Category Archives: Lung cancer

Rheum officinale (emodin)

Cancer: lung, breast

Action: Growth inhibition, apoptosis

Human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines were treated with different concentrations of Rheum officinale (da huang) water extract at different time intervals. Growth inhibition was detected by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] and colony formation assays; apoptosis was detected by cell morphologic analysis, DNA fragmentation analysis and COMET assay.
Da Huang water extract was found to have significant growth inhibitory effects on both A549 and MCF-7 cell lines with IC(50) values 620+/-12.7 and 515+/-10.1 microg/ml, respectively. Growth inhibitory effects were dose- and time-dependent. A significant decrease in cell number, DNA fragmentation and single DNA strand breakages were observed in the Da Huang water extract treated A549 and MCF-7 cells.
This suggests that the water extract of Da Huang exerts potential anticancer activity through growth inhibition and apoptosis on MCF-7 and A549 cells lines.

Source
Li WY, Chan SW, Guo DJ, Chung MK, Leung TY, Yu PH. Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines. J Ethnopharmacol. 2009 Jul 15;124(2):251-6. doi: 10.1016/j.jep.2009.04.030.

δ-Elemene (delta Elemene)

Cancer: Lung
Action: Induces apoptosis, inhibits NF-kappa B
δ-elemene significantly induced apoptosis of NCI-H292, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, DNA fragmentation measurement, Annexin V (AnV) binding of externalized phosphatidylserine and the mitochondrial probe JC-1 using flow cytometry.

Treatment of NCI-H292 with δ-elemene increased both p38 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthese (iNOS) levels, suggesting these two molecules maybe relate to the apoptotic effect of δ-elemene. The cells with Bcl-2 or Bcl-xL over-expression showed an elevation of nuclear factor kappa B (NF-kappa B) activity, accompanying a significant reduction of δ-elemene-induced apoptosis.

Furthermore, inhibition of NF-kappa B by IkBαSR, which is a powerful inhibitor of NF-kappa B, restored the ability of δ-elemene to induce apoptosis in the cells transfected with Bcl-2. These data strongly indicated that the apoptotic effect of δ-elemene on NCI-H292 was closely associated with the activity of NF-kappa B, which was up-regulated by Bcl-2 and Bcl-xL.
In conclusion, δ-elemene induced apoptosis in NCI-H292 cells. The apoptotic effect of δ-elemene could be significantly offset by over-expression of either Bcl-2 or Bcl-xL. Bcl-2 and Bcl-xL were able to increase the activity of NF-kappa B, which was a known anti-apoptotic molecule in human lung cancer cells.

Source
Xie CY, Yang W, Ying J, et al. B-cell lymphoma-2 over-expression protects δ-elemene-induced apoptosis in human lung carcinoma mucoepidermoid cells via a nuclear factor kappa B-related pathway. Biol Pharm Bull. 2011;34(8):1279-86.

Phenolcarboxylic Acids: Gallic acid, caffeic acid, danshensu, rosmarinic acid and salvianolic acid B

Cancer: Lung cancer

Action: Promotes blood circulation, COX-2

Integrated research of herbs and formulas characterized by functions of promoting blood circulation and removing blood stasis is one of the most active fields in traditional Chinese medicine. This paper strives to demonstrate the roles of a homologous series of phenolcarboxylic acids from these medicinal herbs in cancer treatment via targeting cyclooxygenase-2 (COX-2), a well-recognized mediator in tumorigenesis. We selected thirteen typical phenolcarboxylic acids (benzoic acid derivatives, cinnamic acid derivatives and their dehydration-condensation products), and found gallic acid, caffeic acid, danshensu, rosmarinic acid and salvianolic acid B showed 50% inhibitory effects on hCOX-2 activity and A549 cells proliferation.

2D-quantitative method was introduced to describe the potential structural features that contributed to certain bioactivities. Tao et al., also found these compounds underwent responsible hydrogen bonding to Arg120 and Ser353 in COX-2 active site residues. They further extensively focused on danshensu [d-(+)-β-(3,4-dihydoxy-phenylalanine)] or DSS, which exerted COX-2 dependent anticancer manner. Both genetic and pharmacological inhibition of COX-2 could enhance the ability of DSS inhibiting A549 cells growth.

Additionally, COX-2/PGE2/ERK signaling axis was essential for the anticancer effect of DSS. Furthermore, combined treatment with DSS and celecoxib could produce stronger anticancer effects in experimental lung metastasis of A549 cells in vivo. All these findings indicated that phenolcarboxylic acids might possess anticancer effects through jointly targeting COX-2 activity in cancer cells and provided strong evidence in cancer prevention and therapy for the herbs characterized by blood-activating and stasis-resolving functions in clinic.

Reference

Tao L, Wang S, Zhao Y, Sheng X, Wang A, Zheng S, Lu Y. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity. Phytomedicine. 2014 Jun 7. pii: S0944-7113(14)00222-0. doi: 10.1016/j.phymed.2014.05.001.

Wogonin

Cancer:
Breast, lung (NSCLC), gallbladder carcinoma, osteosarcoma, colon, cervical

Action: Neuro-protective, anti-lymphangiogenesis, anti-angiogenic, anti-estrogenic, chemo-sensitizer, pro-oxidative, hypoxia-induced drug resistance, anti-metastatic, anti-tumor, anti-inflammatory

Wogonin is a plant monoflavonoid isolated from Scutellaria rivularis (Benth.) and Scutellaria baicalensis (Georgi).

Breast Cancer; ER+ & ER-

Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell-cycle progression, and apoptosis. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by up-regulation of PARP and Caspase 3 cleavages as well as pro-apoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the down-regulation of the Akt-mediated canonical Wnt signaling pathway.

ER expression was down-regulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemo-preventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types (Chung et al., 2008).

Neurotransmitter Action

Kim et al. (2011) found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.

Anti-metastasic

The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Wogonin at the dose of 1–10 µM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin.

These findings suggest that wogonin inhibits cell mobility and invasion by up-regulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemo-protective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis (Dong et al., 2011).

Anti-tumor and Anti-metastatic

Kimura & Sumiyoshi (2012) examined the effects of wogonin isolated from Scutellaria baicalensis roots on tumor growth and metastasis using a highly metastatic model in osteosarcoma LM8-bearing mice. Wogonin (25 and 50mg/kg, twice daily) reduced tumor growth and metastasis to the lung, liver and kidney, angiogenesis (CD31-positive cells), lymphangiogenesis (LYVE-1-positive cells), and TAM (F4/80-positive cell) numbers in the tumors of LM8-bearing mice. Wogonin (10–100µM) also inhibited increases in IL-1β production and cyclooxygenase (COX)-2 expression induced by lipopolysaccharide in THP-1 macrophages. The anti-tumor and anti-metastatic actions of wogonin may be associated with the inhibition of VEGF-C-induced lymphangiogenesis through a reduction in VEGF-C-induced VEGFR-3 phosphorylation by the inhibition of COX-2 expression and IL-1β production in Tumor-associated macrophages (TAMs).

Anti-inflammatory

Wogonin extracted from Scutellariae baicalensis and S. barbata is a cell-permeable and orally available flavonoid that displays anti-inflammatory properties. Wogonin is reported to suppress the release of NO by iNOS, PGE2 by COX-2, pro-inflammatory cytokines, and MCP-1 gene expression and NF-kB activation (Chen et al., 2008).

Hypoxia-Induced Drug Resistance (MDR)

Hypoxia-induced drug resistance is a major obstacle in the development of effective cancer therapy. The reversal abilities of wogonin on   hypoxia resistance were examined and the underlying mechanisms discovered. MTT assay revealed that hypoxia increased maximal 1.71-, 2.08-, and 2.15-fold of IC50 toward paclitaxel, ADM, and DDP in human colon cancer cell lines HCT116, respectively. Furthermore, wogonin showed strong reversal potency in HCT116 cells in hypoxia and the RF reached 2.05. Hypoxia-inducible factor-1α (HIF-1α) can activate the expression of target genes involved in glycolysis. Wogonin decreased the expression of glycolysis-related proteins (HKII, PDHK1, LDHA), glucose uptake, and lactate generation in a dose-dependent manner.

In summary, wogonin could be a good candidate for the development of a new multi-drug resistance (MDR) reversal agent and its reversal mechanism probably is due to the suppression of HIF-1α expression via inhibiting PI3K/Akt signaling pathway (Wang et al., 2013).

NSCLC

Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. In this study, the effect of a combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay.

The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL.

These results show for the first time that wogonin enhances TRAIL's anti-tumor activity in vivo, suggesting this strategy has an application potential for clinical anti-cancer therapy (Yang et al., 2013).

Colon Cancer

Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest in the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner compared with the control. Furthermore, the induction of apoptosis was accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a dose-dependent manner.

The administration of baicalein to mice resulted in the inhibition of the growth of HT-29 xenografts without any toxicity following 5 weeks of treatment. The results indicated that baicalein induced apoptosis via Akt activation in a p53-dependent manner in the HT-29 colon cancer cells and that it may serve as a chemo-preventive or therapeutic agent for HT-29 colon cancer (Kim et al., 2012).

Breast

The involvement of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth was determined. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis.

These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model (Ma et al., 2012).

Chemoresistance; Cervical Cancer, NSCLC

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF.

In this study, the non-small-cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells.

Results provided important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy (He et al., 2012).

References

Chen LG, Hung LY, Tsai KW, et al. (2008). Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res. 52:1349-1357.


Chung H, Jung YM, Shin DH, et al. (2008). Anti-cancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer, 122(4):816-22.


Dong P, Zhang Y, Gu J, et al. (2011). Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol, 137(3):1373-80. doi: 10.1016/j.jep.2011.08.005.


He F, Wang Q, Zheng XL, et al. (2012). Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports, 28(2), 601-605. doi: 10.3892/or.2012.1841.


Kim EJ, Kang D, Han J. (2011). Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiologica, 202(2):185–192. doi: 10.1111/j.1748-1716.2011.02263.x.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6(6):1443-9. doi: 10.3892/mmr.2012.1085.


Kimura Y & Sumiyoshi M. (2012). Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 20(3-4):328-336. doi:10.1016/j.phymed.2012.10.016


Ma X, Xie KP, Shang F, et al. (2012). Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane. Sheng Li Xue Bao, 64(2):207-12.


Wang H, Zhao L, Zhu LT, et al. (2013). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via down-regulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. doi: 10.1002/mc.22052.


Yang L, Wang Q, Li D, et al. (2013). Wogonin enhances anti-tumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated down-regulation of cFLIPL and IAP proteins. Apoptosis, 18(5):618-26. doi: 10.1007/s10495-013-0808-8.

Waltonitone

Cancer: Hepatocellular carcinoma, lung

Action: Induces cell-cycle arrest

Hepatocellular Carcinoma

Waltonitone, a new ursane-type pentacyclic triterpene isolated from Gentian waltonii Burkill, significantly inhibited human hepatocellular carcinoma BEL-7402 cells growth. Apoptosis induced by waltonitone was characterized by AO/EB staining and flow cytometric analysis. Apoptosis microarray assay results showed BCL-2 family genes might especially play an important role in waltonitone-induced apoptosis.

These studies demonstrated that waltonitone might inhibit hepatocellular carcinoma cell growth and induce apoptosis in vitro and in vivo (Zhang et al., 2009a).

Adenocarcinomic Lung Cancer

Natural compounds are a great source of cancer chemotherapeutic agents. An investigation by Zhang et al. (2012) indicates that waltonitone (WT), a triterpene extracted from medicinal plants, inhibits the proliferation of A549 cells in a concentration- and time-dependent manner.

Furthermore, the treatment of A549 cells with waltonitone altered the expression of miRNAs. It was found that 27 miRNAs were differentially expressed in waltonitone-treated cells, of which 8 miRNAs target genes related to cell proliferation and apoptosis.

In summary, results demonstrate that waltonitone has a significant inhibitory effect on the proliferation of A549 cells. It is possible that up-regulation of Bax/Bcl-2 and regulation of expression of specific miRNAs play a role in inhibition of proliferation and induction of apoptosis in waltonitone-treated cells. Waltonitone can be applied to lung carcinoma as a chemotherapeutic candidate.

Hepatocellular Carcinoma

WT could inhibit the BEL-7402 cells growth, induce the S-phase cell-cycle arrest, and activate Akt and ERK1/2 phosporylation. Moreover, the cell growth inhibition and S-phase cell-cycle arrest induction of WT on BEL-7402 cells could be blocked by Akt and ERK1/2 inhibitors.

WT induces cell-cycle arrest and inhibits the cell growth on BEL-7402 cells by modulating Akt and ERK1/2 phosphorylation (Zhang et al., 2009b).

References

Zhang Y, Zhang GB, Xu XM, et al. (2012). Suppression of growth of A549 lung cancer cells by waltonitone and its mechanisms of action. Oncol Rep, 28(3):1029-35. doi: 10.3892/or.2012.1869.


Zhang Z, Wang S, Qiu H, Duan C, Ding K, Wang Z (a). (2009). Waltonitone induces human hepatocellular carcinoma cells apoptosis in vitro and in vivo. Cancer Lett, 286(2):223-31. doi: 10.1016/j.canlet.2009.05.023.


Zhang Z, Duan C, Ding K, Wang Z (b). (2009). WT inhibit human hepatocellular carcinoma BEL-7402 cells growth by modulating Akt and ERK1/2 phosphorylation. Zhongguo Zhong Yao Za Zhi, 34(24):3277-80.

Ursolic acid

Cancer:
Glioblastoma, Lung, breast, colorectal, gastric, esophageal squamous carcinoma, prostate

Action:

Mitochondrial function, reactive oxygen species (ROS) generation.

Cytostatic, anti-inflammatory, chemo-prevention, COX-2 inhibitor, suppresses NF- κ B, induces IL-1 β , induces apoptosis

Ursolic acid, a pentacyclic triterpene acid found ubiquitously in the plant kingdom, including Rosmarinus officinalis (L.), Salvia officinalis (L.), Prunella vulgaris (L.), Psychotria serpens (L.) and Hyptis capitata (Jacq.). It has been shown to suppress the expression of several genes associated with tumorigenesis resulting in anti-inflammatory, anti-tumorigenic and chemo-sensitizing effects (Liu, 1995).

Glioblastoma Cancer

Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human GBM DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate.

Ursolic acid effectively reversed TMZ resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptotic and autophagic-related signaling networks. The necrotic death was characterized by annexin V/PI double-positive detection and release of HMGB1 and LDH. These ursolic acid-elicited responses were accompanied by ROS generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. MPT is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by CypD, and ATP decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and -involved key regulators.

The study by Lu et al., (2014) is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.

Gastric Cancer

Ursolic acid (UA) inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. These results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis (Wang et al., 2011).

Esophageal Squamous Carcinoma

The anti-neoplastic effects of combinations of anti-cancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy- 4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2 cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell-cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells.

These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer (Yamai et al., 2009).

COX-2 Inhibitor

Subbaramaiah et al. (2000) studied the effects of ursolic acid, a chemo-preventive agent, on the expression of cyclooxygenase-2 (COX-2). Treatment with ursolic acid suppressed phorbol 12-myristate 13-acetate (PMA)-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Ursolic acid also suppressed the induction of COX-2 mRNA by PMA. Increased activator protein-1 activity and the binding of c-Jun to the cyclic AMP response element of the COX-2 promoter, effects were blocked by ursolic acid (Subbaramaiah et al., 2000).

Lung Cancer, Suppresses NF- κB

In terms of general anti-cancer mechanism, ursolic acid has also been found to suppress NF-κB activation induced by various carcinogens through the inhibition of the DNA binding of NF-κB. Ursolic acid also inhibits IκBα kinase and p65 phosphorylation (Shishodia et al., 2003). In particular, ursolic acid has been found to block cell-cycle progression and trigger apoptosis in lung cancer and may hence act as a chemoprevention agent for lung cancer (Hsu et al., 2004).

Breast Cancer

Ursolic acid is a potent inhibitor of MCF-7 cell proliferation. This triterpene exhibits both cytostatic and cytotoxic activity. It exerts an early cytostatic effect at G1 followed by cell death. Results suggest that alterations in cell-cycle phase redistribution of MCF-7 human breast cancer, by ursolic acid, may significantly influence MTT (colorimetric assays) reduction to formazan (Es-Saady et al., 1996).

Induces IL-1 β

Interleukin (IL)-1beta is a pro-inflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. It has recently been found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, Ikeda et al. (2008) investigated the ability of UA to induce IL-1beta production in pMphi from 4 different strains of female mice as well as an established macrophage line. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi.

Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, these results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility.

Induces Apoptosis: Breast Cancer, Prostate Cancer

Ursolic acid (UA) induced apoptosis and modulated glucocorticoid receptor (GR) and Activator Protein-1 (AP-1) in MCF-7 breast cancer cells. UA is a GR modulator and may be considered as a potential anti-cancer agent in breast cancer (Kassi et al., 2009).

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells (Kwon et al., 2010). In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition (Zhang et al., 2010). A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression (Yeh et al., 2010).

Ursolic acid additionally stimulates the release of cytochrome C in HL-60 cells and breast cancer MCF-7 cells. The activation of caspase-3 in a cytochrome C-dependent manner induces apoptosis via the mitochondrial pathway (Qian et al., 2011).

Colorectal Cancer

Ursolic acid (UA) has strong anti-proliferative and apoptotic effects on human colon cancer HT-29 cells. UA dose-dependently decreased cell proliferation and induced apoptosis, accompanied by activation of caspase 3, 8 and 9. The effects may be mediated by alkaline sphingomyelinase activation (Andersson et al., 2003).

Ursolic acid (UA), using the colorectal cancer (CRC) mouse xenograft model and the HT-29 human colon carcinoma cell line, was evaluated for its efficacy against tumor growth in vivo and in vitro, and its molecular mechanisms were investigated. It was found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation.

These data demonstrate that UA possesses a broad range of anti-cancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment (Lin et al., 2013).

Action: Anti-tumor, inhibits tumor cell migration and invasion

Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars’ attention. This review explained anti-tumor actions of UA, including (1) the protection of cells’ DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells.

Inhibition of Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Pathway
Activation of mitogen-activated protein kinase (MAPK) allows cell excessive proliferation involved in the carcinogenic process (Park et al., 1999). Subfamilies of MAPK, metastasis.(24) Otherwise, UA suppresses the activation of NF-κB and down-regulation of the MMP-9 protein, which in turn contributes to its inhibitory effects on IL-1β or tumor necrosis factor α (TNF-α)-induced C6 glioma cell invasion (Huang et al., 2009).

U A suppresses inter cellular adhesion molecules-1 (ICAM-1) expression of non-small cell lung cancer (NSCLC) H3255, A549, Calu-6 cells, and significantly inhibits fibronectin expression in a concentration-dependent way. UA significantly suppresses the expression of MMP-9 and MMP-2 and inhibits protein kinase C activity in test cell lines, at the same time, UA reduces cell invasion in a concentration-dependent manner (Huang et al., 2011).

Cancer: Multiple myeloma

Action: Anti-inflammatory, down-regulates STAT3

When dealing with the multiple myeloma, by the way of activating the proto-oncogene-mediated c-Src, JAK1, JAK2, and ERKs, ursolic acid (UA) can not only inhibit the expression of IL-6-induced STAT3 but also downregulates the STAT3 by regulating gene products, such as cyclin D1, Bcl-2, Bcl-xL, surviving, Mcl-1 and VEGF. Above all, UA can inhibit the proliferation of multiple myeloma cells and induce apoptosis, to arrest cells at G1 phase and G0 phase of cell cycle (Pathak et al., 2007).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Cancer: Colorectal

Wong et al., have previously reported Signal Transducer and Activator of Transcription 3 (STAT3) to be constitutively activated in aldehyde dehydrogenase (ALDH)(+)/cluster of differentiation-133 (CD133)(+) colon cancer-initiating cells. In the present study they tested the efficacy of inhibiting STAT3 signaling in human colon cancer-initiating cells by ursolic acid (UA), which exists widely in fruits and herbs.

ALDH(+)/CD133(+) colon cancer-initiating cells. UA also reduced cell viability and inhibited tumor sphere formation of colon cancer-initiating cells, more potently than two other natural compounds, resveratrol and capsaicin. UA also inhibited the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells. Furthermore, daily administration of UA suppressed HCT116 tumor growth in mice in vivo.

Their results suggest STAT3 to be a target for colon cancer prevention. UA, a dietary agent, might offer an effective approach for colorectal carcinoma prevention by inhibiting persistently activated STAT3 in cancer stem cells.

References

 

Andersson D, Liu JJ, Nilsson A, Duan RD. (2003). Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anti-cancer Research, 23(4):3317-22.

 

Es-Saady D, Simon A, Jayat-Vignoles C, Chulia AJ, Delage C. (1996). MCF-7 cell-cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anti-cancer Research, 16(1):481-6.

 

Hsu YL, Kuo PL, Lin CC. (2004). Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small-cell lung cancer A549 cells. Life Sciences, 75(19), 2303-2316.

 

Ikeda Y, Murakami A, Ohigashi H. (2008). Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci, 83(1-2):43-9. doi: 10.1016/j.lfs.2008.05.001.

 

Kassi E, Sourlingas TG, Spiliotaki M, et al. (2009). Ursolic Acid Triggers Apoptosis and Bcl-2 Down-regulation in MCF-7 Breast Cancer Cells. Cancer Investigation, 27(7):723-733. doi:10.1080/07357900802672712.

 

Kwon SH, Park HY, Kim JY, et al. (2010). Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett, 20:6435–6438. doi: 10.1016/j.bmcl.2010.09.073.

 

Lin J, Chen Y, Wei L, et al. (2013). Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol, (4):1235-43. doi: 10.3892/ijo.2013.2040.

 

Liu J. (1995). Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57-68.

 

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. (2003). Ursolic Acid Inhibits Nuclear Factor-OE ∫ B Activation Induced by Carcinogenic Agents through Suppression of IOE ∫ BOE± Kinase and p65 Phosphorylation. Cancer Research, 63(15), 4375-4383.

 

Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. (2000). Ursolic Acid Inhibits Cyclooxygenase-2 Transcription in Human Mammary Epithelial Cells. Cancer Res, 60:2399

 

Qian J, Li X, Guo GY, et al. (2011). Potent anti-tumor activity of emodin on CNE cells in vitro through apoptosis. J Zhejiang Sci-Tech Univ (Chin), 42:756-759

 

Wang X, Zhang F, Yang L, et al. (2011). Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo. J Biomed Biotechnol, 2011:419343. doi: 10.1155/2011/419343.

 

Yamai H, et al. (2009). Triterpenes augment the inhibitory effects of anti-cancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer, 125(4):952-60. doi: 10.1002/ijc.24433.

 

Yeh CT, Wu CH, Yen GC. (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res, 54:1285–1295. doi: 10.1002/mnfr.200900414.

 

Zhang Y, Kong C, Zeng Y, et al. (2010). Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog, 49:374–385.

 

Zhang LL, Wu BN, Lin Y et al. (2014) Research Progress of Ursolic Acid’s Anti-Tumor Actions. Chin J Integr Med 2014 Jan;20(1):72-79

 

Reference

 

Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009;48:517-531

 

Huang CY, Lin CY, Tsai CW, Yin MC. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro 2011;25:1274-1280.

 

Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999;81:1116-1121.

 

 

Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 2007;5:943-595

 

 

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

 

 

Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. (2013) Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84.

 
Lu C-C, Huang B-R, Liao P-J, Yen G-C. Ursolic acid triggers a non-programmed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Molecular Nutrition & Food Research. 2014 DOI: 10.1002/mnfr.201400051

 

 

 

Trichosanthin (TCS)

Cancer:
Lung, leukemia, cervical, breast, leukemia/lymphoma, choriocarcinoma

Action: Demethylation, anti-tumor immunity, induces apoptosis

Breast

The 27-kDa trichosanthin (TCS) is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (tian hua fen). Fang et al. (2012) extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. They found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells.

Leukemia/Lymphoma, Cervical Cancer, Choriocarcinoma

Trichosanthin (TCS) as a midterm abortifacient medicine has been used clinically in traditional Chinese medicine for centuries. Additionally, TCS manifests a host of pharmacological properties, for instance, anti-HIV and anti-tumor activities. TCS has been reported to inhibit cell growth of a diversity of cancers, including cervical cancer, choriocarcinoma, and leukemia/lymphoma, etc. Sha et al. (2013) reviewed the various anti-tumor activities of TCS and the mechanism of apoptosis it induced in these tumor cells.

Lung, Anti-tumor Immunity

In this study, Cai et al. (2011) focused on the effect of TCS on murine anti-tumor immune response in the 3LL Lewis lung carcinoma tumor model and explored the possible molecular pathways involved. In addition to inhibiting cell proliferation and inducing apoptosis in the 3LL tumor, TCS retarded tumor growth and prolonged mouse survival more significantly in C57BL/6 immunocompetent mice than in nude mice. Data demonstrate that TCS not only affects tumor cells directly, but also enhances anti-tumor immunity via the interaction between TSLC1 and CRTAM.

Induce Apoptosis

Over the past 20 years, TCS has been the subject of much research because of its potential anti-tumor activities. Many reports have revealed that TCS is cytotoxic in a variety of tumor cell lines in vitro and in vivo. Monoclonal antibody-conjugated TCS could enhance its anti-tumor efficacy; thus, TCS is considered to be a potential biological agent for cancer treatment. TCS is able to inhibit protein synthesis and consequently induce necrosis. Recent studies have demonstrated that TCS does indeed induce apoptosis in several tumor cell lines (Li et al., 2010).

Leukemia

Cultured human leukemia K562 cells treated with trichosanthin were examined. Analysis of the cells by single laser flow cytometry showed the sub-G1 peak. DNA extracted from these cells formed a characteristic 'ladder' on agarose gel electrophoresis. Under electromicroscope, typical morphological changes of apoptosis were also observed. From all of these findings, Kang et al. (1998) concluded that trichosanthin was able to induce apoptosis in K562 cells.

Cervical Cancer, Demethylation Activity

Epigenetic silencing of tumor suppressor genes is a well-established oncogenic process and the reactivation of tumor suppressor genes that have been silenced by promoter methylation is an attractive molecular target for cancer therapy. In this study, Huang et al. (2012) investigated the demethylation activity of trichosanthin and its possible mechanism of action in cervical cancer cell lines. HeLa human cervical adenocarcinoma and CaSki human cervical squamous carcinoma cells were treated with various concentrations (0, 20, 40 and 80 µg/ml) of TCS for 48 hours and the mRNA and protein expression levels of the tumor suppressor genes adenomatous polyposis coli (APC) and tumor suppressor in lung cancer 1 (TSLC1) were detected using reverse transcription (RT)-PCR and Western blotting, respectively.

TCS induced demethylation in HeLa and CaSki cells and this demethylation activity was accompanied by the decreased expression of DNMT1 and reduced DNMT1 enzyme activity. Results demonstrate for the first time that TCS is capable of restoring the expression of methylation-silenced tumor suppressor genes and is potentially useful as a demethylation agent for the clinical treatment of human cervical cancer.

References:

Cai YC, Xiong SD, Zheng YJ, et al. (2011). Trichosanthin enhances anti-tumor immune response in a murine Lewis lung cancer model by boosting the interaction between TSLC1 and CRTAM. Cellular & Molecular Immunology, (2011)8:359–367. doi:10.1038/cmi.2011.12.


Fang EF, Zhang CZ, Zhang L, et al. (2012). Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One, 7(9):e41592. doi: 10.1371/journal.pone.0041592.


Huang Y, Song H, Hu H, et al. (2012). Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells. Mol Med Rep, 6(4):872-8. doi: 10.3892/mmr.2012.994.


Kong M, Ke YB, Zhou MY, et al. (1998). Study on Trichosanthin induced apoptosis of leukemia K562 cells. Shi Yan Sheng Wu Xue Bao, 31(3):233-43.


Li M, Li X, Li JC. (2010). Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Anat Rec (Hoboken), 293(6):986-92. doi: 10.1002/ar.21142.


Sha O, Niu J, Ng TB, et al. (2013). Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol, 71(6):1387-93. doi: 10.1007/s00280-013-2096-y.

Subamolide A

Cancer: Lung, urothelial carcinoma

Action: Increases cellular reactive oxygen species (ROS) production, decreases glutathione level

Lung Cancer

Subamolide A is isolated from Cinnamomum subavenium (Miq.). The anti-cancer effects of subamolide A (Sub-A) were investigated on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level.

Therefore, Sub-A may be a novel anti-cancer agent for the treatment of non-small-cell lung cancer. Human lung cancer cells A549 and NCI-H460 are highly sensitive to Sub-A-induced mitotic catastrophe and apoptosis, mainly via ROS elevation that induces ATM and ATF3 activation, subsequently leading to p53-mediated cell death. Sub-A also causes cell growth inhibition in an in vivo xenograft model. The elucidated molecular bases and processes may provide a new strategy for developing more effective chemotherapeutic regimens for lung cancer treatment (Hung et al., 2013).

Urothelial Carcinoma

A study by Liu et al. (2011) demonstrated that subamolide A triggered the mitochondria-dependent apoptotic pathways and p53 and ERK1/2 activation in the human urothelial carcinoma cell line NTUB1. In addition, subamolide A synergistically enhanced cytotoxic effect of CDDP and Gem in NTUB1. These data suggested that subamolide A exhibited a potent anti-proliferation activity.

Subamolide A selectively induced apoptosis in two cancerous human urothelial carcinoma cell lines (NTUB1 and T24) in comparison with normal immortalized uroepithelial cells (SV-HUC-1). Subamolide A reduced mitochondrial membrane potential (Δψm) and caused apoptosis of NTUB1 cells. Subamolide A increased Bax/Bcl-2 ratios, the amount of cytochrome c released from the mitochondria, caspase-3 and PARP cleavage, activated p53 and ERK1/2 and ultimately led to apoptosis in NTUB1 cells. Furthermore, a higher dose (10µM) of subamolide A synergistically enhanced the cytotoxicity of cisplatin and gemcitabine in NTUB1 cells.

References

Hung JY, Wen CW, Hsu YL, et al. (2013). Subamolide A Induces Mitotic Catastrophe Accompanied by Apoptosis in Human Lung Cancer Cells. Evidence-Based Complementary and Alternative Medicine, 2013: 828143. doi:10.1155/2013/828143.


Liu CH, Chen CY, Huang AM, Li JH. (2011) Subamolide A, a component isolated from Cinnamomum subavenium, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. J Ethnopharmacol,137(1):503-11. doi: 10.1016/j.jep.2011.06.001.

Saikosaponin

Cancers:
Cervical, colon, liver, lung, ovarian, liver, breast, hepatocellular

Action: Anti-angiogenic, anti-metastatic, chemo-sensitizer, pro-oxidative, cell-cycle arrest

T cell-mediated autoimmune, induces apoptosis, immune regulating, radio-sensitizer

Induces Apoptosis

Long dan xie gan tang, a well known Chinese herbal formulation, is commonly used by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell-cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Breast

Saikosaponin-A treatment of MDA-MB-231 for 3 hours and of MCF-7 cells for 2 hours, respectively, caused an obvious increase in the sub G1 population of cell-cycles.

Apoptosis in MDA-MB-231 cells was independent of the p53/p21 pathway mechanism and was accompanied by an increased ratio of Bax to Bcl-2 and c-myc levels and activation of caspase-3. In contrast, apoptosis of MCF-7 cells may have been initiated by the Bcl-2 family of proteins and involved p53/p21 dependent pathway mechanism, and was accompanied by an increased level of c-myc protein. The apoptosis of both MDA-MB-231 and MCF-7 cells showed a difference worthy of further research (Chen, Chang, Chung, & Chen, 2003).

Hepatocellular Carcinoma

The signaling pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herbal compund Saikosaponin A was investigated.

Expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin A between 30 minutes to 6 hours of treatment. Pre-treatment of 20 microg/ml PD98059, an inhibitor of MEK (the upstream kinase of ERK), prevents the TPA and Saikosaponin A triggered HepG2 growth inhibition by 50% and 30%, respectively. In addition, AP-1 DNA-binding assay, using non-isotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF), demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin A, which can be reduced by PD98059 pre-treatment.

Results suggest that activation of ERK, together with its downstream transcriptional machinery, mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition (Wen-Sheng, 2003).

The effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rats with hepatocellular carcinoma (HCC) was investigated.

The model group had more malignant nodules than the SSd group. Model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01).

The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates.

SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue (Jia et al., 2012).

T Cell-mediated Autoimmune

Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects.

Results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers, such as IL-2 receptor (CD25), were also down-regulated along with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma.

Results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd. Ssd could be a potential candidate for further study in treating T cell-mediated autoimmune conditions (Wong, Zhou, Cheung, Li, & Liu, 2009).

Cervical Cancer

Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of a combination of saikosaponins with chemotherapeutic drugs have never been addressed. Investigated as to whether these two saikosaponins have chemo-sensitization effect on cisplatin-induced cancer cell cytotoxicity was carried out.

Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small-cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation.

Results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy (Wang et al., 2010).

Colon Cancer

Saikosaponin-a (SSa)-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation.

Results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis (Kim & Hong, 2011).

Immune Regulating

Tumor necrosis factor-alpha (TNF- α ) was reported as an anti-cancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF- α on activating NF- κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF- α -mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), exhibited a variety of pharmacological activities such as anti-inflammatory, anti-bacterial, anti-viral and anti-cancer.

Investigation found that Ssd could potentially inhibit activated T lymphocytes via suppression of NF- κ B, NF-AT and AP-1 signaling. Ssd significantly potentiated TNF- α -mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF- α -induced NF- κ B activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency in abolishing TNF- α -induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells.

Collectively, findings indicate that Ssd has significant potential to be developed as a combined adjuvant remedy with TNF- α for cancer patients (Wong et al., 2013).

Radio-sensitizer

Saikosaponin-d (SSd), a monomer terpenoid purified from the Chinese herbal drug Radix bupleuri, has multiple effects, including anti-cancer properties. Treatment with SSd alone and radiation alone inhibited cell growth and increased apoptosis rate at the concentration used. These effects were enhanced when SSd was combined with radiation. Moreover, SSd potentiated the effects of radiation to induce G0/G1 arrest in SMMC-7721 hepatocellular carcinoma cells, and reduced the G2/M-phase population under hypoxia. SSd potentiates the effects of radiation on SMMC-7721 cells; thus, it is a promising radio-sensitizer. The radio-sensitizing effect of SSd may contribute to its effect on the G0/G1 and G2/M checkpoints of the cell-cycle (Wang et al., 2013).

References

Chen JC, Chang NW, Chung JG, Chen KC. (2003). Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. The American Journal of Chinese Medicine, 31(3), 363-77.


Chou CC, Pan SL, Teng CM, Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Jia X, Dang S, Cheng Y, et al. (2012). Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. Journal of Traditional Chinese Medicine, 32(3), 415-22.


Kim BM, Hong SH. (2011). Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 16(2), 184-197. doi: 10.1007/s10495-010-0557-x.


Wang BF, Dai ZJ, Wang XJ, et al. (2013). Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell-cycle. BMC Complementary and Alternative Medicine, 13:263. doi:10.1186/1472-6882-13-263


Wang Q, Zheng XL, Yang L, et al. (2010). Reactive oxygen species-mediated apoptosis contributes to chemo-sensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental & Clinical Cancer Research, 9(29), 159. doi: 10.1186/1756-9966-29-159.


Wen-Sheng, W. (2003). ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin A. Oncogene, 22(7), 955-963.


Wong VK, Zhang MM, Zhou H, et al. (2013). Saikosaponin-d Enhances the Anti-cancer Potency of TNF- α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signaling in Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013(2013), 745295. doi: 10.1155/2013/745295.


Wong VK, Zhou H, Cheung SS, Li T, Liu L. (2009). Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. Journal of Cellular Biochemistry, 107(2), 303-15. doi: 10.1002/jcb.22126.

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Periplocin

Cancer: Lung, colorectal, leukemia

Action: Apoptosis-inducing, cytostatic effect

Apoptosis

The anti-tumor component of Cortex periplocae is periplocin. Periplocin is one of the cardenolides isolated from cortex periplocae which is used for treatment of rheumatoid arthritis and reinforcement of bones and tendons in traditional medicine.

Periplocin has been reported to inhibit many cell lines, including MCF-7, TE-13, QG-56, SMMC-7721, T24, Hela, K562, TE-13 and Eca-109 cells. Studies have shown that periplocin reduces the expression of survivin, an inhibitor of apoptosis. It also releases caspases-3 and -7 from complexes and thereby increases their activities, ultimately inducing tumor cell apoptosis (Zhao et al., 2009).

Lung Cancer

The anti-tumor activity of periplocin was investigated in lung cancer cells both in vitro and in vivo, and its anti-cancer mechanism was explored. Periplocin inhibited the growth of lung cancer cells and induced their apoptosis in a time- and dose-dependent manner by cell-cycle arrest in G0/G1 phase. Periplocin exhibited anti-tumor activity both in human (A549) and mouse (LL/2) lung cancer xenograft models. Immunohistochemical analysis revealed that intratumoral angiogenesis was significantly suppressed.

Furthermore, anti-cancer activity mediated by periplocin was associated with decreased level of phosphorylated AKT and ERK both in vitro and in vivo, which are important for cell growth and survival. Moreover, periplocin induced apoptosis by down-regulating Bcl-2 and up-regulating Bax, leading to activation of caspase-3 and caspase-9.

These findings suggest that periplocin could inhibit the growth of lung cancer both in vitro and in vivo, which could be attributed to the inhibition of proliferation and the induction of apoptosis signaling pathways, such as AKT and ERK. These observations provide further evidence on the anti-tumor effect of periplocin, and it may be of importance to further explore its potential role as a therapeutic agent for cancer (Lu et al., 2010).

Colorectal Carcinomas

The Wnt/beta-catenin signaling pathway plays an important role in the development and progression of human cancers, especially in colorectal carcinomas. Periplocin extracted from cortex periplocae (CPP) significantly inhibited the proliferation of SW480 cells in a time-and dose-dependent manner (P<0.01). CPP (0.5 microg/mL) also caused G0/G1 cell-cycle arrest of SW480 cells and induced cell apoptosis (P<0.05). Compared to untreated control cells, after the treatment with CPP, the protein levels of beta-catenin in total cell lysates, cytosolic extracts, and nuclear extracts were reduced (P<0.01); the binding activity of the TCF complex in nucleus to its specific DNA binding site was suppressed; mRNAs of the downstream target genes survivin, c-myc and cyclin D1 were decreased (P<0.01) while beta-catenin mRNA remained unchanged.

CPP could significantly inhibit the proliferation of SW480 cells, which may be through down-regulating the Wnt/beta-catenin signaling pathway (Du et al., 2009).

Pro-apoptotic and Cytostatic Effect/Leukemia

Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na(+)/K(+)-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L., and the mechanisms underlying such an effect.

The pro-apoptotic and cytostatic effect of the compounds was tested in U937 (monocytic leukemia) and PC3 (prostate adenocarcinoma). Characterization of apoptosis and cell-cycle impairment was obtained by cytofluorimetry and WB. Periplocymarin and periplocin were the most active compounds, periplocymarin being more effective than the reference compound ouabain. The reduction of cell number by these two cardenolides was due in PC3 cells mainly to the activation of caspase-dependent apoptotic pathways, while in U937 cells to the induction of cell-cycle impairment without extensive cell death. Interestingly, periplocymarin, at cytostatic but non-cytotoxic doses, was shown to sensitize U937 cells to TRAIL. Taken together, these data outline that cardiac glycosides are promising anti-cancer drugs and contribute to the identification of new natural cardiac glycosides to obtain chemically modified non-cardioactive/low toxic derivatives with enhanced anti-cancer potency (Bloise et al., 2009).

References

Bloise E, Braca A, De Tommasi N, Belisario MA. (2009). Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol, 64(4):793-802. doi: 10.1007/s00280-009-0929-5.


Du YY, Liu X, Shan BE. (2009). Periplocin extracted from cortex periplocae induces apoptosis of SW480 cells through inhibiting the Wnt/beta-catenin signaling pathway. Ai Zheng, 28(5):456-60.


Lu ZJ, Zhou Y, Song Q, et al. (2010). Periplocin inhibits growth of lung cancer in vitro and in vivo by blocking AKT/ERK signaling pathways. Cell Physiol Biochem, 26(4-5):609-18. doi: 10.1159/000322328.


Zhao LM, Ai J, Zhang Q, et al. (2009). Periplocin (a sort of ethanol from Cortex periplocae) induces apoptosis of esophageal carcinoma cells by influencing expression of related genes. Tumor (Chin), 29:1025-1030.

Oxymatrine (Ku Shen)

Cancer:
Sarcoma, pancreatic, breast, liver, lung, oral, colorectal, stomach, gastric, adenoid cystic carcinoma

Action: Anti-angiogenesis, anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, immunotolerance, induces apoptosis, decreases side-effects of Intensity Modulated Radiation Therapy (IMRT), Transcatheter Hepatic Arterial Chemoembolization (TACE)

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012).

Angiogenesis

Oxymatrine has been found to inhibit angiogenesis when administered by injection. The tumor-inhibitory rate and the vascular density were tested in animal tumor model with experimental treatment. The expression of VEGF and bFGF were measured by immunistological methods. When high doses were used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group, and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

Immunotolerance

Matrine, a small molecule derived from the root of Sophora flavescens AIT, was demonstrated to be effective in inducing T cell anergy in human Jurkat cells. Induction of immunotolerance has become a new strategy for treating autoimmune conditions in recent decades. However, so far there is no ideal therapeutics available for clinical use. Medicinal herbs are a promising potential source of immunotolerance inducers. Bioactive compounds derived from medicinal plants were screened for inducing T cell anergy in comparison with the effect of well-known T cell anergy inducer, ionomycin.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells, could influence the ability of T cell anergy induction. The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy, when the cells were stimulated by antigens, anti-OKT3 plus anti-CD28. Mechanistic study showed that ionomycin and matrine could up-regulate the anergy-associated gene expressions of CD98 and Jumonji and activate nuclear factor of activated T-cells (NFAT) nuclear translocation in absence of cooperation of AP-1 in Jurkat cells. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Induces Apoptosis

The cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential ( Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit.

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Induces Apoptosis in Pancreatic Cancer

Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was up-regulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c, and activation of caspase-3 (Ling et al., 2011).

Decreases Side-effects of Intensity Modulated Radiation Therapy (IMRT)

The levels of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer were measured after treatment with the compound matrine, in combination with radiation. Eighty-four patients diagnosed with rectal carcinoma were randomly divided into two groups: therapeutic group and control group.

The patients in the therapeutic group were treated with compound matrine and intensity- modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT. The clinical effects and the levels of IL-8 and sIL-2R tested by ELISA pre-radiation and post-radiation were compared. In addition, 42 healthy people were singled out from the physical examination center in the People's Hospital of Yichun city, which were considered as healthy controls.

The clinical effect and survival rate in the therapeutic group was significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress, in the therapeutic group. However, the control group had 12 improvements, 14 stabilized, and 16 progress.

The quality of life in the therapeutic group was higher than tthat in the control group, by rank sum test. SIL-2R and IL-8 examination found that serum levels of sIL-2R and IL-8 were higher in rectal cancer patients before treatments than those in the healthy groups, by student test.

However, sIL-2R and IL-8 serum levels were found significantly lower in the 84 rectal cancer patients after radiotherapy. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post-radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post- therapy, according to the student test. Side-effects of hepatotoxicity (11.9%) and radiation proctitis (9.52%) were fewer in the therapeutic group.

Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

The clinical effect of matrine injection, combined with S-1 and cisplatin (SP), in the treatment of advanced gastric cancer was investigated. Seventy-six cases of advanced gastric cancer were randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively.

The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively. Therapeutic effect of the two groups of patients did not differ significantly. Occurrence rate of symptom indexes in the treatment group were lower than those of control group, with exception of nausea and vomiting, in which there was no significant difference.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

The effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells was investigated.

Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). IC50 of ACC-2 was 0.84 g/ml. Flow cytometry indicated that radix Sophorae flavescentis injection could arrest ACC-2 cells at the G0/G1 phase, with a gradual decrease of presence in the G2/M period and S phase. With an increase in dosage, ACC-2 cell apoptosis rate increased significantly (P < 0.05 or P < 0.01).

Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer Post-operative Chemotherapy

A retrospective analysis of oncological data of 70 post-operative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days to a cycle) were compared.

The objective remission rate of therapy group compared with that of control group was not statistically significant (P > 0.05), while the difference of the disease control rate in two groups was statistically significant (P < 0.05). The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An & Wu, 2012).

Lung Cancer Pleural Effusions

The therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected fufangkushen plus IL-2, fufangkushen plus α-tFN, and IL-2 plus α-IFN, respectively. The control group was divided into three groups and injected fufangkushen, IL-2 and α-IFN, respectively. Therapeutic efficiency and adverse reactions were observed after four weeks.

The effective rate of fufangkushen, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. In adverse reactions, the incidence of fever, chest pains, and the reaction of gastrointestinal tract in the treatment group were significantly less than in the matched group.

The effect of fufangkushen, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of fufangknshen plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Colorectal Cancer Immunologic Function

The effects of compound Kushen (Radix sophorae flavescentis) injection on the immunologic function of patients after colorectal cancer resection, were studied.

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mL·d-1 compound Kushen injection, for 10 days during chemotherapy.

In the control group the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells, NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

After chemotherapy, the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio were higher in the experimental group than in the control group (P0.05), while the number of CD8+T lymphocyte was similar between two groups. Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

Stage III and IV non-small-cell lung cancer (NSCLC)

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The chemotherapy was performed for 4 cycles of 3 weeks, and the therapeutic efficacy was evaluated every 2 weeks. The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference. (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group.

The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05). The serum lgA levels were not significantly different in the two groups.

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Suppression effects of different concentrations of matrine injection and matrine injection combined with anti-tumor drugs on lung cancer cells were measured by methyl thiazolyl tetrazolium (MTT) colorimetric assay.

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone.

Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Transcatheter Hepatic Arterial Chemoembolization (TACE)

The effect of composite Kushen injection combined with transcatheter hepatic arterial chemoembolization (TACE) on unresectable primary liver cancer, was studied.

Fifty-seven patients with unresectable primary liver cancer were randomly divided into two groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. The clinical curative effects were observed after treatment in both groups.

One-, 2-, and 3-year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

References

An AJ, An GW, Wu YC. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen G, Yu B, Yuan SJ, Yuan Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013) Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF- κ B-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan CX, Lin CL, Liang L, et al. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Hu DJ, Mei, XD. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α -IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Kong QZ, Huang DS, Huang T, et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Shi B, Xu H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012;2012:373219. doi: 10.1155/2012/373219.


Wang HM, Cheng XM. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin WH, Sheng JW, Xia HM, et al. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhu MY, Jiang ZH, Lu YW, Guo Y, Gan JJ. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Oleanolic Acid (OA)

Cancer:
Pancreatic, hepatocellular carcinoma, prostate, lung, gastric, breast

Action: Radio-sensitizer, pro-apoptotic with 5-FU

Oleanolic acid (OA), a pentacyclic triterpenoid isolated from several plants, including Rosa woodsii (Lindl.), Prosopis glandulosa (Torr.), Phoradendron juniperinum (Engelm. ex A. Gray), Syzygium claviflorum (Roxburgh), Hyptis capitata (Jacq.) and Ternstromia gymnanthera (L.) exhibits potential anti-tumor activity against many tumor cell lines. Mistletoe contains water-insoluble triterpenoids, mainly oleanolic acid, that have anti-tumorigenic effects (StrŸh et al., 2013).

Pancreatic Cancer

Results of a study by Wei et al. (2012) showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml−1. The study also showed that OA could induce remarkable apoptosis and revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells.

These results provide evidence that OA arrests the cell-cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cell.

The effects of the combination of OA and 5-fluorouracil (5-FU) on Panc-28 human pancreatic cells showed that combined use synergistically potentiated cell death effects on these cells, and that the pro-apoptotic effects were also increased. The expression of apoptosis related proteins was also affected in cells treated with the combination of OA and 5-FU, including activation of caspases-3 and the expression of Bcl-2/Bax, survivin and NF-κB (Wei et al., 2012).

Radio-sensitizer

The combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the down-regulation of γ-GCS activity. Therefore, the utilization of OA as a radio-sensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer (Wang et al., 2013).

Prostate Cancer, Lung Cancer, Gastric Cancer, Breast Cancer

Twelve derivatives of oleanolic acid (OA) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50=0.39 µM) and compound 28 displayed the best activity against A549 cell line (IC50=0.22 µM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines (Hao et al., 2013).

Hepatocellular Carcinoma

OA induced G2/M cell-cycle arrest through p21-mediated down-regulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell-cycle arrest. OA demonstrated significant anti-tumor activities in hepatocellular carcinoma (HCC) in vivo and in vitro models. These data provide new insights into the mechanisms underlying the anti-tumor effect of OA (Wang et al., 2013).

References

Hao J, Liu J, Wen X, Sun H. (2013). Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg Med Chem Lett, 23(7):2074-7. doi: 10.1016/j.bmcl.2013.01.129.


StrŸh CM, JŠger S, Kersten A, et al. (2013). Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One, 8(4):e62168. doi: 10.1371/journal.pone.0062168.


Wang J, Yu M, Xiao L, et al. (2013). Radio-sensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep, 30(2):917-24. doi: 10.3892/or.2013.2510.


Wang X, Bai H, Zhang X, et al. (2013). Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell-cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis, 34(6):1323-30. doi: 10.1093/carcin/bgt058.


Wei JT, Liu M, Liuz, et al. (2012). Oleanolic acid arrests cell-cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 33(8):756–765. doi: 10.1002/jat.2725


Wei J, Liu H, Liu M, et al. (2012). Oleanolic acid potentiates the anti-tumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol Rep, 28(4):1339-45. doi: 10.3892/or.2012.1921.

Moscatilin

Cancers:
Colon, lung, placenta, stomach, breast metastasis

Action: Anti-angiogenic, anti-metastatic, anti-tubulin, cytostatic, cytotoxic, cell-cycle arrest, anti-inflammatory

Stomach Cancer, Lung Cancer, Placental

The efficacy of using moscatilin, a natural anti-platelet agent extracted from the stems of Dendrobrium loddigesii, as an anti-cancer agent was studied. Results demonstrated that moscatilin exerts potent cytotoxic effect against cancer cell lines derived from different tissue origins, including those from the placenta, stomach, and lung, but not those from the liver. In addition, the mechanism of action of moscatilin may be related to its ability to induce a G2 phase arrest in responsive cells.

However, unlike some G2 arresting agents, moscatilin has no detectable inhibitory effect on cyclin B–cdc-2 kinase activity. Thus, the precise nature of its cytotoxic mechanism remains to be determined.

Results suggest that moscatilin is potentially efficacious for chemo-prevention and/or chemotherapy against some types of cancer (Ho & Chen, 2003).

Colorectal Cancer

The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on colorectal HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Moscatilin induced a time-dependent arrest of the cell-cycle at G2/M, with an increase of cells at sub-G1. Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. A parallel experiment showed that SP600125 significantly inhibits Taxol and vincristine induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents.

Collectively, results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage leading to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway (Chen et al., 2008).

Anti-inflammatory

Results showed that moscatilin (10-100 microM) had a significant inhibition in a concentration-dependent manner on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS (100 ng/mL) treatment.

Hypoxia-inducible factor 1 (HIF-1) alpha was reported to initiate inflammation under cytokine stimulation or hypoxic conditions. Moscatilin had significant inhibition on HIF-1 expression via down-regulation of HIF-1 mRNA without affecting cell viability, translation machinery, or proteasome-mediated degradation of HIF-1. Collective data demonstrarted that moscatilin inhibited both COX-2 and iNOS expressions after LPS treatment in RAW264.7. Furthermore, moscatilin's inhibitory effect appears to be dependent on the repression of HIF-1alpha accumulation and NF-kappaB activation (Liu et al., 2010).

Lung Cancer; Angiogenesis

Moscatilin significantly inhibited growth of lung cancer cell line A549 (NSCLC) and suppressed growth factor-induced neovascularization. In addition, VEGF- and bFGF-induced cell proliferation, migration, and tube formation of HUVECs was markedly inhibited by moscatilin. Western blotting analysis of cell signaling molecules indicated that moscatilin inhibited ERK1/2, Akt, and eNOS signaling pathways in HUVECs.

Results suggest that inhibition of angiogenesis by moscatilin may be a major mechanism in cancer therapy (Tsai et al., 2010).

Lung Cancer

Investigation demonstrated that non-toxic concentrations of moscatilin were able to inhibit human non-small-cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical was identified as a dominant species in the suppression of filopodia formation.

Results indicate a novel molecular basis of moscalitin inhibiting lung cancer cell motility and invasion. Moscalitin may have promising anti-metastatic potential as an agent for lung cancer therapy (Kowitdamrong, Chanvorachote, Sritularak & Pongrakhananon, 2013).

Breast Cancer; Metastasis

Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anti-cancer activity. The mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo was evaluated.

Moscatilin was found to significantly inhibit breast cancer MDA-MB-231 cell migration by using scratch assays and Boyden chambers.

In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity.

Results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways, consistent with moscatilin's anti-metastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis (Pai et al., 2013).

References

Chen TH, Pan SL, Guh JH, et al. (2008). Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clinical Cancer Research, 14(13), 4250-4258. doi: 10.1158/1078-0432.CCR-07-4578.


Ho CK, Chen CC. (2003). Moscatilin from the orchid Dendrobrium loddigesii is a potential anti-cancer agent. Cancer Investigation, 21(5), 729-736.


Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Research International., 2013, 765894. doi: 10.1155/2013/765894.


Liu YN, Pan SL, Peng CY, et al. (2010). Moscatilin repressed lipopolysaccharide-induced HIF-1alpha accumulation and NF-kappaB activation in murine RAW264.7 cells. Shock, 33(1), 70-5. doi: 10.1097/SHK.0b013e3181a7ff4a.


Pai HC, Chang LH, Peng CY, et al. (2013). Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway.

Journal of Molecular Medicine (Berlin), 91(3), 347-56. doi: 10.1007/s00109-012-0945-5.

Tsai AC, Pan SL, Liao CH, et al. (2010). Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Letters, 292(2), 163-70. doi: 10.1016/j.canlet.2009.11.020.

Matricaria chamomilla/Matricaria recutita

Cancer: Colorectal., ovarian, testicular, bladder, lung

Action: Neuropathy, anti-inflammatory

Colorectal Cancer; Ovarian Cancer; Testicular Cancer; Bladder Cancer; Lung Cancer; Chemotherapy

Studies have shown that cisplatin could have painful effects on human and animal models. Matricaria chamomilla (MC) has analgesic and anti-inflammatory effects, and may hence be an effective treatment for ciplatin-induced peripheral neuropathy as a replacement for morphine. Experiments were performed on 60 NMRI male mice weighed 25 g to 30 g, which have been divided into 6 groups. The first group received normal saline; the second group received MC hydroalcoholic extract; the third group received cisplatin; the fourth group received MC hydroalcoholic extract and cisplatin, 96 hours before formalin test; the fifth group received morphine and the sixth group received cisplatin and morphine.

Results showed that formalin induced significant (P < 0.05) pain response (the first phase: 0–5 min and the second phase: 15–40 min after injection). Administration of MC extract before formalin injection showed significant (P < 0.05) decrease of pain responses in the first and second phase. Administration of cisplatin produced significant (P < 0.05) increase in pain response in both phases of formalin test. Injection of MC extract and cisplatin together have shown that MC is able to decrease the second phase of cisplatin-induced pain significantly (P < 0.05).

In comparison morphine has analgesic effects in the first phase and MC extract has anti- inflammatory effects in the second phase of formalin test significantly (P < 0.05). MC and cisplatin have analgesic and painful neuropathic respective effects, and MC hydroalcoholic extract is able to decrease cisplatin-induced pain and inflammation better than morphine (Abad et al., 2011).

Anti-inflammatory

Flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the anti-inflammatory action, which is due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner (Bulgari et al., 2012).

The anti-cancer properties of aqueous and methanolic extracts of Matricaria chamomilla against various human cancer cell lines were investigated. Chamomile exposure resulted in differential apoptosis in cancer cells but not in normal cells at similar doses. HPLC analysis of chamomile extract confirmed apigenin 7-O-glucoside as the major constituent of chamomile; some minor glycoside components were also observed. Apigenin glucosides inhibited cancer cell growth but to a lesser extent than the parent aglycone, apigenin (Srivastava & Gupta, 2007).

References

Abad NA, Nouri MHK, Gharjanie A, Tavakoli F. (2011). Effect of Matricaria chamomilla Hydroalcoholic Extract on Cisplatin-induced Neuropathy in Mice. Chinese Journal of Natural Medicines, 9(2):126–131


Bulgari M, Sangiovanni E, Colombo E, et al. (2012). Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion. Phytother Res, 26(12):1817-22. doi: 10.1002/ptr.4657.


Srivastava JK, Gupta S. (2007). Anti-proliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem, 55(23):9470-8.

Magnolol

Cancer:
Bladder, breast, colon, prostate, glioblastoma, ovarian, leukemia, lung

Action: Anti-inflammatory, apoptosis, inhibits angiogenesis, anti-metastatic

Magnolol (Mag), an active constituent isolated from the Chinese herb hou po (Magnolia officinalis (Rehder & Wilson)) has long been used to suppress inflammatory processes. It has anti-cancer activity in colon, hepatoma, and leukemia cell lines.

Anti-inflammatory

Magnolol (Mag) suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. Pre-treatment of ECs with Mag dose-dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pre-treatment of these ECs dose-dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs).

In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis (Chen et al., 2006).

Bladder Cancer; Inhibits Angiogenesis

In the present study, Chen et al. (2013) demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo, evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane, and Matrigel plug.

In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the downstream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model.

Collectively, these findings strongly indicate that the anti-angiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy.

Colon Cancer; Induces Apoptosis

Emerging evidence has suggested that activation of AMP-activated protein kinase (AMPK), a potential cancer therapeutic target, is involved in apoptosis in colon cancer cells. However, the effects of magnolol on human colon cancer through activation of AMPK remain unexplored.

Magnolol displayed several apoptotic features, including propidium iodide labeling, DNA fragmentation, and caspase-3 and poly(ADP-ribose) polymerase cleavages. Park et al. (2012) showed that magnolol induced the phosphorylation of AMPK in dose- and time-dependent manners.

Magnolol down-regulated expression of the anti-apoptotic protein Bcl2, up-regulated expression of pro-apoptotic protein p53 and Bax, and caused the release of mitochondrial cytochrome c. Magnolol-induced p53 and Bcl2 expression was abolished in the presence of compound C. Magnolol inhibited migration and invasion of HCT-116 cells through AMPK activation. These findings demonstrate that AMPK mediates the anti-cancer effects of magnolol through apoptosis in HCT-116 cells.

Ovarian Cancer

Treatment of HER-2 overexpressing ovarian cancer cells with magnolol down-regulated the HER-2 downstream PI3K/Akt signaling pathway, and suppressed the expression of downstream target genes, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2) and cyclin D1. Consistently, magnolol-mediated inhibition of MMP2 activity could be prevented by co-treatment with epidermal growth factor. Migration assays revealed that magnolol treatment markedly reduced the motility of HER-2 overexpressing ovarian cancer cells. These findings suggest that magnolol may act against HER-2 and its downstream PI3K/Akt/mTOR-signaling network, thus resulting in suppression of HER-2mediated transformation and metastatic potential in HER-2 overexpressing ovarian cancers. These results provide a novel mechanism to explain the anti-cancer effect of magnolol (Chuang et al., 2011).

Lung Cancer

Magnolol has been found to inhibit cell growth, increase lactate dehydrogenase release, and modulate cell cycle in human lung carcinoma A549 cells. Magnolol induced the activation of caspase-3 and cleavage of Poly-(ADP)-ribose polymerase, and decreased the expression level of nuclear factor-κB/Rel A in the nucleus. In addition, magnolol inhibited basic fibroblast growth factor-induced proliferation and capillary tube formation of human umbilical vein endothelial cells. These data indicate that magnolol is a potential candidate for the treatment of human lung carcinoma (Seo et al., 2011).

Prostate Cancer; Anti-metastatic

Matrix metalloproteinases (MMPs) are enzymes involved in various steps of metastasis development. The objective of this study was to study the effects of magnolol on cancer invasion and metastasis using PC-3 human prostate carcinoma cells. Magnolol inhibited cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, magnolol showed 33 and 98% inhibition of cancer cell at 10 microM and 20 microM concentrations, respectively, compared to the control. The protein and mRNA levels of both MMP-2 and MMP-9 were down-regulated by magnolol treatment in a dose-dependent manner.

These results demonstrate the anti-metastatic properties of magnolol in inhibiting the adhesion, invasion, and migration of PC-3 human prostate cancer cells (Hwang et al., 2010).

Glioblastoma Cancer

Magnolol has been found to concentration-dependently (0-40 microM) decrease the cell number in a cultured human glioblastoma cancer cell line (U373) and arrest the cells at the G0/G1 phase of the cell-cycle.

Pre-treatment of U373 with p21/Cip1 specific antisense oligodeoxynucleotide prevented the magnolol-induced increase of p21/Cip1 protein levels and the decrease of DNA synthesis. Magnolol at a concentration of 100 microM induced DNA fragmentation in U373. These findings suggest the potential applications of magnolol in the treatment of human brain cancers (Chen et al. 2011).

Inhibits Angiogenesis

Magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs.

In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases (Kim et al., 2013).

References

Chen LC, Liu YC, Liang YC, Ho YS, Lee WS. (2009). Magnolol inhibits human glioblastoma cell proliferation through up-regulation of p21/Cip1. J Agric Food Chem, 57(16):7331-7. doi: 10.1021/jf901477g.


Chen MC, Lee CF, Huang WH, Chou TC. (2013). Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1 α /VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol, 85(9):1278-87. doi: 10.1016/j.bcp.2013.02.009.


Chen SC, Chang YL, Wang DL, Cheng JJ. (2006). Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol, 148(2): 226–232. doi: 10.1038/sj.bjp.0706647


Chuang TC, Hsu SC, Cheng YT, et al. (2011). Magnolol down-regulates HER2 gene expression, leading to inhibition of HER2-mediated metastatic potential in ovarian cancer cells. Cancer Lett, 311(1):11-9. doi: 10.1016/j.canlet.2011.06.007.


Hwang ES, Park KK. (2010). Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem, 74(5):961-7.


Kim KM, Kim NS, Kim J, et al. (2013). Magnolol Suppresses Vascular Endothelial Growth Factor-Induced Angiogenesis by Inhibiting Ras-Dependent Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways. Nutr Cancer.


Park JB, Lee MS, Cha EY, et al. (2012). Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull, 35(9):1614-20.


Seo JU, Kim MH, Kim HM, Jeong HJ. (2011). Anti-cancer potential of magnolol for lung cancer treatment. Arch Pharm Res, 34(4):625-33. doi: 10.1007/s12272-011-0413-8.

Indirubin

Cancer:
Chronic myelogenous leukemia, lung, breast, head and neck, prostate, acute myeloid leukemia, prostate

Action: Aryl hydrocarbon Receptor (AhR) regulator, inhibits angiogenesis

Indirubin is the active component of many plants from the Isatis (L.) genus, including Isatis tinctoria (L.).

Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. Indirubin and its analogues are potent inhibitors of cyclin-dependent kinases (CDKs). The crystal structure of CDK2 in complex with indirubin derivatives shows that indirubin interacts with the kinase's ATP-binding site through van der Waals interactions and three hydrogen bonds. Indirubin-3'-monoxime inhibits the proliferation of a large range of cells, mainly through arresting the cells in the G2/M phase of the cell-cycle. These results have implications for therapeutic optimization of indigoids (Hoessel et al., 1999).

Formula; Huang Lian (Rhizoma Coptidis Recens), Huang Qin (Radix Scutellariae Baicalensis), Huang Bai (Cortex Phellodendri), Zhi Zi (Fructus Gardeniae Jasminoidis), Dang Gui (Radix Angelicae Sinensis), Lu Hui (Herba Aloes), Long Dan Cao (Radix Gentianae Longdancao), Da Huang (Radix et Rhizoma Rhei), Mu Xiang (Radix Aucklandiae Lappae), Qing Dai (Indigo Pulverata Levis), She Xiang (Secretio Moschus)

Leukemia

Indirubin, a 3, 2' bisindole isomer of indigo was originally identified as the active principle of a traditional Chinese preparation and has been proven to exhibit anti-leukemic effectiveness in chronic myelocytic leukemia. Indirubin was detected to represent a novel lead structure with potent inhibitory potential towards cyclin-dependent kinases (CDKs) resulting from high affinity binding into the enzymes ATP binding site. This seminal finding triggered research to improve the pharmacological activities of the parent molecule within comprehensive structure-activity studies. Molecular modifications made novel anti-cancer compounds accessible with strongly improved CDK inhibitory potential and with broad-spectrum anti-tumor activity.

This novel family of compounds holds strong promise for clinical anti-cancer activity and might be useful also in several important non-cancer indications, including Alzheimer's disease or diabetes (Eisenbrand et al., 2004).

Aryl Hydrocarbon Receptor (AhR) Regulator; Breast Cancer

The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1. With 4 hours exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6–9 hours post-exposure and had disappeared by 24 hours, whereas TCDD-induced activities remained elevated for at least 72 hours.

Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism (Spink et al., 2003).

Chronic Myelogenous Leukemia (CML)

Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). In a study investigating its mechanism of action, indirubin derivatives (IRDs) were found to potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells.

Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients.

In sum, these findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients (Nam et al., 2012).

Lung Cancer

A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell-cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression (Yoon et al., 2012).

The control lung tissue showed a normal architecture with clear alveolar spaces. Interestingly, the indirubin-3-monoxime treated groups showed reduced adenocarcinoma with appearance of alveolar spaces. Transmission Electron Microscopic (TEM) studies of lung sections of [B(α)P]-induced lung cancer mice showed the presence of phaemorphic cells with dense granules and increased mitochondria.

The lung sections of mice treated with indirubin-3-monoxime showed the presence of shrunken, fragmented, and condensed nuclei implying apoptosis. The effects were dose-dependent and prominent in 10 mg/kg/5 d/week groups, suggesting the therapeutic role of indirubin analogue against this deadly human malignancy. These results indicate that indirubin-3-monoxime brings anti-tumor effect against [B(α)P]-induced lung cancer by its apoptotic action in A/J mice (Ravichandran et al., 2010).

Head and Neck Cancer

The effects of 5'-nitro-indirubinoxime (5'-NIO), an indirubin derivative, on metastasis of head and neck cancer cells were investigated and the underlying molecular mechanisms involved in this process explored.

After treatment of head and neck cancer cells with 5'-NIO, cell metastatic behaviors such as colony formation, invasion, and migration were inhibited in a concentration-dependent manner. 5'-NIO inhibited the beta1 Integrin/FAK/Akt pathway which can then facilitate invasion and/or migration of cancer cells through the extracellular matrix (ECM). Moreover, treatment of head and neck cancer cell with Integrin β1 siRNA or FAK inhibitor effectively inhibited the invasion and migration, suggesting their regulatory role in invasiveness and migration of head and neck cancer cells. It was concluded that 5'-NIO inhibits the metastatic ability of head and neck cancer cells by blocking the Integrin β1/FAK/Akt pathway (Kim et al., 2011).

Prostate Cancer; Inhibits Angiogenesis

Indirubin, the active component of a traditional Chinese herbal medicine, Banlangen, has been shown to exhibit anti-tumor and anti-inflammation effects; however, its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is unknown.

To address this shortfall in the existing research, it was identified that indirubin inhibited prostate tumor growth through inhibiting tumor angiogenesis. It was found that indirubin inhibited angiogenesis in vivo. The inhibition activity of indirubin in endothelial cell migration, tube formation and cell survival in vitro has also been shown. Furthermore, indirubin suppressed vascular endothelial growth factor receptor 2-mediated Janus kinase (JAK)/STAT3 signaling pathway. This study provided the first evidence for anti-tumor angiogenesis activity of indirubin and the related molecular mechanism.

These investigations suggest that indirubin is a potential drug candidate for angiogenesis-related diseases (Zhang et al., 2011).

Acute Myeloid Leukemia

Indirubin derivatives were identified as potent FLT3 tyrosine kinase inhibitors with anti-proliferative activity at acute myeloid leukemic cell lines, RS4;11 and MV4;11 which express FLT3-WT and FLT3-ITD mutation, respectively. Among several 5 and 5'-substituted indirubin derivatives, 5-fluoro analog, 13 exhibited potent inhibitory activity at FLT3 (IC(50)=15 nM) with more than 100-fold selectivity versus 6 other kinases and potent anti-proliferative effect for MV4;11 cells (IC(50)=72 nM) with 30-fold selectivity versus RS4;11 cells.

Cell cycle analysis indicated that compound 13 induced cell-cycle arrest at G(0)/G(1) phase in MV4;11 cells (Choi et al., 2010).

References

Choi SJ, Moon MJ, Lee SD, et al. (2010). Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells. Bioorg Med Chem Lett, 20(6):2033-7.


Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. (2004). Molecular mechanisms of indirubin and its derivatives: novel anti-cancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol, 130(11):627-35


Hoessel R, Leclerc S, Endicott JA, et al. (1999). Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol, 1(1):60-7.


Kim SA, Kwon SM, Kim JA, et al. (2011). 5'-Nitro-indirubinoxime, an indirubin derivative, suppresses metastatic ability of human head and neck cancer cells through the inhibition of Integrin β 1/FAK/Akt signaling. Cancer Lett, 306(2):197-204.


Nam S, Scuto A, Yang F, et al. (2012). Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol Oncol, 6(3):276-83.


Ravichandran K, Pal A, Ravichandran R. (2010). Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microsc Res Tech, 73(11):1053-8.


Spink BC, Hussain MM, Katz BH, Eisele L, Spink DC. (2003). Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol, 66(12):2313-21.


Yoon HE, Kim SA, Choi HS, et al. (2012). Inhibition of Plk1 and Pin1 by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett, 316(1):97-104.


Zhang X, Song Y, Wu Y, et al. (2011). Indirubin inhibits tumor growth by anti-tumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer, 129(10):2502-11. doi: 10.1002/ijc.25909.

Eugenol

Cancer:
Melanoma, osteosarcoma, leukemia, gastric, colon, liver, oral., lung

Action: Radio-protective

Eugenol is a natural compound available in honey and various plants extracts; in particular, cloves (Syzygium aromaticum (L.) Merrill & Perry).

Melanoma, Skin Tumors, Osteosarcoma, Leukemia, Gastric Cancer

Eugenol (4-allyl-2-methoxyphenol), a phenolic phytochemicals, is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature show eugenol possesses anti-oxidant, anti-mutagenic, anti-genotoxic, anti-inflammatory and anti-cancer properties.

The molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented and highlights the anti-proliferative activity and molecular mechanism of eugenol-induced apoptosis against the cancer cells and animal model (Jaganathan et al., 2012).

Colon Cancer

Since most of the drugs used in cancer are apoptosis-inducers, the apoptotic effect and anti-cancer mechanism of eugenol were investigated against colon cancer cells. MTT assay signified the anti-proliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyzes.

These results demonstrate the molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemo-preventive agent against colon cancer (Jaganathan et al., 2011).

Radio-protective, Skin Cancer, Liver Cancer, Oral Cancer, Lung Cancer

Ocimum sanctum L. or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in the various Indian languages, is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia, and another plant from which eugenol is extracted. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. Preclinical studies have also shown that Ocimum and some of its phytochemicals including eugenol prevented chemical-induced skin, liver, oral., and lung cancers and to mediate these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

The aqueous extract of Ocimum and its flavanoids, orintin and vicenin, are shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. This action is related to the important phytochemicals it contains like eugenol, which are also shown to prevent radiation-induced DNA damage.

References

Baliga MS, Jimmy R, Thilakchan KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.


Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. (2011). Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int, 35(6):607-15. doi: 10.1042/CBI20100118.


Jaganathan SK, Supriyanto E. (2012). Anti-proliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells. Molecules, 17(6):6290-6304. doi:10.3390/molecules17066290.

Dauricine

Cancer: Prostate, urinary system, breast, lung

Action: MDR

Lung Cancer

Menispermum dauricum DC (Moonseed) contains several alkaloids, of which dauricine can account for as much as 50% of the alkaloids present. In human lung adenocarcinoma A549 cells, these alkaloids activate caspase-3 by activating caspases-8 and -9. Accordingly, these alkaloids induce apoptosis through the apoptosis death receptor and mitochondrial pathways (Wang et al., 2011).

Prostate Cancer

The anti-tumor effects of asiatic moonseed rhizome extraction-dauricine were explored on bladder cancer EJ cell strain, prostate cancer PC-3Mcell strain and primary cell culture system. The main effective component, phenolic alkaloids of Menispermum dauricum, was extracted and separated from asiatic moonseed rhizome by chemical method.

Dauricine had an obvious proliferation inhibition effect on the main tumor cells in urinary system. The minimum drug sensitivity concentration was between 3.81-5.15 µg/mL, and the inhibition ratio increased with the increased concentration. Dauricine, the main effective component extracted from asiatic moonseed rhizome, had good inhibition effect on tumor cells in the urinary system. At the same time, Dauricine has certain inhibition effects on the primary cultured tumor cell (Wang et al., 2012).

Breast Cancer

Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of dauricine (Dau), followed by incubation with IGF-I for 6 h. Dau significantly inhibited IGF-I-induced HIF-1alpha protein expression but had no effect on HIF-1alpha mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-I. Mechanistically, Dau suppressed IGF-I-induced HIF-1alpha and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway.

Dau inhibits human breast cancer angiogenesis by suppressing HIF-1alpha protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anti-cancer activities of Dau in human breast cancer (Tang et al., 2009).

Breast Cancer; MDR

The potentiation of vincristine-induced apoptosis by tetrandrine, neferine and dauricine isolated from Chinese medicinal plants in the human mammary MCF-7 Multi-drug-resistant cells was investigated. The apoptotic cells induced by vincristine alone accounted for about 10% of all the cancer cells, while the percentage of apoptotic cells induced by a combination of vincristine with tetrandrine, neferine, or dauricine was found to be significantly higher than that by vincristine alone, and their reversal effects were positively correlated with the drug concentration and the exposure time.

In addition, tetrandrine was shown to be the most potent in the reversal efficacy among the three compounds to be tested for apoptosis in vitro. Tetrandrine, neferine and dauricine showed obvious potentiation of vincristine-induced apoptosis in the human mammary MCF-7 multi-drug-resistant cells (Ye et al., 2001).

MDR

Bisbenzylisoquinoline alkaloids are a large family of natural phytochemicals with great potential for clinical use. The interaction between breast cancer resistant protein (BCRP), sometimes called ATP binding cassette protein G2 (ABCG2), and 5 bisbenzylisoquinoline alkaloids (neferine, isoliensinine, liensinine, dauricine and tetrandrine) was evaluated using LLC-PK1/BCRP cell model.

The intracellular accumulation and bi-directional transport studies were conducted, and then molecular docking analysis was carried out employing a homology model of BCRP. This data indicates that BCRP could mediate the excretion of liensinine and dauricine, and thus influence their pharmacological activity and disposition (Tian et al., 2013).

References

Tang XD, Zhou X, Zhou KY. (2009). Dauricine inhibits insulin-like growth factor-I-induced hypoxia inducible factor 1alpha protein accumulation and vascular endothelial growth factor expression in human breast cancer cells. Acta Pharmacol Sin, 30(5):605-16. doi: 10.1038/aps.2009.8.

Tian Y, Qian S, Jiang Y, et al. (2013). The interaction between human breast cancer resistance protein (BCRP) and five bisbenzylisoquinoline alkaloids. Int J Pharm, 453(2):371-9. doi: 10.1016/j.ijpharm.2013.05.053.

Wang J, Li Y, Zu XB, Chen MF, Qi L. (2012). Dauricine can inhibit the activity of proliferation of urinary tract tumor cells. Asian Pac J Trop Med, 5(12):973-6. doi: 10.1016/S1995-7645(12)60185-0.

Wang YG, Sun S, Yang WS, Sun FD, Liu Q. (2011). Extract of Menispermum Dauricum induces apoptosis of human lung cancer cell line A549. J Pract Oncol (Chin), 26:343-346.

Ye ZG, Wang JH, Sun AX, et al. (2001). Potentiation of vincristine-induced apoptosis by tetrandrine, neferine and dauricine in the human mammary MCF-7 Multi-drug-resistant cells. Yao Xue Xue Bao, 36(2):96-9.

Cinobufacini

Cancers: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Hepatic Cancer

Cinobufacini injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Human Lymphatic Endothelial Cells

Cinobufacini injection is a traditional anti-tumor drug. However, its mechanism of action is still unclear. The effects of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as MEDLINEe (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with transcatheter arterial chemoembolization (TACE), and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of the control group. Cinobufacini injection, combined with TACE, can decrease TACE-induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose- and time- dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

References

Fu HY, Gao S, Tian LL, Chen XY, Cui XN. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao S, Chen XY, Fu HY, Cui XZ. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke J, Lu K, Li Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology,


Sun Y, Lu XX, Liang XM, Cui XN. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu C, Yin J, He J. (2012). Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.