.

These results show for the first time that wogonin enhances TRAIL's anti-tumor activity in vivo, suggesting this strategy has an application potential for clinical anti-cancer therapy (Yang et al., 2013).

Colon Cancer

Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest in the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner compared with the control. Furthermore, the induction of apoptosis was accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a dose-dependent manner.

The administration of baicalein to mice resulted in the inhibition of the growth of HT-29 xenografts without any toxicity following 5 weeks of treatment. The results indicated that baicalein induced apoptosis via Akt activation in a p53-dependent manner in the HT-29 colon cancer cells and that it may serve as a chemo-preventive or therapeutic agent for HT-29 colon cancer (Kim et al., 2012).

Breast

The involvement of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth was determined. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis.

These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model (Ma et al., 2012).

Chemoresistance; Cervical Cancer, NSCLC

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF.

In this study, the non-small-cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells.

Results provided important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy (He et al., 2012).

References

Chen LG, Hung LY, Tsai KW, et al. (2008). Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res. 52:1349-1357.


Chung H, Jung YM, Shin DH, et al. (2008). Anti-cancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer, 122(4):816-22.


Dong P, Zhang Y, Gu J, et al. (2011). Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol, 137(3):1373-80. doi: 10.1016/j.jep.2011.08.005.


He F, Wang Q, Zheng XL, et al. (2012). Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports, 28(2), 601-605. doi: 10.3892/or.2012.1841.


Kim EJ, Kang D, Han J. (2011). Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiologica, 202(2):185–192. doi: 10.1111/j.1748-1716.2011.02263.x.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6(6):1443-9. doi: 10.3892/mmr.2012.1085.


Kimura Y & Sumiyoshi M. (2012). Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 20(3-4):328-336. doi:10.1016/j.phymed.2012.10.016


Ma X, Xie KP, Shang F, et al. (2012). Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane. Sheng Li Xue Bao, 64(2):207-12.


Wang H, Zhao L, Zhu LT, et al. (2013). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via down-regulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. doi: 10.1002/mc.22052.


Yang L, Wang Q, Li D, et al. (2013). Wogonin enhances anti-tumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated down-regulation of cFLIPL and IAP proteins. Apoptosis, 18(5):618-26. doi: 10.1007/s10495-013-0808-8.

Phenolics

Cancer: Prostate

Action: Chemo-preventive, anti-oxidant, modulate insulin-like growth factor-I (IGF-I)

Natural phenolic compounds play an important role in cancer prevention and treatment. Phenolic compounds from medicinal herbs and dietary plants include phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others. Various bioactivities of phenolic compounds are responsible for their chemo-preventive properties (e.g. anti-oxidant, anti-carcinogenic, or anti-mutagenic and anti-inflammatory effects) and also contribute to their inducing apoptosis by arresting cell-cycle, regulating carcinogen metabolism and ontogenesis expression, inhibiting DNA binding and cell adhesion, migration, proliferation or differentiation, and blocking signaling pathways. A review by Huang et al., (2010) covers the most recent literature to summarize structural categories and molecular anti-cancer mechanisms of phenolic compounds from medicinal herbs and dietary plants (Huang, Cai, & Zhang., 2010).

Phenolics are compounds possessing one or more aromatic rings bearing one or more hydroxyl groups with over 8,000 structural variants, and generally are categorized as phenolic acids and analogs, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others based on the number of phenolic rings and of the structural elements that link these rings (Fresco et al., 2006).

Phenolic Acids

Phenolic acids are a major class of phenolic compounds, widely occurring in the plant kingdom.   Predominant phenolic acids include hydroxybenzoic acids (e.g. gallic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, and syringic acid) and hydroxycinnamic acids (e.g. ferulic acid, caffeic acid, p-coumaric acid, chlorogenic acid, and sinapic acid). Natural phenolic acids, either occurring in the free or conjugated forms, usually appear as esters or amides.

Due to their structural similarity, several other polyphenols are considered as phenolic acid analogs such as capsaicin, rosmarinic acid, gingerol, gossypol, paradol, tyrosol, hydroxytyrosol, ellagic acid, cynarin, and salvianolic acid B (Fresco et al., 2006; Han et al., 2007).

Gallic acid is widely distributed in medicinal herbs, such as Barringtonia racemosa, Cornus officinalis, Cassia auriculata, Polygonum aviculare, Punica granatum, Rheum officinale, Rhus chinensis, Sanguisorba officinalis, and Terminalia chebula as well as dietary spices, for example, thyme and clove. Other hydroxybenzoic acids are also ubiquitous in medicinal herbs and dietary plants (spices, fruits, vegetables).

For example, Dolichos biflorus, Feronia elephantum, and Paeonia lactiflora contain hydroxybenzoic acid; Cinnamomum cassia, Lawsonia inermis, dill, grape, and star anise possess protocatechuic acid; Foeniculum vulgare, Ipomoea turpethum, and Picrorhiza scrophulariiflora have vanillic acid; Ceratostigma willmottianum and sugarcane straw possess syringic acid (Cai et al., 2004; Shan et al., 2005; Sampietro & Vattuone, 2006; Stagos et al., 2006; Surveswaran et al., 2007).

Ferulic, caffeic, and p-coumaric acid are present in many medicinal herbs and dietary spices, fruits, vegetables, and grains (Cai et al., 2004). Wheat bran is a good source of ferulic acids. Free, soluble-conjugated, and bound ferulic acids in grains are present in the ratio of 0.1:1:100. Red fruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, sweet cherry, sour cherry, elderberry, black currant, and red currant) are rich in hydroxycinnamic acids (caffeic, ferulic, p-coumaric acid) and p-hydroxybenzoic, ellagic acid, which contribute to their anti-oxidant activity (Jakobek et al., 2007).

Chlorogenic acids are the ester of caffeic acids and are the substrate for enzymatic oxidation leading to browning, particularly in apples and potatoes. Chlorogenic acid is a major phenolic acid from medicinal plants especially in the species of Apocynaceae and Asclepiadaceae (Huang et al., 2007).

Salvianolic acid B is a major water-soluble polyphenolic acid extracted from Radix salviae miltiorrhizae, which is a common herbal medicine clinically used as an anti-oxidant agent for thousands of years in China. There are 9 activated phenolic hydroxyl groups that may be responsible for the release of active hydrogen to block lipid peroxidation reaction. Rosmarinic acid is an anti-oxidant phenolic compound, which is found in many dietary spices such as mint, sweet basil, oregano, rosemary, sage, and thyme.

Gossypol, a polyphenolic aldehyde, derived from the seeds of the cotton plant (genus Gossypium, family Malvaceae), has contraceptive activity and can cause hypokalemia in some men. Gingerol, a phenolic substance, is responsible for the spicy taste of ginger.

Polyphenols

Polyphenols are a structural class of mainly natural, organic chemicals characterized by the presence of large multiples of phenol structural units. The number and characteristics of these phenol structures underlie the unique physical, chemical, and biological (metabolic, toxic, therapeutic, etc.) properties of particular members of the class. They may be broadly classified as phenolic acids, flavonoids, stilbenes, and lignans (Manach et al., 2004).

Initial evidence on cancer came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers.

Polyphenolic cancer action can be attributed not only to their ability to act as anti-oxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery – from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components – and provide insights into their beneficial health effects (Kampa et al., 2007).

Polyphenols and Copper

Anti-cancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as anti-oxidants, but can be pro-oxidants in the presence of copper ions. Through multiple assays, Khan et al. (2013) show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition.

Since the concentration of copper is significantly elevated in cancer cells, their results strengthen the idea that an important anti-cancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this pro-oxidant chemo-preventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.

IGF-1; Prostate Cancer

The ability of polyphenols from tomatoes and soy (genistein, quercetin, kaempferol, biochanin A, daidzein and rutin) were examined for their ability to modulate insulin-like growth factor-I (IGF-I)–induced in vitro proliferation and apoptotic resistance in the AT6.3 rat prostate cancer cell line. IGF-I at 50 µg/L in serum-free medium produced maximum proliferation and minimized apoptosis. Genistein, quercetin, kaempferol and biochanin A exhibited dose-dependent inhibition of growth with a 50% inhibitory concentration (IC50) between 25 and 40 µmol/L, whereas rutin and daidzein were less potent with an IC50 of >60 µmol/L. Genistein and kaempferol potently induced G2/M cell-cycle arrest.

Genistein, quercetin, kaempferol and biochanin A, but not daidzein and rutin, counteracted the anti-apoptotic effects of IGF-I. Human prostate epithelial cells grown in growth factor-supplemented medium were also sensitive to growth inhibition by polyphenols. Genistein, biochanin A, quercetin and kaempferol reduced the insulin receptor substrate-1 (IRS-1) content of AT6.3 cells and prevented the down-regulation of IGF-I receptor β in response to IGF-I binding.

Several polyphenols suppressed phosphorylation of AKT and ERK1/2, and more potently inhibited IRS-1 tyrosyl phosphorylation after IGF-I exposure. In summary, polyphenols from soy and tomato products may counteract the ability of IGF-I to stimulate proliferation and prevent apoptosis via inhibition of multiple intracellular signaling pathways involving tyrosine kinase activity (Wang et al., 2003).

Flavonoids

Flavonoids have been linked to reducing the risk of major chronic diseases including cancer because they have powerful anti-oxidant activities in vitro, being able to scavenge a wide range of reactive species (e.g. hydroxyl radicals, peroxyl radicals, hypochlorous acid, and superoxide radicals) (Hollman & Katan, 2000).

Flavonoids are a group of more than 4,000 phenolic compounds that occur naturally in plants (Ren et al., 2003). These compounds commonly have the basic skeleton of phenylbenzopyrone structure (C6-C3-C6) consisting of 2 aromatic rings (A and B rings) linked by 3 carbons that are usually in an oxygenated central pyran ring, or C ring (12). According to the saturation level and opening of the central pyran ring, they are categorized mainly into flavones (basic structure, B ring binds to the 2 position), flavonols (having a hydroxyl group at the 3 position), flavanones (dihydroflavones) and flavanonols (dihydroflavonols; 2–3 bond is saturated), flavanols (flavan-3-ols and flavan-3,4-diols; C-ring is 1-pyran), anthocyanins (anthocyanidins; C-ring is 1-pyran, and 1–2 and 3–4 bonds are unsaturated), chalcones (C-ring is opened), isoflavonoids (mainly isoflavones; B ring binds to the 3 position), neoflavonoids (B ring binds to the 4-position), and biflavonoids (dimer of flavones, flavonols, and flavanones) (Iwashina, 2000; Cai et al., 2004; Cai et al., 2006; Ren et al., 2003)

Tannins

Tannins are natural, water-soluble, polyphenolic compounds with molecular weight ranging from 500 to 4,000, usually classified into 2 classes: hydrolysable tannins (gallo- and ellagi-tannins) and condensed tannins (proanthocyanidins) (Cai et al., 2004).

The former are complex polyphenols, which can be degraded into sugars and phenolic acids through either pH changes or enzymatic or nonenzymatic hydrolysis. The basic units of hydrolysable tannins of the polyster type are gallic acid and its derivatives (Fresco et al., 2006). Tannins are commonly found combined with alkaloids, polysaccharides, and proteins, particularly the latter (Han et al., 2007).

Stilbenes

Stilbenes are phenolic compounds displaying 2 aromatic rings linked by an ethane bridge, structurally characterized by the presence of a 1,2-diarylethene nucleus with hydroxyls substituted on the aromatic rings. They are distributed in higher plants and exist in the form of oligomers and in monomeric form (e.g. resveratrol, oxyresveratrol) and as dimeric, trimeric, and polymeric stilbenes or as glycosides.

The well-known compound, trans-resveratrol, a phytoalexin produced by plants, is the member of this chemical famil most abundant in the human diet (especially rich in the skin of red grapes), possessing a trihydroxystilben skeleton (Han et al., 2007). There are monomeric stilbenes in 4 species of medicinal herbs, that is, trans-resveratrol in root of Polygonum cuspidatum, Polygonum multiflorum, and P. lactiflora; piceatannol in root of P. multiflorum; and oxyresveratrol in fruit of Morus alba (Cai et al., 2006).

It was reported that dimeric stilbenes and stilbene glycosides were identified from these species (Xiao et al., 2002). In addition, 40 stilbene oligomers were isolated from 6 medicinal plant species (Shorea hemsleyana, Vatica rassak, Vatica indica, Hopea utilis, Gnetum parvifolium, and Kobresia nepalensis). Other stilbenes that have recently been identified in dietary sources, such as piceatannol and its glucoside (usually named astringin) and pterostilbene, are also considered as potential chemo-preventive agents. These and other in vitro and in vivo studies provide a rationale in support of the use of stilbenes as phytoestrogens to protect against hormone-dependent tumors (Athar et al., 2007).

Curcuminoids

Curcuminoids are ferulic acid derivatives, which contain 2 ferulic acid molecules linked by a methylene with a β -diketone structure in a highly conjugated system. Curcuminoids and ginerol analogues are natural phenolic compounds from plants of the family Zingiberaceae. Curcuminoids include 3 main chemical compounds: curcumin, demethoxycurcumin, and bisdemethoxycurcumin (Cai et al., 2006). All 3 curcuminoids impart the characteristic yellow color to turmeric, particularly to its rhizome, and are also major yellow pigments of mustard. Curcuminoids containing Curcuma longa (turmeric) and ginerol analogues containing Zingiber officinale (ginger) are not only used as Chinese traditional medicines but also as natural color agents or ordinary spices.

In addition, curcuminoids with anti-oxidant properties have been isolated from various Curcuma or Zingiber species, such as the Indian medicinal herb Curcuma xanthorrhiza.

Coumarins

Coumarins are lactones obtained by cyclization of cis-ortho-hydroxycinnamic acid, belonging to the phenolics with the basic skeleton of C6+ C3. This precursor is formed through isomerization and hydroxylation of the structural analogs trans-hydroxycinnamic acid and derivatives. Coumarins are present in plants in the free form and as glycosides. In general, coumarins are characterized by great chemical diversity, mainly differing in the degree of oxygenation of their benzopyrane moiety.

In nature, most coumarins are C7-hydroxylated (Fresco et al., 2006; Cai et al., 2006). Major coumarin constituents included simple hydroxylcoumarins (e.g. aesculin, esculetin, scopoletin, and escopoletin), furocoumarins and isofurocoumarin (e.g. psoralen and isopsoralen from Psoralea corylifolia), pyranocoumarins (e.g. xanthyletin, xanthoxyletin, seselin, khellactone, praeuptorin A), bicoumarins, dihydro-isocoumarins (e.g. bergenin), and others (e.g. wedelolactone from Eclipta prostrata) (Shan et al., 2005).

Plants, fruits, vegetables, olive oil, and beverages (coffee, wine, and tea) are all dietary sources of coumarins; for example, seselin from fruit of Seseli indicum, khellactone from fruit of Ammi visnaga, and praeuptorin A from Peucedanum praeruptorum (Sonnenberg et al., 1995). In previous studies, it was found that coumarins occurred in the medicinal herbs Umbelliferae, Asteraceae, Convolvulaceae, Leguminosae, Magnoliaceae, Oleaceae, Rutaceae, and Ranunculaceae, such as simple coumarins from A. annua, furocoumarins (5-methoxyfuranocoumarin) from Angelica sinensis, pyranocoumarins from Citrus aurantium, and isocoumarins from Agrimonia pilosa. Coumarins have also been detected in some Indian medicinal plants (e.g. Toddalia aculeata, Murraya exotica, Foeniculum vulgare, and Carum copticum) and dietary spices (e.g. cumin and caraway). In addition, coumestans, derivatives of coumarin, including coumestrol, a phytoestrogen, are found in a variety of medicinal and dietary plants such as soybeans and Pueraria mirifica (Chansakaow et al., 2000).

Lignans

Lignans are also derived from cis-o-hydroxycinnamic acid and are dimers (with 2 C6-C3 units) resulting from tail–tail linkage of 2 coniferl or sinapyl alcohol units (Cai et al., 2007). Lignans are mainly present in plants in the free form and as glycosides in a few (Fresco et al., 2006). Main lignan constituents are lignanolides (e.g. arctigenin, arctiin, secoisolariciresinol, and matairesinol from Arctium lappa), cyclolignanolides (e.g. chinensin from Polygala tenuifolia), bisepoxylignans (e.g. forsythigenol and forsythin from Forsythia suspensa), neolignans (e.g. magnolol from Cedrus deodara and Magnolia officinalis), and others (e.g. schizandrins, schizatherins, and wulignan from Schisandra chinensis; pinoresinol from Pulsatilla chinensis; and furofuran lignans from Cuscuta chinensis) (Surveswaran et al., 2007).

The famous tumor therapy drug podophyllotoxin (cyclolignanolide) was first identified in Podophyllum peltatum, which Native Americans used to treat warts, and also found in a traditional medicinal plant Podophyllum emodi var. chinense (Efferth et al., 2007). Two new lignans (podophyllotoxin glycosides) were isolated from the Chinese medicinal plant, Sinopodophyllum emodi (Zhao et al., 2002). Different lignans (e.g. cubebin, hinokinin, yatein, and isoyatein) were identified from leaves, berries, and stalks of Piper cubeba L. (Piperaceae), an Indonesian medicinal plant (Elfahmi et al., 2007).

Milder et al. (2005) established a lignan database from Dutch plant foods by quantifying lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol in 83 solid foods and 26 beverages commonly consumed in The Netherlands. They reported that flaxseed (mainly secoisolariciresinol), sesame seeds, and Brassica vegetables (mainly pinoresinol and lariciresinol) contained unexpectedly high levels of lignans. Sesamol, sesamin, and their glucosides are also good examples of this type of compound, which comes from sesame oil and sunflower oil.

Quinones

Natural quinones in medicinal plants fall into 4 categories: anthraquinones, phenanthraquinones, naphthoquinones, and benzoquinones (Cai et al., 2004). Anthraquinones are the largest class of natural quinones and occur more widely in medicinal and dietary plants than other natural quinones (Cai et al., 2006). The hydroxyanthraquinones normally have 1 to 3 hydroxyl groups on the anthraquinone structure. Previous investigation found that quinones were distributed in 12 species of medicinal herbs from 9 families such as Polygalaceae, Rubiaceae, Boraginaceae, Labiatae, Leguminosae, Myrsinaceae, and so forth (Surveswaran et al., 2007).

For example, high content benzoquinones and derivatives (embelin, embelinol, embeliaribyl ester, embeliol) are found in Indian medicinal herb Embelia ribes; naphthoquinones (shikonin, alkannan, and acetylshikonin) come from Lithospermum erythrorhizon and juglone comes from Juglans regia; phenanthraquinones (tanshinone I, II A, and II B ) were detected in Salvia miltiorrhiza; denbinobin was detected in Dendrobium nobile; and many anthraquinones and their glycosides (e.g. rhein, emodin, chrysophanol, aloe-emodin, physcion, purpurin, pseudopurpurin, alizarin, munjistin, emodin-glucoside, emodin-malonyl-glucoside, etc.) were identified in the rhizomes and roots from P. cuspidatum (also in leaves), P. multiflorum, and R. officinale in the Polygalaceae and Rubia cordifolia in the Rubiaceae (Surveswaran et al., 2007; Huang et al., 2008). In addition, some naphthoquinones were isolated from maize (Zea mays L.) roots (Luthje et al., 1998).

References:

Athar M, Back JH, Tang XW, et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharm, 224:274–283.


Cai YZ, Luo Q, Sun M and Corke H. (2004). Anti-oxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74:2157–2184.


Cai YZ, Sun M, Xing J, Luo Q and Corke H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci, 78:2872–2888.


Chansakaow S, Ishikawa T, Seki H, et al. (2000). Identification of deoxymiroestrol as the actual rejuvenating principle of 'Kwao Keur', Pueraria mirifica. J. Nat. Prod, 63(2):173–5. doi:10.1021/np990547v.


Efferth T, Li P CH, Konkimalla V and Kaina B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends Mol Med, 13:353–361.


Elfahmi, Ruslan K, Batterman S, et al. (2007). Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem Syst Ecol, 35:397–402.


Fresco P, Borges F, Diniz C and Marques M PM. (2006). New insights on the anti-cancer properties of dietary polyphenols. Med Res Rev, 26:747–766.


Han XZ, Shen T and Lou HX. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci, 8:950–988


Hollman P and Katan M B. (2000). Flavonols, flavones, and flavanols—nature, occurrence, and dietary burden. J Sci Food Agric, 80:1081–1093.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2007). A potential anti-oxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot, 61:14–30.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2008). Comparative analysis of bioactivities of four Polygonum species. Planta Med, 74:43–49.


Huang WH, Cai YZ, Zhang Y. (2010). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1):1–20 doi: 10.1080/01635580903191585


Iwashina T. (2000). The structure and distribution of the flavonoids in plants. J Plant Res, 113:287–299.


Jakobek L, Seruga M, Novak I and Medvidovic-Kosanovic M. (2007). Flavonols, phenolic acids, and anti-oxidant activity of some red fruits. Deut Lebensm-Runsch, 103:369–378.


Kampa M, Nifli AP, Notas G, Castanas E. (2007). Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol, 159:79-113.


Khan HY, Zubair H, Faisal M, et al. (2013). Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemo-preventive action. Mol Nutr Food Res. doi: 10.1002/mnfr.201300417.


Luthje S, Van Gestelen P, Cordoba-Pedregosa MC, et al. (1998). Quinones in plant plasma membranes—a missing link?. Protoplasma, 205:43–51.


Manach C, Scalbert A, Morand C, RŽmŽsy C, JimŽnez L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727–47.


Milder I, Arts I, van de Putte B, Venema DP and Hollman P. (2005). Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Brit J Nutr, 93:393–402.


Ren WY, Qiao ZH, Wang HW, Zhu L and Zhang L. (2003). Flavonoids: promising anti-cancer agents. Med Res Rev, 23:519–534.


Sampietro DA and Vattuone MA. (2006). Sugarcane straw and its phytochemicals as growth regulators of weed and crop plants. Plant Growth Regul, 48: 21–27.


Shan B, Cai YZ, Sun M and Corke H. (2005). Anti-oxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53:7749–7759.


Sonnenberg H, Kaloga M, Eisenbac N and Fromming KK. (1995). Isolation and characterization of an angular-type dihydropyranocoumaringlycoside from the fruits of Ammi visnaga (L) Lam (Apiaceae). Zeitschrift Natur C-A J BioSci, 50: 729–731.


Stagos D, Kazantzoglou, G, Theofanidou, D, Kakalopoulou, G, Magiatis, P. (2006). Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat Res-Gen Tox En, 609:165–175.


Surveswaran S, Cai YZ, Corke H and Sun M. (2007). Systematic evaluation of natural phenolic anti-oxidants from 133 Indian medicinal plants. Food Chem, 102:938–953.


Wang SH, DeGroff VL, Clinton SK. (2003). Tomato and Soy Polyphenols Reduce Insulin-Like Growth Factor-I–Stimulated Rat Prostate Cancer Cell Proliferation and Apoptotic Resistance In Vitro via Inhibition of Intracellular Signaling Pathways Involving Tyrosine Kinase. J. Nutr, 133(7):2367-2376


Xiao K, Xuan LJ, Xu YM, Bai D, Zhong DX. (2002). Dimeric stilbene glycosides from Polygonum cuspidatum. Eur J Org Chem, 3:564–568.


Zhao C, Nagatsu A, Hatano K, Shirai N, Kato S. (2003). New lignan glycosides from Chinese medicinal plant, Sinopodophyllum emodi. Chem Pharm Bull, 51:255–261.

Genistein (See also Daidzien)

Cancer:
Breast, kidney, prostate, renal., liver, endometrial., ovarian

Action: Anti-angiogenesis, cell-cycle arrest, cancer stem cells, VEGF, radiotherapy, sex hormone-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1)

Genistein is a natural isoflavone phytoestrogen present in a number of plants, including soy, fava, and kudzu (Glycine max [(L.) Merr.], Vicia faba (L.), Pueraria lobata [(Willd.) Ohwi]).

Phytoestrogens

Phytoestrogens have been investigated at the epidemiological., clinical and molecular levels to determine their potential health benefits. The two major groups of phytoestrogens, isoflavones and lignans, are abundant in soy products and flax respectively, but are also present in a variety of other foods. It is thought that these estrogen-like compounds may protect against chronic diseases, such as hormone-dependent cancers, cardiovascular disease and osteoporosis (Stark & Madar, 2002).

S-Equol Production and Isoflavone Metabolism

S-Equol and Breast Cancer

Differences in ability to metabolize daidzein to equol might help explain inconsistent findings about isoflavones and breast cancer. Tseng et al. (2013) examined equol-producing status in relation to breast density, a marker of breast cancer risk, and evaluated whether an association of isoflavone intake with breast density differs by equol-producing status in a sample of Chinese immigrant women. In their sample, 30% were classified as equol producers. In adjusted linear regression models, equol producers had significantly lower mean dense tissue area (32.8 vs. 37.7 cm(2), P = 0.03) and lower mean percent breast density (32% vs. 35%, P = 0.03) than nonproducers. Significant inverse associations of isoflavone intake with dense area and percent density were apparent, but only in equol producers (interaction P = 0.05 for both).

Although these findings warrant confirmation in a larger sample, they offer a possible explanation for the inconsistent findings about soy intake and breast density and possibly breast cancer risk as well. The findings further suggest the importance of identifying factors that influence equol-producing status and exploring appropriate targeting of interventions.

S-Equol and Dietary Factors

S-(-)equol, an intestinally derived metabolite of the soy isoflavone daidzein, is proposed to enhance the efficacy of soy diets. Setchell et al. (2013) performed a comprehensive dietary analysis of 143 macro- and micro-nutrients in 159 healthy adults to determine whether the intake of specific nutrients favors equol production. Three-day diet records were collected and analyzed using Nutrition Data System for Research software and S-(-)equol was measured in urine by mass spectrometry.

Equol producers accounted for 29.6% of participants. No significant differences were observed for total protein, carbohydrate, fat, saturated fat, or fiber intakes between equol producers and nonproducers. However, principal component analysis revealed differences in several nutrients, including higher intakes of polyunsaturated fatty acids (P = 0.039), maltose (P = 0.02), and vitamins A (P = 0.01) and E (P = 0.035) and a lower intake of total cholesterol (P = 0.010) in equol producers.

Subtle differences in some nutrients may influence the ability to produce equol.

S-Equol and Dietary Factors; Fats

The soy isoflavones, daidzein and genistein, and the lignans, matairesinol and secoisolariciresinol, are phytoestrogens metabolized extensively by the intestinal microflora. Considerable important evidence is already available that shows extensive interindividual variation in isoflavone metabolism. There was a 16-fold variation in total isoflavonoid excretion in urine after the high-isoflavone treatment period. The variation in urinary equol excretion was greatest (664-fold), and subjects fell into two groups: poor equol excretors and good equol excretors (36%). A significant negative correlation was found between the proportion of energy from fat in the habitual diet and urinary equol excretion (r = -0.55; p = 0.012). Good equol excretors consumed less fat as percentage of energy than poor excretors (26 +/- 2.3% compared with 35 +/- 1.6%, p < 0.01) and more carbohydrate as percentage of energy than poor excretors (55 +/- 2.9% compared with 47 +/- 1.7%, p < 0.05).

It is suggested that the dietary fat intake decreases the capacity of gut microbial flora to synthesize equol (Rowland et al., 2000).

Isoflavones and Fermented Soy Foods

Serum concentrations of total isoflavones after 1–4 hours were significantly higher in the aglycone-rich fermented soybeans (Fsoy) group than in the glucoside-rich non-fermented soybeans (Soy) group. The Fsoy group showed significantly higher maximum concentration (Cmax: 2.79 ± 0.13 vs 1.74 ± 0.13 µmol L(-1) ) and area under the curve (AUC(0-24 h) : 23.78 ± 2.41 vs 19.95 ± 2.03 µmol day L(-1) ) and lower maximum concentration time (Tmax: 1.00 ± 0.00 vs 5.00 ± 0.67 h) compared with the Soy group. The cumulative urinary excretion of total isoflavones after 2 hours was significantly higher in the Fsoy group than in the Soy group. Individual isoflavones (daidzein, genistein and glycitein) showed similar trends to total isoflavones. Equol (a metabolite from daidzein) did not differ between the two groups.

The results of this study demonstrated that the isoflavones of aglycone-rich Fsoy were absorbed faster and in greater amounts than those of glucoside-rich Soy in postmenopausal Japanese women (Okabe et al., 2011).

Phytoestrogens and Breast Cancer; ER+/ER-, ER α /ER β

Dietary-derived Anti-angiogenic Compounds

Consumption of a plant-based diet can prevent the development and progression of chronic diseases that are associated with extensive neovascularization; however, little is known about the mechanisms. To determine whether prevention might be associated with dietary-derived angiogenesis inhibitors, the urine of healthy human subjects consuming a plant-based diet was fractionated and the fractions examined for their ability to inhibit the proliferation of vascular endothelial cells.

The isoflavonoid genistein was the most potent, and inhibited endothelial cell proliferation and in vitro angiogenesis at concentrations giving half-maximal inhibition of 5 and 150 microM, respectively. Genistein concentrations in urine of subjects consuming a plant-based diet are in the micromolar range, while those of subjects consuming a traditional Western diet are lower by a factor of > 30. The high excretion of genistein in urine of vegetarians and in addition to these results suggest that genistein may contribute to the preventive effect of a plant-based diet on chronic diseases, including solid tumors, by inhibiting neovascularization.

Thus, genistein may represent a member of a new class of dietary-derived anti-angiogenic compounds (Fotsis et al., 1993).

ERβ as a Down-regulator of ER+ Breast Cancer

The estrogen receptor (ER) isoform known as ERβ has become the focus of intense investigation as a potential drug target. The existence of clear-cut differences in ERβ and ERα expression suggests that tissues could be differentially targeted with ligands selective for either isoform (Couse et al., 1997; Enmark et al., 1997). In particular, the fact that ER β is widely expressed but not the primary estrogen receptor in, for example, the uterus (where estrogenic effects are mediated via ERα) (Harris, Katzenellenbogen, & Katzenellenbogen, 2002) opens up the possibility of targeting other tissues while avoiding certain classical estrogenic effects.

A major advance toward understanding how some phytoestrogens achieve modest ERβ selectivity was the X-ray structure determination of the ERβ ligand binding domain (LBD) complexed with genistein (GEN) (Pike et al., 1999), a 40-fold ERβ-selective ligand (Harris et al., 2002). This study clearly showed that there are only two residue substitutions in close proximity to GEN: ERα Leu384 is replaced by ER β Met336, and ERα Met421 is replaced by ER β Ile373.

ERbeta works as counter partner of ERalpha through inhibition of the transactivating function of ERalpha by heterodimerization, distinct regulation on several specific promoters by ERalpha or ERbeta, and ERbeta-specific regulated genes which are probably related to its anti-proliferative properties. Epidemiological studies of hormone replacement therapy and isoflavone (genistein) consumption indicate the possible contribution of ERbeta-specific signaling in breast cancer prevention. A selective estrogen receptor modulator, which works as an antagonist of ERalpha and an agonist of ERbeta, may be a promising chemo-preventive treatment (Saji, Hirose, & Toi, 2005).

Genistein and Apoptosis

The association between consumption of genistein containing soybean products and lower risk of breast cancer suggests a cancer chemo-preventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively.

After 6 days of incubation with 50 microM genistein, MCF-7, but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells.

In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7, but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was also studied. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner; whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18–24 hours but then increased considerably after 48 hours. Hence, the Bax:Bcl-2 ratio initially increased but later decreased.

Data suggests that at the concentration tested, MCF-7 cells, in contrast to MDA-MB-231 cells, were sensitive to the induction of apoptosis by genistein. However, the roles of Bax and Bcl-2 are unclear (Xu & Loo, 2001).

Genistein Derivatives and Breast Cancer Inhibition

Genistein binds to estrogen receptors and stimulates growth at concentrations that would be achieved by a high soy diet, but inhibits growth at high experimental concentrations.

The estrogen receptor (ER) is a major target for the treatment of breast cancer cells. Genistein, a soy isoflavone, possesses a structure similar to estrogen and can both mimic and antagonize estrogen effects although at high concentrations it inhibits breast cancer cell proliferation. Hence, to enhance the anti-cancer activity of Genistein at lower concentrations, seven structurally modified derivatives of Genistein based on the structural requirements for an optimal anti-cancer effect were synthesised. Among those seven, three derivatives showed high anti-proliferative activity with IC(50) levels in the range of 1-2.5 µM, i.e., at much lower concentrations range than Genistein itself, in three ER-positive breast cancer cell lines (MCF-7, 21PT and T47D) studied. In our analysis, we noticed that at IC(50) concentrations, the MA-6, MA-8 and MA-19 Genistein derivatives induced apoptosis, inhibited ER-α messenger RNA expression and increased the ratio of ER-β to ER-α levels in a manner comparable to that of the parent compound Genistein.

Of note, these three modified Genistein derivatives exerted their effects at concentrations 10–15 times lower than the parent compound, decreasing the likelihood of significant ER- α pathway activation, which has been a concern for Genistein. Hence these compounds might play a useful role in breast cancer chemoprevention (Marik et al., 2011).

Genistein and ER α

To determine the effects of low-dose, long-term genistein exposure MCF-7 breast cancer cells were cultured in 10nM genistein for 10-12 weeks and investigated whether or not this long-term genistein treatment (LTGT) altered the expression of estrogen receptor alpha (ERalpha) and the activity of the PI3-K/Akt signaling pathway. This is known to be pivotal in the signaling of mitogens such as oestradiol (E(2)), insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). LTGT significantly reduced the growth promoting effects of E(2) and increased the dose-dependent growth-inhibitory effect of the PI3-K inhibitor, LY 294002, compared to untreated control MCF-7 cells.

This was associated with a significant decreased protein expression of total Akt and phosphorylated Akt but not ERalpha. Rapamycin, an inhibitor of one of the downstream targets of Akt, mammalian target of rapamycin (mTOR), also dose-dependently inhibited growth but the response to this drug was similar in LTGT and control MCF-7 cells. The protein expression of liver receptor homologue-1 (LRH1), an orphan nuclear receptor implicated in tumorigenesis was not affected by LTGT.

These results show that LTGT results in a down-regulation of the PI3-K/Akt signaling pathway and may be a mechanism through which genistein could offer protection against breast cancer (Anastasius et al., 2009).

Genistein and ER+/ER-

Genistein was found to cause a dose-dependent growth inhibition of the two hormone-sensitive cell lines T47D and ZR75.1 and of the two hormone-independent cell lines MDAMB-231 and BT20. Flow cytometric analysis of cells treated for 4 days with 15 and 30 M genistein showed a dose-dependent accumulation in the G2M phase of the cell-cycle. At the highest tested concentration, there was a 7-fold increase in the percentage of cells in G2M (63%) with respect to the control (9%) in the case of T47D cells and a 2.4-fold increase in the case of BT20. An intermediate 4-fold accumulation was observed in the case of MDAMB-231 and ZR75.1. The G2M arrest was coupled with a parallel depletion of the G0/G1 phase.

To understand the mechanism of action underlying the block in G2M induced by genistein, Cappelletti et al. (2000) investigated the expression and the activity of cyclins and of cyclin-dependent kinases specifically involved in the G2M transition. As expected, p34cdc-2 expression, monitored by Western blotting, was unaffected by genistein treatment in all cell lines. With the exception of the T47D cell line, we revealed an increase in the tyrosine phosphorylated form of p34, suggesting an inactivation of the p34cdc-2 catalytic activity consequent to treatment of cells with genistein. In fact, immunoprecipitates from genistein-treated MDAMB-231 and BT20 cells displayed a 4-fold decrease in kinase activity evaluated using the histone H1 as substrate.

Conversely, no variation in kinase activity was observed between treated and untreated ZR75.1 cells despite the increase in p34 phosphorylation. In cells treated with 30 M genistein, cyclin B1 (p62) increased 2.8-,8-and 103-fold, respectively, in BT20, MDAMB-231, and ZR75.1 cells, suggesting an accumulation of the p62, which is instead rapidly degraded in cycling cells. No effects were observed on cyclin expression in T47D cells.

We therefore conclude that genistein causes a G2M arrest in breast cancer cell lines, but that such growth arrest is not necessarily coupled with deregulation of the p34cdc-2/cyclin B1 complex only in all of the studied cell lines.

Genistein and ER+/ER-; MDR

Genistein is a potent inhibitor of the growth of the human breast carcinoma cell lines, MDA-468 (estrogen receptor negative), and MCF-7 and MCF-7-D-40 (estrogen receptor positive) (IC50 values from 6.5 to 12.0 µg/ml). The presence of the estrogen receptor is not required for the isoflavones to inhibit tumor cell growth (MDA-468 vs MCF-7 cells). In addition, the effects of genistein and biochanin A are not attenuated by over expression of the multi-drug resistance gene product (MCF-7-D40 vs MCF-7 cells (Peterson et al., 1991).

Studies have shown that genistein exerts multiple suppressive effects on both estrogen receptor positive (ER+) as well as estrogen receptor negative (ER-) human breast carcinoma lines suggesting that the mechanisms of these effects may be independent of ER pathways.

In the present study however Shao et al. (2000) provide evidence that in the ER+ MCF-7, T47D and 549 lines but not in the ER-MDA-MB-231 and MDA-MB-468 lines both presumed 'ER-dependent' and 'ER-independent' actions of genistein are mediated through ER pathways. Genistein's anti-proliferative effects are estrogen dependent in these ER+ lines, being more pronounced in estrogen-containing media and in the presence of exogenous 17-beta estradiol. Genistein also inhibits the expression of ER-downstream genes including pS2 and TGF-beta in these ER+ lines and this inhibition is also dependent on the presence of estrogen. Genistein inhibits estrogen-induced protein tyrosine kinase (PTK) activity. Genistein is only a weak transcriptional activator and actually decreases ERE-CAT levels induced by 17-beta estradiol in the ER+ lines.

Genistein also decreases steady state ER mRNA only in the presence of estrogen in the ER+ lines thereby manifesting another suppression of and through the ER pathway. Their observations resurrect the hypothesis that genistein functions as a 'good estrogen' in ER+ breast carcinomas. Since chemo-preventive effects of genistein would be targeted to normal ER-positive ductal-lobular cells of the breast, this 'good estrogen' action of genistein is most relevant to our understanding of chemoprevention.

Genistein and Concentration

The anti-proliferative activity of the isoflavones daidzein and genistein were investigated in three breast cancer cell lines with different patterns of estrogen receptor (ER) and c erbB 2 protein expression (ERα positive MCF 7 cells, c erbB 2 positive SK BR 3 cells and ERα/c erbB 2 positive ZR 75 1). After treatment at various concentrations (1 200 µM for 72 hours), the effect of daidzein and genistein on the proliferation of different cell types varied; these effects were found to be associated with ERα and c erbB 2 expression. Daidzein and genistein exhibited biphasic effects (stimulatory or inhibitory) on proliferation and ERα expression in MCF 7 cells. Although 1 µM daidzein significantly stimulated cell growth, ERα expression was unaffected. However, genistein showed marked increases in proliferation and ERα expression after exposure to <10 µM genistein.

Notably, the inhibition of cell proliferation by 200 µM genistein was greater compared to that by daidzein at the same concentration. Daidzein and genistein significantly inhibited proliferation of SK BR 3 and ZR 75 1 cells in a dose-dependent manner. In addition, ERα and c erbB 2 expression was reduced by daidzein and genistein in both SK BR 3 and ZR 75 1 cells in a dose-dependent manner. However, the effect of genistein was greater compared to that of daidzein.

In conclusion, the isoflavones daidzein and genistein showed anti breast cancer activity, which was associated with expression of the ERα and c erbB 2 receptors (Choi et al., 2013).

ER- α / ER β Receptors

Isoflavones are phytoestrogens that have been linked to both beneficial as well as adverse effects in relation to cell proliferation and cancer risks. The mechanisms that could be involved in this dualistic mode of action were investigated. One mechanism relates to the different ultimate cellular effects of activation of estrogen receptor (ER) α, promoting cell proliferation, and of ERβ, promoting apoptosis, with the major soy isoflavones genistein and daidzein activating especially ERβ.

A second mode of action includes the role of epigenetics, including effects of isoflavones on DNA methylation, histone modification and miRNA expression patterns. The overview presented reveals that we are only at the start of unraveling the complex underlying mode of action for effects of isoflavones, both beneficial or adverse, on cell proliferation and cancer risks. It is evident that whatever model system will be applied, its relevance to human tissues with respect to ERα and ERβ levels, co-repressor and co-activator characteristics as well as its relevance to human exposure regimens, needs to be considered and defined (Rietjens et al., 2013).

Genistein and ER+/ER-, ER- α / ER β Receptors

A novel mechanism of adipokine, adiponectin (APN) -mediated signaling that influences mammary epithelial cell proliferation, differentiation, and apoptosis to modify breast cancer risk has been identified. It was demonstrated that early dietary exposure to soy protein isolate induced mammary tissue APN production without corresponding effects on systemic APN levels. In estrogen receptor (ER)-negative MCF-10A cells, recombinant APN promoted lobuloalveolar differentiation by inhibiting oncogenic signal transducer and activator of transcription 3 activity.

In ER-positive HC11 cells, recombinant APN increased ERβ expression, inhibited cell proliferation, and induced apoptosis. Using the estrogen-responsive 4X-estrogen response element promoter-reporter construct to assess ER transactivation and small interfering RNA targeting of ERα and ERβ, Rahal et al. (2011) show that APN synergized with the soy phytoestrogen genistein to promote ERβ signaling in the presence of estrogen (17β-estradiol) and ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and to oppose ERα signaling in the presence of the ERα-specific agonist 4,4',4'-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol.

The enhancement of ERβ signaling with APN + genistein co-treatments was associated with induction of apoptosis, increased expression of pro-apoptotic/prodifferentiation genes (Bad, p53, and Pten), and decreased anti-apoptotic (Bcl2 and survivin) transcript levels. These results suggest that mammary-derived APN can influence adjacent epithelial function by ER-dependent and ER-independent mechanisms that are consistent with reduction of breast cancer risk and suggest local APN induction by dietary factors as a targeted approach for promotion of breast health.

Genistein and Non-breast Cancer

Genistein Concentrations; Endometrial Cancer

The influence of two phytoestrogens (Genistein and Daidzein) on estrogen-related receptor-α in endometrial cancer cell line Ishikawa was investigated on the proliferation of the cells in this cell line. Ishikawa cells were incubated with different concentrations of Genistein and Daidzein (40, 20, 10, 5 µmol/L) for 24 hours or 48 hours, followed by Real-Time PCR for analyzing the expression of ERR-α mRNA in the cell line. MTT assay was then performed to evaluate the proliferation of Ishikawa cells.

The expression level of ERR-α mRNA in Ishikawa cells was higher than that of the control group after being dealt for 24 hours or 48 hours with Genistein, and the concentration 20 µmol/L was most effective. Nevertheless, this up-regulation was blocked when the cells were treated with 40 µmol/L Genistein. Lower concentration (5, 10 µmol/L) Genistein had depressant effect on proliferation of the cells, while higher concentrations (20, 40 µmol/L) had stimulant effect. After being treated with different concentrations of Daidzein, the expression of ERR- α mRNA in all experimental groups was significantly higher than that in the control group. In the 24 hour group, the concentration 40 µmol/L had most obvious effect; but in the 48 hour group, the concentration 20 µmol/L had most obvious effect, and this up-regulation was blocked when the concentration was elevated to 40 µmol/L.

Noticeably, all concentrations of Daidzein had depressant effect on the proliferation of Ishikawa cells in both 24 hour and 48 hour groups. In the 24 hour group, lower concentrations were more effective, but in the 48 hour group, concentration showed no significant effect. In lower concentrations, both Genistein and Daidzein have up-regulation effect on the expression of ERR-α, and block the proliferation of Ishikawa cells; but in higher concentrations, the up-regulation effect on ERR-α mRNA expression by these two phytoestrogens is not obvious. Genistein stimulates the proliferation of lshikawa cells in higher concentrations, while Daidzein suppresses the proliferation, especially in lower concentrations (Xin et al., 2009).

Genistein and VEGF; Ovarian Cancer

Genistein represses NF-kappaB (NF-κB), a pro-inflammatory transcription factor, and inhibits pro-inflammatory cytokines such as TNF-α and IL-6 in epithelial ovarian cancer. Additionally, it has been shown to stabilize p53 protein, sensitize TRAIL (TNF receptor apoptosis-inducing ligand) induce apoptosis, and prevent or delay chemotherapy-resistance. Recent studies further indicate that genistein potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro.

Based on widely published in vitro and mouse-model data, some anti-inflammatory phytochemicals appear to exhibit activity in modulating the tumor microenvironment. Specifically, apiegenin, baicalein, curcumin, EGCG, genistein, luteolin, oridonin, quercetin, and wogonin repress NF-kappaB (NF-κB, a pro-inflammatory transcription factor) and inhibit pro-inflammatory cytokines such as TNF-α and IL-6. Recent studies further indicate that apigenin, genistein, kaempferol, luteolin, and quercetin potently inhibit VEGF production and suppress ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM (Chen, Michael, & Butler-Manuel, 2012).

Renal Cell Carcinoma, Prostate Cancer; Radiotherapy

The KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer. These studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more effective and safer therapeutic approach as the tumor growth and progression are inhibited both in the primary and metastatic sites (Gilda et al., 2007).

Cell-cycle Arrest

Genistein treatment increased Wee1 levels and decreased phospho-Wee1 (Ser 642). Moreover, genistein substantially decreased the Ser473 and Thr308 phosphorylation of Akt and up-regulated PTEN expression. Down-regulation of PTEN by siRNA in genistein-treated cells increased phospho-Wee1 (Ser642), whereas it decreased phospho-Cdc2 (Tyr15), resulting in decreased G2/M cell-cycle-arrest. Therefore, induction of G2/M cell-cycle arrest by genistein involved up-regulation of PTEN (Liu et al., 2013).

Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity for self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs.

Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate (Dandawate et al., 2013).

Genistein and Sex Hormone-binding Globulin (SHBG)

Studies have indicated a correlation between a high level of urinary lignans and isoflavonoid phytoestrogens, particularly genistein, and a low incidence of hormone-dependent cancers, such as breast and prostate cancer. Previously it has been observed that a vegetarian diet is associated with high plasma levels of sex hormone-binding globulin (SHBG), reducing clearance of sex hormones and probably risk of breast and prostate cancer. In the present study we investigated the in vitro effect of genistein on the production of SHBG by human hepatocarcinoma (Hep-G2) cells in culture and its effect on cell proliferation.

It has additionally been found that genistein not only significantly increases the SHBG production by Hep-G2 cells, but also suppresses the proliferation of those cancer cells already at a stage when SHBG production continues to be high. It is hence concluded that, in addition to the lignan enterolactone, the most abundant urinary isoflavonoid genistein stimulates SHBG production and inhibits Hep-G2 cancer cell proliferation (Mousavi et al., 1993).

Insulin-like Growth Factor-1 (IGF-1); Prostate Cancer

Elevated levels of insulin-like growth factor-1 (IGF-1) are associated with an increased risk of several different cancers, including prostate cancer. Inhibition of IGF-1 and the downstream signaling pathways mediated by the activation of the IGF-1 receptor (IGF-1R) may be involved in inhibiting prostate carcinogenesis. Genistein treatment caused a significant inhibition of IGF-1-stimulated cell growth. Flow cytometry analysis revealed that genistein significantly decreased the number of IGF-1-stimulated cells in the G0/G1 phase of the cell-cycle. In IGF-1-treated cells, genistein effectively inhibited the phosphorylation of IGF-1R and the phosphorylation of its downstream targets, such as Src, Akt, and glycogen synthase kinase-3β (GSk-3β). IGF-1 treatment decreased the levels of E-cadherin but increased the levels of β-catenin and cyclin D1.

However, genistein treatment greatly attenuated IGF-1-induced β-catenin signaling that correlated with increasing the levels of E-cadherin and decreasing cyclin D1 levels in PC-3 cells. In addition, genistein inhibited T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity. These results showed that genistein effectively inhibited cell growth in IGF-1-stimulated PC-3 cells, possibly by inhibiting downstream of IGF-1R activation (Lee et al., 2012).

Sex Hormone-binding Globulin (SHBG); Hepatoma

Sex hormone-binding globulin (SHBG) is the main transport binding protein for sex steroid hormones in plasma and regulates their accessibility to target cells. Plasma SHBG is secreted by the liver under the control of hormones and nutritional factors. In the human hepatoma cell line (HepG2), thyroid and estrogenic hormones, and a variety of drugs including the anti-estrogen tamoxifen, the phytoestrogen, genistein and mitotane (Op'DDD) increase SHBG production and SHBG gene promoter activity. In contrast, monosaccharides (glucose or fructose) effectively decrease SHBG expression by inducing lipogenesis, which reduces hepatic HNF-4alpha levels, a transcription factor that plays a critical role in controlling the SHBG promoter. Interestingly, diminishing hepatic lipogenesis and free fatty acid liver biosynthesis also appear to be associated with the positive effects of thyroid hormones and PPARgamma antagonists on SHBG expression.

This mechanism provides a biological explanation for why SHBG is a sensitive biomarker of insulin resistance and the metabolic syndrome, and why low plasma SHBG levels are a risk factor for developing hyperglycemia and type 2 diabetes, especially in women (Pugeat et al., 2009).

Cancer: Pancreatic

Pancreatic cancer remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Genistein is a prominent isoflavonoid found in soy products and has been proposed to be responsible for lowering the rate of pancreatic cancer in Asians. However, the molecular mechanism(s) by which genistein elicits its effects on pancreatic cancer cells has not been fully elucidated.

Wang et al., (2006) have previously shown that genistein induces apoptosis and inhibits the activation of nuclear factor kappaB (NF-kappaB) pathway. Moreover, Notch signaling is known to play a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of pancreatic cancer. Hence, in our study, they investigated whether there is any cross talk between Notch and NF-kappaB during genistein-induced apoptosis in BxPC-3 pancreatic cancer cells. They found that genistein inhibits cell growth and induces apoptotic processes in BxPC-3 pancreatic cancer cells.

This was partly due to inhibition of Notch-1 activity. BxPC-3 cells transfected with Notch-1 cDNA showed induction of NF-kappaB activity, and this was inhibited by genistein treatment. From these results, we conclude that the inhibition of Notch-1 and NF-kappaB activity and their cross talk provides a novel mechanism by which genistein inhibits cell growth and induces apoptotic processes in pancreatic cancer cells.

References

Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA. (2009). Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signaling pathway. J Steroid Biochem Mol Biol, 116(1-2):50-55.


Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G J. (2000). Genistein blocks breast cancer cells in the G2M phase of the cell-cycle. Cell. Biochem, 79(4):594-600. doi: 10.1002/1097-4644(20001215)79:4<594::AID-JCB80>3.0.CO;2-4.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Choi EJ, Kim GH. (2013). Anti-proliferative activity of daidzein and genistein may be related to ERα /c-erbB-2 expression in human breast cancer cells. Mol Med Rep, 7(3):781-4. doi: 10.3892/mmr.2013.1283.


Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138(1997):4613–4621


Dandawate P, Padhye S, Ahmad A, Sarkar FH. (2013). Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res, 3(2):165-182.


Enmark E, Peltohuikko M, Grandien K, et al. (1997). Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab, 82(1997):4258–4265.


Fotsis T, Pepper M, Adlercreutz H, et al. (1993). Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci, 90(7):2690-4.


Harris HA, Albert LM, Leathurby Y, et al. (2002). Evaluation of an estrogen receptor- β agonist in animal models of human disease. Endocrinology, 144(2003):4241–4249


Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. (2002). Characterization of the biological roles of the estrogen receptors, ER alpha and ER beta, in estrogen target tissues in vivo through the use of an ER alpha-selective ligand. Endocrinology, 143(2002):4172–4177.


Hillman GG, Wang Y, Che M, et al. (2007). Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model. BMC Cancer, 7:4. doi:10.1186/1471-2407-7-4.


Lee J, Ju J, Park S, et al. (2012). Inhibition of IGF-1 Signaling by Genistein: Modulation of E-Cadherin Expression and Down-regulation of β -Catenin Signaling in Hormone Refractory PC-3 Prostate Cancer Cells. Nutrition and Cancer, 64(1). doi:10.1080/01635581.2012.630161


Liu YL, Zhang GQ, Yang Y, et al. (2013). Genistein Induces G2/M Arrest in Gastric Cancer Cells by Increasing the Tumor Suppressor PTEN Expression. Nutr Cancer.


Marik R, Allu M, Anchoori R, et al. (2011). Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer Biol Ther, 11(10):883-92.


Mousavi Y, Adlercreutz H. (1993). Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids, 58(7):301-4.


Okabe Y, Shimazu T, Tanimoto H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric, 91(4):658-63. doi: 10.1002/jsfa.4228.


Peterson G, Barnes S. (1991). Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochemical and Biophysical Research Communications, 179(1):661-667. doi:10.1016/0006-291X(91)91423-A.


Pike ACW, Brzozowski AM, Hubbard RE, et al. (1999). Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J, 18(1999): 4608–4618


Pugeat M, Nader N, Hogeveen K, et al. (2010). Sex hormone-binding globulin gene expression in the liver: Drugs and the metabolic syndrome. Mol Cell Endocrinol, 316(1):53-9. doi: 10.1016/j.mce.2009.09.020.


Rahal OM, Simmen RC. (2011). Paracrine-Acting Adiponectin Promotes Mammary Epithelial Differentiation and Synergizes with Genistein to Enhance Transcriptional Response to Estrogen Receptor β Signaling. Endocrinology, 152(9):3409-21. doi: 10.1210/en.2011-1085.


Rietjens IM, Sotoca AM, Vervoort J, Louisse J. (2013). Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res, 57(1):100-13. doi: 10.1002/mnfr.201200439.


Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer, 36(1):27-32.


Saji S, Hirose M, Toi M. (2005). Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol, 56(1):21-6.


Setchell KD, Brown NM, Summer S, et al. (2013). Dietary Factors Influence Production of the Soy Isoflavone Metabolite S-(-)Equol in Healthy Adults. J Nutr.


Shao ZM, Shen ZZ, Fontana JA, Barsky SH. (2000). Genistein's ER-dependent and independent actions are mediated through ER pathways in ER-positive breast carcinoma cell lines. Anti-cancer Res, 20(4):2409-16.


Stark A, Madar Z. (2002). Phytoestrogens: a review of recent findings. J Pediatr Endocrinol Metab, 15(5):561-72.


Tseng M, Byrne C, Kurzer MS, Fang CY. (2013). Equol-producing status, isoflavone intake, and breast density in a sample of u.s. Chinese women. Cancer Epidemiol Biomarkers Prev, 22(11):1975-83. doi: 10.1158/1055-9965.EPI-13-0593.


Xin Z, Siji L, Yan D, Weijuan X, Jie S, Qianyu W. (2009). Influence of Genistein and Daidzein on estrogen-related receptor- α in an Endometrial Carcinoma Cell Line. Tong Ji Da Xue Xue Bao (Yi Xue Ban), 30(4): 12-17.


Xu J, Loo G. (2001). Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. Journal of Cellular Biochemistry, 82(1), 78-88.

Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer. 2006 Apr 15;118(8):1930-6.