Category Archives: VEGFR

Wogonin

Cancer:
Breast, lung (NSCLC), gallbladder carcinoma, osteosarcoma, colon, cervical

Action: Neuro-protective, anti-lymphangiogenesis, anti-angiogenic, anti-estrogenic, chemo-sensitizer, pro-oxidative, hypoxia-induced drug resistance, anti-metastatic, anti-tumor, anti-inflammatory

Wogonin is a plant monoflavonoid isolated from Scutellaria rivularis (Benth.) and Scutellaria baicalensis (Georgi).

Breast Cancer; ER+ & ER-

Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell-cycle progression, and apoptosis. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by up-regulation of PARP and Caspase 3 cleavages as well as pro-apoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the down-regulation of the Akt-mediated canonical Wnt signaling pathway.

ER expression was down-regulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemo-preventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types (Chung et al., 2008).

Neurotransmitter Action

Kim et al. (2011) found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.

Anti-metastasic

The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Wogonin at the dose of 1–10 µM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin.

These findings suggest that wogonin inhibits cell mobility and invasion by up-regulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemo-protective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis (Dong et al., 2011).

Anti-tumor and Anti-metastatic

Kimura & Sumiyoshi (2012) examined the effects of wogonin isolated from Scutellaria baicalensis roots on tumor growth and metastasis using a highly metastatic model in osteosarcoma LM8-bearing mice. Wogonin (25 and 50mg/kg, twice daily) reduced tumor growth and metastasis to the lung, liver and kidney, angiogenesis (CD31-positive cells), lymphangiogenesis (LYVE-1-positive cells), and TAM (F4/80-positive cell) numbers in the tumors of LM8-bearing mice. Wogonin (10–100µM) also inhibited increases in IL-1β production and cyclooxygenase (COX)-2 expression induced by lipopolysaccharide in THP-1 macrophages. The anti-tumor and anti-metastatic actions of wogonin may be associated with the inhibition of VEGF-C-induced lymphangiogenesis through a reduction in VEGF-C-induced VEGFR-3 phosphorylation by the inhibition of COX-2 expression and IL-1β production in Tumor-associated macrophages (TAMs).

Anti-inflammatory

Wogonin extracted from Scutellariae baicalensis and S. barbata is a cell-permeable and orally available flavonoid that displays anti-inflammatory properties. Wogonin is reported to suppress the release of NO by iNOS, PGE2 by COX-2, pro-inflammatory cytokines, and MCP-1 gene expression and NF-kB activation (Chen et al., 2008).

Hypoxia-Induced Drug Resistance (MDR)

Hypoxia-induced drug resistance is a major obstacle in the development of effective cancer therapy. The reversal abilities of wogonin on   hypoxia resistance were examined and the underlying mechanisms discovered. MTT assay revealed that hypoxia increased maximal 1.71-, 2.08-, and 2.15-fold of IC50 toward paclitaxel, ADM, and DDP in human colon cancer cell lines HCT116, respectively. Furthermore, wogonin showed strong reversal potency in HCT116 cells in hypoxia and the RF reached 2.05. Hypoxia-inducible factor-1α (HIF-1α) can activate the expression of target genes involved in glycolysis. Wogonin decreased the expression of glycolysis-related proteins (HKII, PDHK1, LDHA), glucose uptake, and lactate generation in a dose-dependent manner.

In summary, wogonin could be a good candidate for the development of a new multi-drug resistance (MDR) reversal agent and its reversal mechanism probably is due to the suppression of HIF-1α expression via inhibiting PI3K/Akt signaling pathway (Wang et al., 2013).

NSCLC

Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. In this study, the effect of a combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay.

The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL.

These results show for the first time that wogonin enhances TRAIL's anti-tumor activity in vivo, suggesting this strategy has an application potential for clinical anti-cancer therapy (Yang et al., 2013).

Colon Cancer

Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest in the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner compared with the control. Furthermore, the induction of apoptosis was accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a dose-dependent manner.

The administration of baicalein to mice resulted in the inhibition of the growth of HT-29 xenografts without any toxicity following 5 weeks of treatment. The results indicated that baicalein induced apoptosis via Akt activation in a p53-dependent manner in the HT-29 colon cancer cells and that it may serve as a chemo-preventive or therapeutic agent for HT-29 colon cancer (Kim et al., 2012).

Breast

The involvement of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth was determined. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis.

These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model (Ma et al., 2012).

Chemoresistance; Cervical Cancer, NSCLC

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF.

In this study, the non-small-cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells.

Results provided important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy (He et al., 2012).

References

Chen LG, Hung LY, Tsai KW, et al. (2008). Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res. 52:1349-1357.


Chung H, Jung YM, Shin DH, et al. (2008). Anti-cancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer, 122(4):816-22.


Dong P, Zhang Y, Gu J, et al. (2011). Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol, 137(3):1373-80. doi: 10.1016/j.jep.2011.08.005.


He F, Wang Q, Zheng XL, et al. (2012). Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports, 28(2), 601-605. doi: 10.3892/or.2012.1841.


Kim EJ, Kang D, Han J. (2011). Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiologica, 202(2):185–192. doi: 10.1111/j.1748-1716.2011.02263.x.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6(6):1443-9. doi: 10.3892/mmr.2012.1085.


Kimura Y & Sumiyoshi M. (2012). Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 20(3-4):328-336. doi:10.1016/j.phymed.2012.10.016


Ma X, Xie KP, Shang F, et al. (2012). Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane. Sheng Li Xue Bao, 64(2):207-12.


Wang H, Zhao L, Zhu LT, et al. (2013). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via down-regulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. doi: 10.1002/mc.22052.


Yang L, Wang Q, Li D, et al. (2013). Wogonin enhances anti-tumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated down-regulation of cFLIPL and IAP proteins. Apoptosis, 18(5):618-26. doi: 10.1007/s10495-013-0808-8.

Cinobufacini

Cancers: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Hepatic Cancer

Cinobufacini injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Human Lymphatic Endothelial Cells

Cinobufacini injection is a traditional anti-tumor drug. However, its mechanism of action is still unclear. The effects of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as MEDLINEe (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with transcatheter arterial chemoembolization (TACE), and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of the control group. Cinobufacini injection, combined with TACE, can decrease TACE-induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose- and time- dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

References

Fu HY, Gao S, Tian LL, Chen XY, Cui XN. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao S, Chen XY, Fu HY, Cui XZ. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke J, Lu K, Li Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology,


Sun Y, Lu XX, Liang XM, Cui XN. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu C, Yin J, He J. (2012). Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.

Cinobufacini Injection

Cancer: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Ingredients: chan su (Dried toad skin/Bufo bufo gargarizans)

TCM functions: Removing Toxin, reducing swelling, relieving pain.

Indications: Anti-tumor, immune enhancing and anti-viral effects, and can be used in middle and late-stage tumors, chronic hepatitis B.

Dosage and usage:

Intramuscular injection: 2-4 ml once, twice daily, 2-3 months as a course of treatment.

Cervical Cancer; Radiotherapy

Sixty patients with early cervical cancer were randomly divided into two groups. Twenty eight cases in treatment group were treated by intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection. Thirty two cases in control group were treated only by intensity modulated radiation therapy. There was no significant difference between the two groups on the short-term  effect and lesion local control rate (P > 0.05). The 3-year overall survival rate in the treatment group was higher than that in control group (P<0.05). There was significant difference between the two groups on radiation proctitis (P<0.05).

Intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection can improve efficacy and reduce adverse reactions in early cervical cancer, worthy of clinical application. 10-20 ml mixed with 500 ml of 5% glucose for slow intravenous drip. Four weeks as a course of treatment, and 1-2 days interval after each week”s treatment.

Cinobufacini Injection (CI) showed better tumor inhibition effects on tumor-bearing rats of with a “heat syndrome” constitution, indicating CI was of a “cold property”. It may potentially be used in tumor-bearing rats of a “heat syndrome” constitution (Wang et al., 2011).

Induces Apoptosis

Chan Su is a traditional Chinese medicine prepared from the dried white secretion of the auricular and skin glands of toads, and has been used as an oriental drug for the treatment of a number of diseases, including cancer. In lung carcinoma A549 cells, treatment with the skin of Venenum Bufonis (SVB) resulted in the inhibition of cell growth and viability, and the induction of apoptosis.

SBV treatment induced the proteolytic activation of caspases and the concomitant degradation of poly(ADP-ribose)-polymerase and beta-catenin protein. Cleavage of Bid and a down-regulation of the inhibitor of apoptosis family proteins were also observed in SBV-treated A549 cells. Data from this study indicates that SVB induces the apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic and mitochondria-mediated intrinsic caspase pathways (Yun et al., 2009).

Blocks Metastasis

The effect of Cinobufacini injection on proliferation, heterogeneous adhesion, and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells (HLEC) was studied.

A co-culture system of human hepatoma HepG-2 cells and HLEC was established by means of Transwell chamber. Cell proliferation was analyzed by Trypan blue stain assay. MTT assay was used to observe the heterogeneous adhesion capacity of HepG-2 cells co-cultured with HLEC. Transwell invasion chamber was used to observe the invasiveness capacity of HepG-2 cells co-cultured with HLEC.

Cinobufacini Injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Inhibits Human Lymphatic Endothelial Cells (HLEC)

The effect of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

As the dosage of Cinobufacini injection increased (0.105, 0.21 and 0.42 µg/mL), so did the inhibition of HLCE. Cinobufacini injection demonstrated significant inhibition of HLEC proliferation (P < 0.05), migration (P < 0.05) and tubulin formation, in a dose-dependent manner (P < 0.05). Cinobufacini injection significantly decreased the expression of VEGFR-3 and HGF in HLEC, in a dose-dependent manner (P < 0.05).

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC; Chemotherapy

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as Medline (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

A total of seven RCTs of 498 patients were included. Meta-analysis results show that the experimental group and control group have significant differences in the response rate [RR=1.29, 95% CI (1.07, 1.56)], Karnofsky score [RR=1.86, 95% CI (1.14, 3.05)], weight change [RR=1.56, 95% CI (1.20, 2.03)], gastrointestinal side-effects [RR=0.72, 95% CI (0.53, 0.99)], neutropenia [RR=0.70, 95%CI(0.54, 0.91)], thrombocytopenia [RR=0.53, 95% CI (0.38, 0.75)], and renal function [RR=0.37, 95% CI (0.17, 0.79).

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

The clinical effect of Cinobufacini injection, combined with transcatheter arterial chemoembolization (TACE), on treating primary liver cancer was investigated.

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with TACE, and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of control group. There was no statistical difference in the rate of effectiveness between the two groups. Laboratory tests, after three cycles, in the treatment group were better than that of the control group, and the difference between the two groups was statistically significant.

Cinobufacini injection, combined with TACE, can decrease TACE induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Hepatoma

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose and time-dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

Cell-cycle Arrest

Studies in China by Sun et al., (2011), Ke et al., (2011) and Tu et al., (2012) demonstrated that Cinobufacini Injection induced cell-cycle arrest, and could be used in the treatment of primary liver cancer, as well as in conjunction with chemotherapy in the treatment of non-small-cell lung cancer.

Caution

Resibufogenin (RBG), one of the major components in chan su, significantly affected all parameters of transmembrane action potential., induced delayed response after depolarization, and triggered arrhythmias in sheep and canine Purkinje fibers. Chan su toxicity carries a high mortality rate in the United States and this study focused upon the cardiac electrophysiological and electro-toxicity effects of RBG (Xie et al., 2000).

References

Fu, H.Y., Gao, S., Tian, L.L., Chen, X.Y., & Cui, X.N. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao, S., Chen, X.Y., Fu, H.Y., & Cui, X.Z. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke, J, Lu, K., & Li, Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology.


Sun, Y., Lu, X.X., Liang, X.M., & Cui, X.N. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu, C., Yin, J., & He, J. Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.


Wang, S.S., Zhai, X.F., Li, B. (2011) Effect of cinobufacini injection on the tumor growth of tumor-bearing rats of different constitutions. Zhongguo Zhong Xi Yi Jie He Za Zhi, 31(8):1101-3.


Xie, J-T., Wang, Hs., Attele A.S., Yuan, C-S. (2000). Effects of Resibufogenin from Toad Venom on Isolated Purkinje Fibers. American Journal of Chinese Medicine, 28(2):187-196.


Yun, H.R., Yoo, H.S., Shin, D.Y., et al. (2009). Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum Bufonis) through activation of caspases. J Acupunct Meridian Stud, 2(3):210-7. doi: 10.1016/S2005-2901(09)60057-1.

VEGF

The tumour microenvironment is closely correlated with the malignant degrees, metastasis, and recurrence of tumours. Besides, the acid environment, oxygen deficiency, and other inducible factors may severely affect the efficacies of routine therapies, radiotherapy and chemotherapy. Recent studies have also proved that many Chinese herbs could fight against tumour vascular angiogenesis, lower serum VEGF concentration, and inhibit expressions of VEGF. This may lead to the development of new potential antiangiogenic drugs.

Angiogenesis

Angiogenesis, the sprouting of new capillaries, is required for the development of the vascular system and, consequently, the growth of vertebrates. Angiogenic proteins, including several from the fibroblast growth factor family were found to be mitogenic not only for vascular endothelial cells but also for a wide variety of other types of cells and appeared to promote angiogenesis as part of coordinated tissue growth and repair. In the late 1980s the first selective angiogenic growth factor was purified on the basis of its ability to induce transient vascular leakage and endothelial cell mitogenesis called vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) (Neufeld et al 1994). The identification of VEGF (Ferrara 1993) set the stage for a rapid expansion in the understanding of what now appears to be one of the most important mediators of physiologic and pathologic angiogenesis yet discovered.

Transcription of VEGF mRNA is induced by a variety of factors. Serum-derived and paracrine growth factors and cytokines, including Platelet-Derived Growth Factor BB (PDGF-BB), basic fibroblast growth factor (bFGF) (Sipos et al 2002), epidermal growth factor, tumor necrosis factor α (Frank et al 1995), nitric oxide (Frank et al 1999), transforming growth factor-β1, and interleukin-1β (Li et al 1995; Jung et al 2001), can each induce expression of VEGF from 3- to 20-fold in a variety of cultured cells.

Hypoxia

Without an independent blood supply, tumours must rely on diffusion to obtain oxygen and other nutrients, and typically cannot grow more than 2-3 mm in size. Thus, a growing tumour without sufficient vasculature will have hypoxic areas.

In response to hypoxic conditions, tumours secrete vascular endothelial growth factor (VEGF) in order to recruit new vasculature, which then provides a supply of oxygen (Gimbrone et al., 1972). Hypoxia is known to induce angiogenesis, thereby providing a compensatory mechanism by which tissues can increase oxygenation. Therefore, diminished O2 is one of the most intriguing transcriptional inducers of VEGF (Shweiki et al 1992) and its receptors (Tuder, Flook & Voelkel 1995) in normal and transformed cells. Hypoxic induction of VEGF appears to be a general response since many types of cultured cells have been observed to increase VEGF mRNA levels by approximately 10-50-fold as a consequence of lowering the percentage of O2 from ambient 21% to the range of 0-3% (Sipos et al 2002).

Vascular permeability factor (VPF)

The microvasculature of tumours is hyperpermeable compared with that of most normal tissues and as a consequence, fluid and plasma accumulate in the interstitium of solid tumors (Heldin et al 2004) and this barrier is an obstacle in tumour treatment, as it results in inefficient uptake of therapeutic agents. Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition, which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factor in vitro, and it presumably stimulates EC proliferation in vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation (Senger et al 1993; Baban & Seymour 1998). Although VEGF is known to be a powerful growth factor for therapeutic angiogenesis/vascularization in the ischemic hind limb and myocardium, it has other activities that can increase the proliferation and permeability of capillary endothelial cells. These activities may produce unwanted side effects, such as tumor angiogenesis, vascular leakage, oedema, and inflammation (Chae et al, 2000).

Medicinal herbs and their phytochemicals are potential novel leads for developing antiangiogenic drugs. Jeong et al., (2011) conducted a review that aimed to assess the current status of research with medicinal herbs and their phytochemicals for the development of antiangiogenic agents for cancer and other angiogenesis-related diseases including inflammation, diabetic retinopathy, endometriosis and obesity. Most studies reviewed have focused on vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR-2) signaling for endothelial response processes and have led to the identification of many potential antiangiogenic agents.

Since human clinical trials with antiangiogenic modalities targeting VEGF/VEGFR-2 signaling have shown limited efficacy and occasional toxic side effects, screening strategies for herbal phytochemicals based on other signaling pathways important for cancer-endothelial and stromal crosstalks should be emphasized in the future.

Reference

Baban DF & Seymour LW. (1998) Control of tumour vascular permeability. Advanced Drug Delivery Reviews. Volume 34, Issue 1, 5 October 1998, Pp 109-9. doi:10.1016/S0169-409X(98)00003-9

Chae JK, Kim I, Lim ST, et al. (2000) Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000 Dec; 20(12): 2573-8.

Ferrara N. (1993) Trends Cardiovasc. Med. 3, 244–250

Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J. (1999) Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J. 1999 Nov;13(14):2002-14.

Heldin C-H, Rubin K, Pietras K & Östman A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Reviews Cancer 4, 806-813 (October 2004) doi:10.1038/nrc1456

Jung YD, Liu W, Reinmuth N, et al. (2001) Vascular endothelial growth factor is up-regulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis. 2001;4(2):155-62.

Li J, Perrella M. A, Tsai J-C, et al. (1995) Induction of Vascular Endothelial Growth Factor Gene Expression by Interleukin-1 in Rat Aortic Smooth Muscle Cells. J. Biol. Chem. 270, 308–312

Neufeld G, Tessler S, Gitay-Goren H, Cohen T & Levi B-Z. (1994) Prog. Growth Factor Res. 5, 89–97

Senger DR, Water L, Lawrence F. Brown LF, et al. (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews. Volume 12, Numbers 3-4, Pp. 303-24, DOI: 10.1007/BF00665960

Shweiki D, Itin A, Soffer D & Keshet E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845

Sipos B, Weber D, Ungefroren H, et al. (2002) Vascular endothelial growth factor mediated angiogenic potential of pancreatic ductal carcinomas enhanced by hypoxia: an in vitro and in vivo study. Int J Cancer. 2002 Dec 20;102(6):592-600.

Tuder RM, Flook BE & Voelkel NF. (1995) J. Clin. Invest. 95, 1798–1807

Jeong SJ, Koh W, Lee EO, et al. (2011) Antiangiogenic phytochemicals and medicinal herbs. Phytother Res. 2011 Jan;25(1):1-10. doi: 10.1002/ptr.3224. DOI: 10.1002/ptr.3224

Cordyceps sinensis

The aqueous extract of Cordyceps sinensis (Cs), one of the traditional Chinese medicines, has been used for the treatment of a wide range of disorders for centuries. It is generally accepted that its cultivated Cs fungi possess the same functions as Cs natural herbs. Although polysaccharide from Cs is one of its bioactive compositions, its antitumor ability has not been confirmed. In a study, Yang et al., (2005) investigated the effects of the exopolysaccharide fraction (EPSF) of a cultivated Cs fungus on c-Myc, c-Fos, and vascular endothelial growth factor (VEGF) expression of tumor-bearing mice. The mice (C57BL/6) were administered three different doses of EPSF peritoneally every 2 days, starting from the day of implantation of B16 melanoma cells through their tail veins for 27 days (14 times).

Sections from mouse paraffin-embedded liver and lung tissues were subjected to immunohistochemical analyses. The results of c-Myc, c-Fos, and VEGF expression were analyzed using SimplePCI image analysis software. The c-Myc, c-Fos, and VEGF levels in the lungs and livers of EPSF-treated mice were found to be significantly lower than those of untreated mice (p<0.05). This suggests that EPSF had inhibited tumor growth in the lungs and livers of mice, and that it might be a potential adjuvant in cancer therapy.

Reference

Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y. (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice.

Pathol Res Pract. 2005;201(11):745-50. Epub 2005 Oct 19.

Ligustrazine

Ligustrazine is isolated from Ligustici Chuangxiong and can significantly inhibit the growth of vascular endothelial cell line (VEC-304), induce VEC-304 apoptosis and down-regulate the expression of VEGF (Peng, Jiang, & Wu, 2006).

Reference

Peng J, Jiang D, & Wu Y. (2006) Effect of Ligustrazine on Apoptosis of Expression of VEGF Gene in Blood Vessel Endothelial Cells. Zhong Hua Shi Yong Zhong Xi Yi Zha Zhi, 19(21), 2562–2564.

Ginsenoside Rg2

Ginseng saponins 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells in a fermenter show a protection effect on human umbilical cord vein endothelial cells (VEC-304) from H2O2-induced cell apoptosis. When 50 mg/ml 20(S)-ginsenoside Rg2 was present in the culture medium for 8 h, the H2O2-damaged VEC-304 cells acquired about 11-fold ( p < 0.01) on the amount and about 2-fold ( p < 0.05) increase in PA activity compared with those untreated cells. And the Rg2 has a strong ability in scavenging intracellular ROS induced by H2O2 (Xin et al., 2005).

Reference

Xin Xj, Zhong Jj, Wei Dz, Liu Jw. (2005) Protection effect of 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells on hydrogen peroxide-induced cytotoxity of human umbilical cord vein endothelial cells in vitro. Process Biochemistry 40 (2005) 3202–3205

Spica Prunellae Extract

Cancer: Colorectal

Action: Promotes apoptosis, anti-angiogenic, induces angiogenesis

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, Lin et al., (2013) found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro.

CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.

EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreasedanti-angiogenic cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.

Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Reference

Lin W, Zheng L, Zhuang Q, Zhao J, et al. (2013) Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun 24;13(1):144.