Category Archives: cell-cycle arrest

Wogonin

Cancer:
Breast, lung (NSCLC), gallbladder carcinoma, osteosarcoma, colon, cervical

Action: Neuro-protective, anti-lymphangiogenesis, anti-angiogenic, anti-estrogenic, chemo-sensitizer, pro-oxidative, hypoxia-induced drug resistance, anti-metastatic, anti-tumor, anti-inflammatory

Wogonin is a plant monoflavonoid isolated from Scutellaria rivularis (Benth.) and Scutellaria baicalensis (Georgi).

Breast Cancer; ER+ & ER-

Effects of wogonin were examined in estrogen receptor (ER)-positive and -negative human breast cancer cells in culture for proliferation, cell-cycle progression, and apoptosis. Cell growth was attenuated by wogonin (50-200 microM), independently of its ER status, in a time- and concentration-dependent manner. Apoptosis was enhanced and accompanied by up-regulation of PARP and Caspase 3 cleavages as well as pro-apoptotic Bax protein. Akt activity was suppressed and reduced phosphorylation of its substrates, GSK-3beta and p27, was observed. Suppression of Cyclin D1 expression suggested the down-regulation of the Akt-mediated canonical Wnt signaling pathway.

ER expression was down-regulated in ER-positive cells, while c-ErbB2 expression and its activity were suppressed in ER-negative SK-BR-3 cells. Wogonin feeding to mice showed inhibition of tumor growth of T47D and MDA-MB-231 xenografts by up to 88% without any toxicity after 4 weeks of treatment. As wogonin was effective both in vitro and in vivo, our novel findings open the possibility of wogonin as an effective therapeutic and/or chemo-preventive agent against both ER-positive and -negative breast cancers, particularly against the more aggressive and hormonal therapy-resistant ER-negative types (Chung et al., 2008).

Neurotransmitter Action

Kim et al. (2011) found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.

Anti-metastasic

The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Wogonin at the dose of 1–10 µM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin.

These findings suggest that wogonin inhibits cell mobility and invasion by up-regulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemo-protective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis (Dong et al., 2011).

Anti-tumor and Anti-metastatic

Kimura & Sumiyoshi (2012) examined the effects of wogonin isolated from Scutellaria baicalensis roots on tumor growth and metastasis using a highly metastatic model in osteosarcoma LM8-bearing mice. Wogonin (25 and 50mg/kg, twice daily) reduced tumor growth and metastasis to the lung, liver and kidney, angiogenesis (CD31-positive cells), lymphangiogenesis (LYVE-1-positive cells), and TAM (F4/80-positive cell) numbers in the tumors of LM8-bearing mice. Wogonin (10–100µM) also inhibited increases in IL-1β production and cyclooxygenase (COX)-2 expression induced by lipopolysaccharide in THP-1 macrophages. The anti-tumor and anti-metastatic actions of wogonin may be associated with the inhibition of VEGF-C-induced lymphangiogenesis through a reduction in VEGF-C-induced VEGFR-3 phosphorylation by the inhibition of COX-2 expression and IL-1β production in Tumor-associated macrophages (TAMs).

Anti-inflammatory

Wogonin extracted from Scutellariae baicalensis and S. barbata is a cell-permeable and orally available flavonoid that displays anti-inflammatory properties. Wogonin is reported to suppress the release of NO by iNOS, PGE2 by COX-2, pro-inflammatory cytokines, and MCP-1 gene expression and NF-kB activation (Chen et al., 2008).

Hypoxia-Induced Drug Resistance (MDR)

Hypoxia-induced drug resistance is a major obstacle in the development of effective cancer therapy. The reversal abilities of wogonin on   hypoxia resistance were examined and the underlying mechanisms discovered. MTT assay revealed that hypoxia increased maximal 1.71-, 2.08-, and 2.15-fold of IC50 toward paclitaxel, ADM, and DDP in human colon cancer cell lines HCT116, respectively. Furthermore, wogonin showed strong reversal potency in HCT116 cells in hypoxia and the RF reached 2.05. Hypoxia-inducible factor-1α (HIF-1α) can activate the expression of target genes involved in glycolysis. Wogonin decreased the expression of glycolysis-related proteins (HKII, PDHK1, LDHA), glucose uptake, and lactate generation in a dose-dependent manner.

In summary, wogonin could be a good candidate for the development of a new multi-drug resistance (MDR) reversal agent and its reversal mechanism probably is due to the suppression of HIF-1α expression via inhibiting PI3K/Akt signaling pathway (Wang et al., 2013).

NSCLC

Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. In this study, the effect of a combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay.

The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL.

These results show for the first time that wogonin enhances TRAIL's anti-tumor activity in vivo, suggesting this strategy has an application potential for clinical anti-cancer therapy (Yang et al., 2013).

Colon Cancer

Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest in the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner compared with the control. Furthermore, the induction of apoptosis was accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt in a dose-dependent manner.

The administration of baicalein to mice resulted in the inhibition of the growth of HT-29 xenografts without any toxicity following 5 weeks of treatment. The results indicated that baicalein induced apoptosis via Akt activation in a p53-dependent manner in the HT-29 colon cancer cells and that it may serve as a chemo-preventive or therapeutic agent for HT-29 colon cancer (Kim et al., 2012).

Breast

The involvement of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth was determined. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis.

These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model (Ma et al., 2012).

Chemoresistance; Cervical Cancer, NSCLC

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF.

In this study, the non-small-cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells.

Results provided important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy (He et al., 2012).

References

Chen LG, Hung LY, Tsai KW, et al. (2008). Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res. 52:1349-1357.


Chung H, Jung YM, Shin DH, et al. (2008). Anti-cancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer, 122(4):816-22.


Dong P, Zhang Y, Gu J, et al. (2011). Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol, 137(3):1373-80. doi: 10.1016/j.jep.2011.08.005.


He F, Wang Q, Zheng XL, et al. (2012). Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncology Reports, 28(2), 601-605. doi: 10.3892/or.2012.1841.


Kim EJ, Kang D, Han J. (2011). Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiologica, 202(2):185–192. doi: 10.1111/j.1748-1716.2011.02263.x.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6(6):1443-9. doi: 10.3892/mmr.2012.1085.


Kimura Y & Sumiyoshi M. (2012). Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 20(3-4):328-336. doi:10.1016/j.phymed.2012.10.016


Ma X, Xie KP, Shang F, et al. (2012). Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane. Sheng Li Xue Bao, 64(2):207-12.


Wang H, Zhao L, Zhu LT, et al. (2013). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via down-regulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. doi: 10.1002/mc.22052.


Yang L, Wang Q, Li D, et al. (2013). Wogonin enhances anti-tumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated down-regulation of cFLIPL and IAP proteins. Apoptosis, 18(5):618-26. doi: 10.1007/s10495-013-0808-8.

Waltonitone

Cancer: Hepatocellular carcinoma, lung

Action: Induces cell-cycle arrest

Hepatocellular Carcinoma

Waltonitone, a new ursane-type pentacyclic triterpene isolated from Gentian waltonii Burkill, significantly inhibited human hepatocellular carcinoma BEL-7402 cells growth. Apoptosis induced by waltonitone was characterized by AO/EB staining and flow cytometric analysis. Apoptosis microarray assay results showed BCL-2 family genes might especially play an important role in waltonitone-induced apoptosis.

These studies demonstrated that waltonitone might inhibit hepatocellular carcinoma cell growth and induce apoptosis in vitro and in vivo (Zhang et al., 2009a).

Adenocarcinomic Lung Cancer

Natural compounds are a great source of cancer chemotherapeutic agents. An investigation by Zhang et al. (2012) indicates that waltonitone (WT), a triterpene extracted from medicinal plants, inhibits the proliferation of A549 cells in a concentration- and time-dependent manner.

Furthermore, the treatment of A549 cells with waltonitone altered the expression of miRNAs. It was found that 27 miRNAs were differentially expressed in waltonitone-treated cells, of which 8 miRNAs target genes related to cell proliferation and apoptosis.

In summary, results demonstrate that waltonitone has a significant inhibitory effect on the proliferation of A549 cells. It is possible that up-regulation of Bax/Bcl-2 and regulation of expression of specific miRNAs play a role in inhibition of proliferation and induction of apoptosis in waltonitone-treated cells. Waltonitone can be applied to lung carcinoma as a chemotherapeutic candidate.

Hepatocellular Carcinoma

WT could inhibit the BEL-7402 cells growth, induce the S-phase cell-cycle arrest, and activate Akt and ERK1/2 phosporylation. Moreover, the cell growth inhibition and S-phase cell-cycle arrest induction of WT on BEL-7402 cells could be blocked by Akt and ERK1/2 inhibitors.

WT induces cell-cycle arrest and inhibits the cell growth on BEL-7402 cells by modulating Akt and ERK1/2 phosphorylation (Zhang et al., 2009b).

References

Zhang Y, Zhang GB, Xu XM, et al. (2012). Suppression of growth of A549 lung cancer cells by waltonitone and its mechanisms of action. Oncol Rep, 28(3):1029-35. doi: 10.3892/or.2012.1869.


Zhang Z, Wang S, Qiu H, Duan C, Ding K, Wang Z (a). (2009). Waltonitone induces human hepatocellular carcinoma cells apoptosis in vitro and in vivo. Cancer Lett, 286(2):223-31. doi: 10.1016/j.canlet.2009.05.023.


Zhang Z, Duan C, Ding K, Wang Z (b). (2009). WT inhibit human hepatocellular carcinoma BEL-7402 cells growth by modulating Akt and ERK1/2 phosphorylation. Zhongguo Zhong Yao Za Zhi, 34(24):3277-80.

Ursolic acid

Cancer:
Glioblastoma, Lung, breast, colorectal, gastric, esophageal squamous carcinoma, prostate

Action:

Mitochondrial function, reactive oxygen species (ROS) generation.

Cytostatic, anti-inflammatory, chemo-prevention, COX-2 inhibitor, suppresses NF- κ B, induces IL-1 β , induces apoptosis

Ursolic acid, a pentacyclic triterpene acid found ubiquitously in the plant kingdom, including Rosmarinus officinalis (L.), Salvia officinalis (L.), Prunella vulgaris (L.), Psychotria serpens (L.) and Hyptis capitata (Jacq.). It has been shown to suppress the expression of several genes associated with tumorigenesis resulting in anti-inflammatory, anti-tumorigenic and chemo-sensitizing effects (Liu, 1995).

Glioblastoma Cancer

Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human GBM DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate.

Ursolic acid effectively reversed TMZ resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptotic and autophagic-related signaling networks. The necrotic death was characterized by annexin V/PI double-positive detection and release of HMGB1 and LDH. These ursolic acid-elicited responses were accompanied by ROS generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. MPT is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by CypD, and ATP decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and -involved key regulators.

The study by Lu et al., (2014) is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.

Gastric Cancer

Ursolic acid (UA) inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. These results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis (Wang et al., 2011).

Esophageal Squamous Carcinoma

The anti-neoplastic effects of combinations of anti-cancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy- 4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2 cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell-cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells.

These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer (Yamai et al., 2009).

COX-2 Inhibitor

Subbaramaiah et al. (2000) studied the effects of ursolic acid, a chemo-preventive agent, on the expression of cyclooxygenase-2 (COX-2). Treatment with ursolic acid suppressed phorbol 12-myristate 13-acetate (PMA)-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Ursolic acid also suppressed the induction of COX-2 mRNA by PMA. Increased activator protein-1 activity and the binding of c-Jun to the cyclic AMP response element of the COX-2 promoter, effects were blocked by ursolic acid (Subbaramaiah et al., 2000).

Lung Cancer, Suppresses NF- κB

In terms of general anti-cancer mechanism, ursolic acid has also been found to suppress NF-κB activation induced by various carcinogens through the inhibition of the DNA binding of NF-κB. Ursolic acid also inhibits IκBα kinase and p65 phosphorylation (Shishodia et al., 2003). In particular, ursolic acid has been found to block cell-cycle progression and trigger apoptosis in lung cancer and may hence act as a chemoprevention agent for lung cancer (Hsu et al., 2004).

Breast Cancer

Ursolic acid is a potent inhibitor of MCF-7 cell proliferation. This triterpene exhibits both cytostatic and cytotoxic activity. It exerts an early cytostatic effect at G1 followed by cell death. Results suggest that alterations in cell-cycle phase redistribution of MCF-7 human breast cancer, by ursolic acid, may significantly influence MTT (colorimetric assays) reduction to formazan (Es-Saady et al., 1996).

Induces IL-1 β

Interleukin (IL)-1beta is a pro-inflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. It has recently been found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, Ikeda et al. (2008) investigated the ability of UA to induce IL-1beta production in pMphi from 4 different strains of female mice as well as an established macrophage line. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi.

Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, these results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility.

Induces Apoptosis: Breast Cancer, Prostate Cancer

Ursolic acid (UA) induced apoptosis and modulated glucocorticoid receptor (GR) and Activator Protein-1 (AP-1) in MCF-7 breast cancer cells. UA is a GR modulator and may be considered as a potential anti-cancer agent in breast cancer (Kassi et al., 2009).

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells (Kwon et al., 2010). In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition (Zhang et al., 2010). A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression (Yeh et al., 2010).

Ursolic acid additionally stimulates the release of cytochrome C in HL-60 cells and breast cancer MCF-7 cells. The activation of caspase-3 in a cytochrome C-dependent manner induces apoptosis via the mitochondrial pathway (Qian et al., 2011).

Colorectal Cancer

Ursolic acid (UA) has strong anti-proliferative and apoptotic effects on human colon cancer HT-29 cells. UA dose-dependently decreased cell proliferation and induced apoptosis, accompanied by activation of caspase 3, 8 and 9. The effects may be mediated by alkaline sphingomyelinase activation (Andersson et al., 2003).

Ursolic acid (UA), using the colorectal cancer (CRC) mouse xenograft model and the HT-29 human colon carcinoma cell line, was evaluated for its efficacy against tumor growth in vivo and in vitro, and its molecular mechanisms were investigated. It was found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation.

These data demonstrate that UA possesses a broad range of anti-cancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment (Lin et al., 2013).

Action: Anti-tumor, inhibits tumor cell migration and invasion

Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars’ attention. This review explained anti-tumor actions of UA, including (1) the protection of cells’ DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells.

Inhibition of Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Pathway
Activation of mitogen-activated protein kinase (MAPK) allows cell excessive proliferation involved in the carcinogenic process (Park et al., 1999). Subfamilies of MAPK, metastasis.(24) Otherwise, UA suppresses the activation of NF-κB and down-regulation of the MMP-9 protein, which in turn contributes to its inhibitory effects on IL-1β or tumor necrosis factor α (TNF-α)-induced C6 glioma cell invasion (Huang et al., 2009).

U A suppresses inter cellular adhesion molecules-1 (ICAM-1) expression of non-small cell lung cancer (NSCLC) H3255, A549, Calu-6 cells, and significantly inhibits fibronectin expression in a concentration-dependent way. UA significantly suppresses the expression of MMP-9 and MMP-2 and inhibits protein kinase C activity in test cell lines, at the same time, UA reduces cell invasion in a concentration-dependent manner (Huang et al., 2011).

Cancer: Multiple myeloma

Action: Anti-inflammatory, down-regulates STAT3

When dealing with the multiple myeloma, by the way of activating the proto-oncogene-mediated c-Src, JAK1, JAK2, and ERKs, ursolic acid (UA) can not only inhibit the expression of IL-6-induced STAT3 but also downregulates the STAT3 by regulating gene products, such as cyclin D1, Bcl-2, Bcl-xL, surviving, Mcl-1 and VEGF. Above all, UA can inhibit the proliferation of multiple myeloma cells and induce apoptosis, to arrest cells at G1 phase and G0 phase of cell cycle (Pathak et al., 2007).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Cancer: Colorectal

Wong et al., have previously reported Signal Transducer and Activator of Transcription 3 (STAT3) to be constitutively activated in aldehyde dehydrogenase (ALDH)(+)/cluster of differentiation-133 (CD133)(+) colon cancer-initiating cells. In the present study they tested the efficacy of inhibiting STAT3 signaling in human colon cancer-initiating cells by ursolic acid (UA), which exists widely in fruits and herbs.

ALDH(+)/CD133(+) colon cancer-initiating cells. UA also reduced cell viability and inhibited tumor sphere formation of colon cancer-initiating cells, more potently than two other natural compounds, resveratrol and capsaicin. UA also inhibited the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells. Furthermore, daily administration of UA suppressed HCT116 tumor growth in mice in vivo.

Their results suggest STAT3 to be a target for colon cancer prevention. UA, a dietary agent, might offer an effective approach for colorectal carcinoma prevention by inhibiting persistently activated STAT3 in cancer stem cells.

References

 

Andersson D, Liu JJ, Nilsson A, Duan RD. (2003). Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anti-cancer Research, 23(4):3317-22.

 

Es-Saady D, Simon A, Jayat-Vignoles C, Chulia AJ, Delage C. (1996). MCF-7 cell-cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anti-cancer Research, 16(1):481-6.

 

Hsu YL, Kuo PL, Lin CC. (2004). Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small-cell lung cancer A549 cells. Life Sciences, 75(19), 2303-2316.

 

Ikeda Y, Murakami A, Ohigashi H. (2008). Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci, 83(1-2):43-9. doi: 10.1016/j.lfs.2008.05.001.

 

Kassi E, Sourlingas TG, Spiliotaki M, et al. (2009). Ursolic Acid Triggers Apoptosis and Bcl-2 Down-regulation in MCF-7 Breast Cancer Cells. Cancer Investigation, 27(7):723-733. doi:10.1080/07357900802672712.

 

Kwon SH, Park HY, Kim JY, et al. (2010). Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett, 20:6435–6438. doi: 10.1016/j.bmcl.2010.09.073.

 

Lin J, Chen Y, Wei L, et al. (2013). Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol, (4):1235-43. doi: 10.3892/ijo.2013.2040.

 

Liu J. (1995). Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57-68.

 

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. (2003). Ursolic Acid Inhibits Nuclear Factor-OE ∫ B Activation Induced by Carcinogenic Agents through Suppression of IOE ∫ BOE± Kinase and p65 Phosphorylation. Cancer Research, 63(15), 4375-4383.

 

Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. (2000). Ursolic Acid Inhibits Cyclooxygenase-2 Transcription in Human Mammary Epithelial Cells. Cancer Res, 60:2399

 

Qian J, Li X, Guo GY, et al. (2011). Potent anti-tumor activity of emodin on CNE cells in vitro through apoptosis. J Zhejiang Sci-Tech Univ (Chin), 42:756-759

 

Wang X, Zhang F, Yang L, et al. (2011). Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo. J Biomed Biotechnol, 2011:419343. doi: 10.1155/2011/419343.

 

Yamai H, et al. (2009). Triterpenes augment the inhibitory effects of anti-cancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer, 125(4):952-60. doi: 10.1002/ijc.24433.

 

Yeh CT, Wu CH, Yen GC. (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res, 54:1285–1295. doi: 10.1002/mnfr.200900414.

 

Zhang Y, Kong C, Zeng Y, et al. (2010). Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog, 49:374–385.

 

Zhang LL, Wu BN, Lin Y et al. (2014) Research Progress of Ursolic Acid’s Anti-Tumor Actions. Chin J Integr Med 2014 Jan;20(1):72-79

 

Reference

 

Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009;48:517-531

 

Huang CY, Lin CY, Tsai CW, Yin MC. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro 2011;25:1274-1280.

 

Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999;81:1116-1121.

 

 

Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 2007;5:943-595

 

 

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

 

 

Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. (2013) Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84.

 
Lu C-C, Huang B-R, Liao P-J, Yen G-C. Ursolic acid triggers a non-programmed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Molecular Nutrition & Food Research. 2014 DOI: 10.1002/mnfr.201400051

 

 

 

Tetrandrine

Cancer:
Breast, leukemia, Oral cancer, renal cell carcinoma, colon

Action: Anti-inflammatory, tamoxifen resistance, cell-cycle arrest, anti-metastatic, MDR

Tetrandrine, a bisbenzylisoquinoline alkaloid from the root of Stephania tetrandra (S, Moore), exhibits a broad range of pharmacological activities, including immunomodulating, anti-hepatofibrogenetic, anti-inflammatory, anti-arrhythmic, anti-portal hypertension, anti-cancer and neuro-protective activities (Li, Wang, & Lu, 2001; Ji, 2011). Tetrandrine has anti-inflammatory and anti-fibrogenic actions, which make tetrandrine and related compounds potentially useful in the treatment of lung silicosis, liver cirrhosis, and rheumatoid arthritis (Kwan & Achike, 2002).

Tetrandrine generally presents its anti-cancer effects in micromolar concentrations. Tetrandrine induces different phases of cell-cycle arrest, depends on cancer cell types (Kuo & Lin, 2003; Meng et al., 2004; Ng et al., 2006) and also induces apoptosis in many human cancer cells, including leukemia, bladder, colon, hepatoma, and lung (Lai et al., 1998; Ng et al., 2006; Wu et al., 2010; He et al., 2011).

In vivo experiments have also demonstrated the potential value of tetrandrine against cancer activity. For example, the survival of mice subcutaneously inoculated with CT-26 cells is extended after daily oral gavage of 50 mg/kg or 150  mg/kg of tetrandrine (Wu et al., 2010). Tetrandrine also inhibits the expression of VEGF in glioma cells, has cytotoxic effect on ECV304 human umbilical vein endothelial cells, and suppresses in vivo angiogenesis (Chen et al., 2009). Tetrandrine-treated mice (10  mg/kg/day) have fewer metastases than vehicle-treated mice, and no acute toxicity or obvious changes can be observed in the body weight of both groups (Chang et al., 2004).

Leukemia

Tetrandrine citrate is a novel orally active tetrandrine salt with potent anti-tumor activity against IM-resistant K562 cells and chronic myeloid leukemia. Tetrandrine citrate-induced growth inhibition of leukemia cells may be involved in the depletion of p210Bcr-Abl mRNA and β-catenin protein (Xu et al., 2012).

Comparative in vitro studies show that tetrandrine has significantly greater suppressive effects on adherence, locomotion and 3H-deoxyglucose uptake of neutrophils, as well as the mitogen-induced lymphocyte responses and mixed lymphocyte reactions. By contrast, berbamine demonstrated a significantly greater capacity for inhibition of NK cell cytotoxicity. These results show that tetrandrine is superior to berbamine in most aspects of anti-inflammatory and immunosuppressive activity.

Since these two alkaloids differ by only one substitution in the side chain of one of the benzene rings, these findings may provide further insight into structure-activity relationships and clues to the synthesis and development of active analogues of this promising class of drugs for the treatment of chronic inflammatory diseases (Li et al., 1989).

MDR, Breast Cancer

Tetrandrine also has been found to have extensive pharmacological activity, including positive ion channel blockade and inhibition of multiple drug resistance proteins. These activities are very similar to that of salinomycin, a known drug targeting breast cancer initiation cells (TICs). Tetrandrine has been probed for this activity, targeting of breast cancer TICs. SUM-149, an inflammatory breast cancer cell line, and SUM-159, a non-inflammatory metaplastic breast cancer cell line, were used in these studies.

In summary, tetrandrine demonstrates significant efficacy against in vitro surrogates for inflammatory and aggressive breast cancer TICs (Xu et al., 2011).

Leukemia, MDR

The potential mechanism of the chemotherapy resistance in acute myeloid leukemia (AML) is the multi-drug resistance (MDR-1) gene product P-glycoprotein (P-gp), which is often overexpressed in myeloblasts from acute myeloid leukemia. In a multi-center clinical trial, 38 patients with poor risk forms of AML were treated with tetrandrine (TET), a potent inhibitor of the MDR-1 efflux pump, combined with daunorubicin (DNR), etoposide and cytarabine (TET–DEC). Overall, postchemotherapy marrow hypoplasia was achieved in 36 patients. Sixteen patients (42%) achieved complete remission or restored chronic phase, 9 achieved partial remission (PR) and 13 failed therapy.

These data indicate that TET–DEC was relatively well tolerated in these patients with poor risk AML, and had encouraging anti-leukemic effects (Xu et al., 2006).

Tamoxifen

Tetrandrine (Tet) had a significant reversal of tamoxifen drug resistance breast cancer cells resistant (MCF-7/TAM). The non-cytotoxic dose (0. 625 microg/mL) reversed the resistance by 2.0 folds. MRP1 was reduced at gene (P <0.05) and protein levels when Tet effected on MCF-7ITAM cells. Tet could reverse the drug resistance of MCF-7/TAM cells, and the reverse mechanism may be related to down-regulating MRP1 expression (Chen & Chen, 2013).

Colon Cancer

Tetrandrine (TET) exhibits anti-colon cancer activity. Gao et al. (2013) compared TET with chemotherapy drug doxorubicin in 4T1 tumor-bearing BALB/c mice model and found that TET exhibits anti-cancer metastatic and anti-angiogenic activities better than those of doxorubicin. Local blood perfusion of tumor was markedly decreased by TET after 3 weeks.

Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF- κ B levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1 α, integrin β 5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo (Chen & Chen, 2013).

Tetrandrine significantly decreased the viability of SAS human oral cancer cells in a concentration- and time-dependent manner. Tet induced nuclear condensation, demonstrated by DAPI staining, and induces apoptosis and autophagy of SAS human cancer cells via caspase-dependent and LC3-I and LC3-II “American Typewriter”; “American Typewriter”;‑dependent pathways (Huang et al., 2013).

Renal Cancer

Tetrandrine treatment showed growth-inhibitory effects on human renal cell carcinoma (RCC) in a time- and dose-dependent manner. Additionally, flow cytometric studies revealed that tetrandrine was capable of inducing G1 cell-cycle arrest and apoptosis in RCC cells. Tet triggered apoptosis and cell-cycle arrest in RCC 786-O, 769-P and ACHN cells in vitro; these events are associated with caspase cascade activation and up-regulation of p21 and p27 (Chen, Ji, & Chen, 2013).

References

Chang KH, Liao HF, Chang HH, et al. (2004). Inhibitory effect of tetrandrine on pulmonary metastases in CT26 colorectal adenocarcinoma-bearing BALB/c mice. American Journal of Chinese Medicine, 32(6):863–872.


Chen HY, Chen XY. (2013). Tetrandrine reversed the resistance of tamoxifen in human breast cancer MCF-7/TAM cells: an experimental research. Zhongguo Zhong Xi Yi Jie He Za Zhi, 33(4):488-91.


Chen T, Ji B, Chen Y. (2013). Tetrandrine triggers apoptosis and cell-cycle arrest in human renal cell carcinoma cells. J Nat Med.


Chen Y, Chen JC, Tseng SH. (2009). Tetrandrine suppresses tumor growth and angiogenesis of gliomas in rats. International Journal of Cancer, 124(10):2260–2269.


Gao JL, Ji X, He TC, et al. (2013). Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor-bearing Mice. Evid Based Complement Alternat Med, 2013:265061. doi: 10.1155/2013/265061.


He BC, Gao JL, Zhang BQ, et al. (2011). Tetrandrine inhibits Wnt/beta-catenin signaling and suppresses tumor growth of human colorectal cancer. Molecular Pharmacology, 79(2):211–219.


Huang AC, Lien JC, Lin MW, et al. (2013). Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol, 43(2):485-94. doi: 10.3892/ijo.2013.1952.


Ji YB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Co., LTD, 2011.


Kwan CY, Achike FI. (2002). Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: cardiovascular effects and mechanisms of action. Acta Pharmacol Sin, 23(12):1057-68.


Kuo PL and Lin CC. (2003). Tetrandrine-induced cell-cycle arrest and apoptosis in Hep G2 cells. Life Sciences, 73(2):243–252.


Lai YL, Chen YJ, Wu TY, et al. (1998). Induction of apoptosis in human leukemic U937 cells by tetrandrine. Anti-Cancer Drugs, 9(1):77–81.


Li SY, Ling LH, The BS, Seow WK and Thong YH. (1989). Anti-inflammatory and immunosuppressive properties of the bis-benzylisoquinolines: In vitro comparisons of tetrandrine and berbamine. International Journal of Immunopharmacology, 11(4):395-401 doi:10.1016/0192-0561(89)90086-6.


Meng LH, Zhang H, Hayward L, et al. (2004). Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G 1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Research, 64(24):9086–9092.


Ng LT, Chiang LC, Lin YT, and C. C. Lin CC. (2006). Anti-proliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. American Journal of Chinese Medicine, 34(1):125–135.


Wu JM, Chen Y, Chen JC, Lin TY, Tseng SH. (2010). Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Letters, 287(2):187–195.


Xu WL, Shen HL, Ao ZF, et al. (2006). Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia. Leukemia Research, 30(4):407-413.


Xu W, Debeb BG, Lacerda L, Li J, Woodward WA. (2011). Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs) In Vitro. Cancers, 3:2274-2285; doi:10.3390/cancers3022274.


Xu XH, Gan YC, Xu GB, et al. (2012). Tetrandrine citrate eliminates imatinib-resistant chronic myeloid leukemia cells in vitro and in vivo by inhibiting Bcr-Abl/ β-catenin axis. Journal of Zhejiang University SCIENCE B, 13(11):867-874.

Steamed American Ginseng Berry Ginsenosides

Cancer: Colorectal cancer

Action: Cell-cycle arrest, induces apoptosis

Research

The steaming of American ginseng berries augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

It has been found to inhibit the colorectal cancer growth both in vitro and in vivo, and the mechanism of this inhibition is likely through cell-cycle arrest and induced apoptosis in the cells (Xie et al., 2009).

References

Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, et al. (2006). Steamed American Ginseng Berry:,Äâ Ginsenoside Analyzes and Anti-cancer Activities. Journal of Agricultural and Food Chemistry, 54(26): 9936-9942.


Xie JT, Wang CZ, Zhang B, Mehendale SR, Li XL, Sun S, et al. (2009). In Vitro and in Vivo Anti-cancer Effects of American Ginseng Berry: Exploring Representative Compounds. Biological and Pharmaceutical Bulletin, 32(9):1552-1558.

Sophoridine (See also oxymatrine,Matrine)

Cancer: Colorectal, lung

Action: Cell-cycle arrest

Cell-cycle Arrest

Matrine, sophoridine and oxymatrine are isolates from Sophora Flavescens (Aiton).

Sophoridine (SRI) inhibited the growth of SW620 cells significantly in a dose-and time-dependent manner, and morphological characteristics of apoptosis were observed with condensation of the nucleus, cytoplasmic bubbling, and DNA fragmentation. A DNA ladder pattern of inter-nucleosomal fragmentation was observed. Compared with that of the control group, the percentage of the G0/G1 phase and the S phase cells increased after treatment by SRI. Apoptosis was induced in SW620 cells and underwent G0/G1 arrest with exposure to SRI as evidenced by flow cytometry results. Sophoridine could induce the inhibition of cell growth by means of apoptosis in a dose-and time-dependent manner, and cellcycle arrest at G0/G1 (Liang et al., 2008).

Colorectal Cancer

The anti-proliferation of sophoridine (SRI) in human colorectal cells SW480 was detected by3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The pathology and ultrastructure of xenograft tumors treated with SRI were also observed. SRI significantly inhibited the growth of SW480 cells, and the administration of SRI significantly inhibited the growth of xenograft tumors without apparent toxicity. SRI's mechanism of action involved the induction of apoptosis.

These results suggest that SRI produces obvious anti-tumor effects in vitro and in vivo. It supports the viability of developing SRI as a novel therapeutic prodrug for colorectal cancer treatment, as well as providing a method for identifying new anti-tumor drugs in traditional Chinese medicine (Liang et al., 2012).

Sophoridine can inhibit the growth of transplanted solid tumor of human colon cancer SW480 cell line, the mechanism of which involves the inhibition of p53 and VEGF expression. The volume and weight of the tumor xenograft in sophoridine group decreased in comparison with those in the control group. Sophoridine treatment resulted in lowered expressions of p53 and VEGF at both the protein and mRNA levels in the tumor explants as compared with the control group, with a tumor inhibition rate of 34.07% in nude mice (Wang et al., 2010).

References

Liang L, Zhang XH, Wang XY, Chen Y, Deng HZ. (2008). Effect of sophoridine on proliferation and apoptosis of human colon adenocarcinoma cells (SW620). Zhong Guo Yao Li Xue Tong Bao, 24(6): 782-787.


Liang W, Wang XY, Zhang XH, et al. (2012). Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and in vivo. Life Sciences, 91(25–26):1295–1303


Wang QR, Li CH, Fu XQ, et al. (2010). Effects of sophoridine on the growth and expressions of p53 and vascular endothelial growth factor of transplanted solid tumor SW480 in nude mice. Nan Fang Yi Ke Da Xue Xue Bao, 30(7):1593-6.

Scutellaria (See also apigenin, baicalein, baicalin, chrysin, scutellarein, wogonin, scutellarin, carthamidin, isocarthamidin, wogonin)

Cancer: General anti-cancer, colon, breast, glioma,

Action: Scutellaria Anti-cancer, cell-cycle arrest

Malignant Glioma, Breast Carcinoma and Prostate Cancer

The extracts and individual flavonoids inhibited the proliferation of malignant glioma and breast carcinoma cells without affecting primary or non-malignant cells. The flavonoids exhibited different mechanisms of anti-tumor activity as well as positive interactions. The anti-tumor mechanisms involved induction of apoptosis and cell-cycle arrest at G1/G2. Of the extracts tested, leaf extracts of S. angulosa, S. integrifolia, S. ocmulgee and S. scandens were found to have strong anti-cancer activity (Parajuli et al., 2009).

Anti-Cancer

Scutellaria is a traditional herbal remedy with potential anti-cancer activity. The anti-cancer mechanisms of thirteen Scutellaria species were examined, and their leaf, stem and root extracts analyzed for levels of common biologically active flavonoids: apigenin, baicalein, baicalin, chrysin, scutellarein, and wogonin. Malignant glioma, breast carcinoma and prostate cancer cells were used to determine tumor-specific effects of Scutellaria on cell proliferation, apoptosis and cell-cycle progression, via the MTT assay and flow cytometry-based apoptosis and Cell cycle analysis. The extracts and individual flavonoids inhibited the proliferation of malignant glioma and breast carcinoma cells without affecting primary or non-malignant cells. The flavonoids exhibited different mechanisms of anti-tumor activity as well as positive interactions.

The anti-tumor mechanisms involved induction of apoptosis and cell-cycle arrest at G1/G2. Of the extracts tested, leaf extracts of S. angulosa, S. integrifolia, S. ocmulgee and S. scandens were found to have strong anti-cancer activity. This study provides basis for further mechanistic and translational studies into adjuvant therapy of malignant tumors using Scutellaria leaf tissues (Parajuli et al., 2009).

Colon

Scutellaria barbata (SB) is a medicinal plant that contains flavonone compounds such as scutellarein, scutellarin, carthamidin, isocarthamidin, and wogonin. A functional proteomic approach was used to study the inhibitory effects of a chemically standardized extract from SB in human colon adrencarcinoma, LoVo. Results suggest that the chemically standardized extract from SB can induce cell death in the human colon cancer cell line. Goh, Lee, & Ong (2005) showed that the proposed platform provided a rapid approach to study the molecular mechanism because of the inhibitory effects of different doses of the botanical extracts on LoVo cell lines. This included a network of proteins involved in metabolism, regulation of the cell-cycle, and transcription-factor activity.

References

Goh D, Lee YH, Ong ES. (2005). Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem, 53(21):8197-204.


Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. (2009). In vitro anti-tumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med, 75(1):41-8. doi: 10.1055/s-0028-1088364.

Schisandrin

Cancer: Leukemia, breast

Action: Anti-metastatic, cardio-protective, MDR, CYP3A, cell-cycle arrest

Leukemia

Schisandrin B (Sch B) has previously been demonstrated to be a novel P-glycoprotein (P-gp) inhibitor. Recent investigation revealed that Sch B was also an effective inhibitor of the multi-drug resistance-associated protein 1 (MRP1). Sch B's ability to reverse MRP1-mediated drug resistance was tested using HL60/ADR and HL60/MRP human promyelocytic leukemia cell lines, with the overexpression of MRP1 but not P-gp. At the equimolar concentration, Sch B demonstrated significantly stronger potency than the drug probenecid, a MRP1 inhibitor (Sun, Xu, Lu, Pan & Hu, 2007).

Up-regulates CYP3A

The ability of Schisandrin B (Sch B) to modulate cytochrome P450 3A activity (CYP3A) and alter the pharmacokinetic profiles of CYP3A substrate (midazolam) was investigated in vivo in treated rats. Rats were routinely administered with physiological saline (negative control group), ketoconazole (75mg/kg, positive control group), or varying doses of Sch B (experimental groups) for 3 consecutive days. Thereafter, changes in hepatic microsomal CYP3A activity and the pharmacokinetic profiles of midazolam and 1′-hydroxy midazolam in plasma were studied to evaluate CYP3A activity.

The results indicated that Sch B had a significant dose-dependent effect on inhibition of rat hepatic microsomal CYP3A activity. These results suggest that a 3-day treatment of Sch B could increase concentration and oral bioavailability of drugs metabolized by CYP3A (Li, Xin, Yu, & Wu, 2013).

Attenuates Metastasis

NADPH oxidase 4 (NOX4) is a potential target for intervention of cancer metastasis, as reactive oxygen species (ROS) generated by this enzyme plays important roles in TGF-β signaling, an important inducer of cancer metastasis. Zhang, Liu & Hu (2013) show that TGF-β induces ROS production in breast cancer 4T1 cells and enhances cell migration; that the effect of TGF- β depends on NOX4 expression; and that knockdown of NOX4 via RNAi significantly decreases the migration ability of 4T1 cells in the presence or absence of TGF-β and significantly attenuates distant metastasis of 4T1 cells to lung and bone.

Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis. Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of the mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion (Liu et al., 2012).

Cardiotoxicity Protective/ Attenuates Metastasis

Sch B is capable of protecting Dox-induced chronic cardiotoxicity and enhancing its anti-cancer activity. To the best of our knowledge, Sch B is the only molecule ever proved to function as a cardio-protective agent as well as a chemotherapeutic sensitizer, which is potentially applicable for cancer treatment.

Pre-treatment with Sch B significantly attenuated Dox-induced loss of cardiac function and damage of cardiomyocytic structure. Sch B substantially enhanced Dox cytotoxicities toward S180 in vitro and in vivo in mice, and increased Dox cytotoxcity against 4T1 in vitro. Although we did not observe this enhancement against the implanted 4T1 primary tumor, the spontaneous metastasis to lung was significantly reduced in combined treatment group compared to Dox alone group (Xu et al., 2011).

Cell-cycle Arrest/Breast Cancer

Schizandrin inhibits cell proliferation through the induction of cell-cycle arrest with modulating cell-cycle-related proteins in human breast cancer cells. Schizandrin exhibited growth-inhibitory activities in cultured human breast cancer cells, and the effect was the more profound in estrogen receptor (ER)-positive T47D cells than in ER-negative MDA-MB-231 cells. When treated with the compound in T47D cells, schizandrin induced the accumulation of a cell population in the G0/G1 phase, which was further demonstrated by the induction of CDK inhibitors p21 and p27 and the inhibition of the expression of cell-cycle checkpoint proteins including cyclin D1, cyclin A, CDK2 and CDK4 (Kim et al., 2010).

References

Kim SJ, Min HY, Lee EJ, et al. (2010). Growth inhibition and cell-cycle arrest in the G0/G1 by schizandrin, a dibenzocyclooctadiene lignan isolated from Schisandra chinensis, on T47D human breast cancer cells. Phytother Res, 24(2):193-7. doi: 10.1002/ptr.2907.


Li WL, Xin HW, Yu AR, Wu XC. (2013). In vivo effect of Schisandrin B on cytochrome P450 enzyme activity. Phytomedicine, 20(8), 760-765


Liu Z, Zhang B, Liu K, Ding Z, Hu X. (2012). Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One, 7(7):e40480. doi: 10.1371/journal.pone.0040480.


Sun M, Xu X, Lu Q, Pan Q, Hu X. (2007). Schisandrin B: A dual inhibitor of P-glycoprotein and Multi-drug resistance-associated protein 1. Cancer Letters, 246(1-2), 300-307.


Xu Y, Liu Z, Sun J, et al. (2011). Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anti-cancer activity in vivo. PLoS One, 6(12):e28335. doi: 10.1371/journal.pone.0028335.


Zhang B, Liu Z, Hu X. (2013). Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol, 86(2):253-66. doi: 10.1016/j.bcp.2013.05.011.

Sanguinarine (See also chelerythrine)

Cancer:
Prostate, bladder, breast, colon, melanoma, leukemia

Action: Pro-oxidative, anti-inflammatory, apoptosis induction

AR+/AR- Prostate Cancer

Sanguinarine, a benzophenanthridine alkaloid derived from the bloodroot plant Sanguinaria canadensis (L.), has been shown to possess anti-microbial, anti-inflammatory, anti-cancer and anti-oxidant properties. It has been shown that sanguinarine possesses strong anti-proliferative and pro-apoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, the anti-proliferative properties of sanguinarine against prostate cancer were also examined.

The mechanism of the anti-proliferative effects of sanguinarine against prostate cancer were examined by determining the effect of sanguinarine on critical molecular events known to regulate the cell-cycle and the apoptotic machinery.

A highlight of this study was the fact that sanguinarine induced growth-inhibitory and anti-proliferative effects in human prostate carcinoma cells irrespective of their androgen status. To our knowledge, this is the first study showing the involvement of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery during cell-cycle arrest and apoptosis of prostate cancer cells by sanguinarine. These results suggest that sanguinarine may be developed as an agent for the management of prostate cancer (Adhami et al., 2004).

Breast Cancer

The effects of this compound were examined on reactive oxygen species (ROS) production and its association with apoptotic tumor cell death using a human breast carcinoma MDA-MB-231 cell line. Cytotoxicity was evaluated by trypan blue exclusion methods. Apoptosis was detected using DAPI staining, agarose gel electrophoresis and flow cytometer. The expression levels of proteins were determined by Western blot analyzes and caspase activities were measured using colorimetric assays.

These observations clearly indicate that ROS is involved in the early molecular events in the sanguinarine-induced apoptotic pathway. Data suggests that sanguinarine-induced ROS are key mediators of MMP collapse, which leads to the release of cytochrome c followed by caspase activation, culminating in apoptosis (Choi, Kim, Lee & Choi, 2008).

Leukemia

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy.

This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210. Sanguinarine and chelerythrine produced a dose-dependent increase in DNA damage and cytotoxicity in both primary mouse spleen cells and L1210 cells. Chelidonine did not show a significant cytotoxicity or damage DNA in both cell types, but completely arrested growth of L1210 cells.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

T-lymphoblastic Leukemia

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus, were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells were accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells.

The involvement of the mitochondria in apoptosis induction by both alkaloids was supported by cytochrome C elevation in cytosol, with an accompanying decrease in cytochrome C content in the mitochondrial fraction. At the same time, two alkaloids under study differed drastically in their cell-cycle phase-specific effects, since only CHE arrested MT-4 cells at the G2/M phase. It was previously demonstrated, that CHE, in contrast to SAN, does not interact directly with DNA. (Philchenkov, Kaminskyy, Zavelevich, & Stoika, 2008).

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), however chelidonine did not affect mitochondrial integrity.

Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h. Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy & Stoika, 2008).

Colorectal Cancer

The effects of sanguinarine, a benzophenanthridine alkaloid, was examined on reactive oxygen species (ROS) production, and the association of these effects with apoptotic cell death, in a human colorectal cancer HCT-116 cell line. Sanguinarine generated ROS, followed by a decrease in mitochondrial membrane potential (MMP), activation of caspase-9 and -3, and down-regulation of anti-apoptotic proteins, such as Bcl2, XIAP and cIAP-1. Sanguinarine also promoted the activation of caspase-8 and truncation of Bid (tBid).

Observations clearly indicate that ROS, which are key mediators of Egr-1 activation and MMP collapse, are involved in the early molecular events in the sanguinarine-induced apoptotic pathway acting in HCT-116 cells (Han, Kim, Yoo, & Choi, 2013).

Bladder Cancer

Although the effects of sanguinarine, a benzophenanthridine alkaloid, on the inhibition of some kinds of cancer cell growth have been established, the underlying mechanisms are not completely understood. This study investigated possible mechanisms by which sanguinarine exerts its anti-cancer action in cultured human bladder cancer cell lines (T24, EJ, and 5637). Sanguinarine treatment resulted in concentration-response growth inhibition of the bladder cancer cells by inducing apoptosis.

Taken together, the data provide evidence that sanguinarine is a potent anti-cancer agent, which inhibits the growth of bladder cancer cells and induces their apoptosis through the generation of free radicals (Han et al., 2013).

Melanoma

Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Current study has found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨ m), released cytochrome C and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Thus, pre-treatment with the thiol anti-oxidants NAC and GSH abrogated the killing activity of sanguinarine. Collectively, data suggests that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress (Burgeiro, Bento, Gajate, Oliveira, & Mollinedo, 2013).

References

Adhami YM, Aziz MH, Reagan-Shaw SR, et al. (2004). Sanguinarine causes cell-cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther, 3:933


Burgeiro A, Bento AC, Gajate C, Oliveira PJ, Mollinedo F. (2013). Rapid human melanoma cell death induced by sanguinarine through oxidative stress. European Journal of Pharmacology, 705(1-3), 109-18. doi: 10.1016/j.ejphar.2013.02.035.


Choi WY, Kim GY, Lee WH, Choi YH. (2008). Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy, 54(4), 279-87. doi: 10.1159/000149719.


Han MH, Kim GY, Yoo YH, Choi YH. (2013). Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicology Letters, 220(2), 157-66. doi: 10.1016/j.toxlet.2013.04.020.


Han MH, Park C, Jin CY, et al. (2013). Apoptosis induction of human bladder cancer cells by sanguinarine through reactive oxygen species-mediated up-regulation of early growth response gene-1. PLoS One, 8(5), e63425. doi: 10.1371/journal.pone.0063425.


Kaminskyy V, Lin KW, Filyak Y, Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International, 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O, Stoika R. (2008) A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Philchenkov A, Kaminskyy V, Zavelevich M, Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.

Saikosaponin

Cancers:
Cervical, colon, liver, lung, ovarian, liver, breast, hepatocellular

Action: Anti-angiogenic, anti-metastatic, chemo-sensitizer, pro-oxidative, cell-cycle arrest

T cell-mediated autoimmune, induces apoptosis, immune regulating, radio-sensitizer

Induces Apoptosis

Long dan xie gan tang, a well known Chinese herbal formulation, is commonly used by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell-cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Breast

Saikosaponin-A treatment of MDA-MB-231 for 3 hours and of MCF-7 cells for 2 hours, respectively, caused an obvious increase in the sub G1 population of cell-cycles.

Apoptosis in MDA-MB-231 cells was independent of the p53/p21 pathway mechanism and was accompanied by an increased ratio of Bax to Bcl-2 and c-myc levels and activation of caspase-3. In contrast, apoptosis of MCF-7 cells may have been initiated by the Bcl-2 family of proteins and involved p53/p21 dependent pathway mechanism, and was accompanied by an increased level of c-myc protein. The apoptosis of both MDA-MB-231 and MCF-7 cells showed a difference worthy of further research (Chen, Chang, Chung, & Chen, 2003).

Hepatocellular Carcinoma

The signaling pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herbal compund Saikosaponin A was investigated.

Expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin A between 30 minutes to 6 hours of treatment. Pre-treatment of 20 microg/ml PD98059, an inhibitor of MEK (the upstream kinase of ERK), prevents the TPA and Saikosaponin A triggered HepG2 growth inhibition by 50% and 30%, respectively. In addition, AP-1 DNA-binding assay, using non-isotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF), demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin A, which can be reduced by PD98059 pre-treatment.

Results suggest that activation of ERK, together with its downstream transcriptional machinery, mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition (Wen-Sheng, 2003).

The effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rats with hepatocellular carcinoma (HCC) was investigated.

The model group had more malignant nodules than the SSd group. Model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01).

The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates.

SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue (Jia et al., 2012).

T Cell-mediated Autoimmune

Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects.

Results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers, such as IL-2 receptor (CD25), were also down-regulated along with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma.

Results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd. Ssd could be a potential candidate for further study in treating T cell-mediated autoimmune conditions (Wong, Zhou, Cheung, Li, & Liu, 2009).

Cervical Cancer

Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of a combination of saikosaponins with chemotherapeutic drugs have never been addressed. Investigated as to whether these two saikosaponins have chemo-sensitization effect on cisplatin-induced cancer cell cytotoxicity was carried out.

Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small-cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation.

Results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy (Wang et al., 2010).

Colon Cancer

Saikosaponin-a (SSa)-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation.

Results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis (Kim & Hong, 2011).

Immune Regulating

Tumor necrosis factor-alpha (TNF- α ) was reported as an anti-cancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF- α on activating NF- κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF- α -mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), exhibited a variety of pharmacological activities such as anti-inflammatory, anti-bacterial, anti-viral and anti-cancer.

Investigation found that Ssd could potentially inhibit activated T lymphocytes via suppression of NF- κ B, NF-AT and AP-1 signaling. Ssd significantly potentiated TNF- α -mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF- α -induced NF- κ B activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency in abolishing TNF- α -induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells.

Collectively, findings indicate that Ssd has significant potential to be developed as a combined adjuvant remedy with TNF- α for cancer patients (Wong et al., 2013).

Radio-sensitizer

Saikosaponin-d (SSd), a monomer terpenoid purified from the Chinese herbal drug Radix bupleuri, has multiple effects, including anti-cancer properties. Treatment with SSd alone and radiation alone inhibited cell growth and increased apoptosis rate at the concentration used. These effects were enhanced when SSd was combined with radiation. Moreover, SSd potentiated the effects of radiation to induce G0/G1 arrest in SMMC-7721 hepatocellular carcinoma cells, and reduced the G2/M-phase population under hypoxia. SSd potentiates the effects of radiation on SMMC-7721 cells; thus, it is a promising radio-sensitizer. The radio-sensitizing effect of SSd may contribute to its effect on the G0/G1 and G2/M checkpoints of the cell-cycle (Wang et al., 2013).

References

Chen JC, Chang NW, Chung JG, Chen KC. (2003). Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. The American Journal of Chinese Medicine, 31(3), 363-77.


Chou CC, Pan SL, Teng CM, Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Jia X, Dang S, Cheng Y, et al. (2012). Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. Journal of Traditional Chinese Medicine, 32(3), 415-22.


Kim BM, Hong SH. (2011). Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 16(2), 184-197. doi: 10.1007/s10495-010-0557-x.


Wang BF, Dai ZJ, Wang XJ, et al. (2013). Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell-cycle. BMC Complementary and Alternative Medicine, 13:263. doi:10.1186/1472-6882-13-263


Wang Q, Zheng XL, Yang L, et al. (2010). Reactive oxygen species-mediated apoptosis contributes to chemo-sensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental & Clinical Cancer Research, 9(29), 159. doi: 10.1186/1756-9966-29-159.


Wen-Sheng, W. (2003). ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin A. Oncogene, 22(7), 955-963.


Wong VK, Zhang MM, Zhou H, et al. (2013). Saikosaponin-d Enhances the Anti-cancer Potency of TNF- α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signaling in Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013(2013), 745295. doi: 10.1155/2013/745295.


Wong VK, Zhou H, Cheung SS, Li T, Liu L. (2009). Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. Journal of Cellular Biochemistry, 107(2), 303-15. doi: 10.1002/jcb.22126.

Puerarin

Cancer: Colon, breast, acute myeloid leukemia

Action: MDR, aromatase inhibition, induces apoptosis

Induces Apoptosis, Colorectal Cancer

Puerarin is isolated from Pueraria radix (Pueraria lobata [(Willd.) Ohwi]) and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders, as well as anti-cancer properties. Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has anti-thrombotic and anti-allergic properties and stimulates estrogenic activity.

Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments with ³ 25µM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. Puerarin also affects the expression of apoptosis-associated genes, revealing an increase of bax and decreases of c-myc and bcl-2.

Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemo-preventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis (Li, et al., 2006).

Induces Apoptosis, Breast Cancer

Puerarin exhibits a dose-dependent inhibition of cell growth in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell-cycle distribution and apoptosis assays revealed that puerarin induced cell apoptosis through a caspase-3-dependent pathway and mediated cell-cycle arrest in the G2/M phase. It is therefore suggested that puerarin may act as a chemo-preventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis (Lin et al., 2009).

Breast Cancer, MDR

Purearin down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation.

The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, these results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells (Hien et al., 2010).

Acute Myeloid Leukemia (AML)

The results showed that a certain concentration of puerarin (PR) could inhibit the proliferation of these four cell lines effectively in time-and dose-dependent manners, and the intensity of inhibition on four kinds of acute myeloid leukemia (AML) cell lines was from high to low as follows: NB4>Kasumi-1>U937>HL-60. Meanwhile, PR could also change cycle process, cell proportion in G1/G0 phase decreased, cells in S phase increased and Sub-diploid peak also appeared. It is concluded that PR can selectively inhibit the proliferation of four AML cell lines and block cell-cycle process, especially for NB4 cells (Shao et al., 2010).

Aromatase Inhibition

Aromatase P450 (P450 (arom)) is overexpressed in endometriosis, endometrial cancers and uterine fibroids. With weak estrogen agonists/antagonists and some other enzymatic activities, isoflavones are increasingly advocated as a natural alternative to estrogen replacement therapy (ERT) and are available as dietary supplements. Puerarin is a major isoflavonoid compound isolated from Pueraria lobata (ge gen).

Yu et al. (2008) found that puerarin exerted a time-course effect on the inhibition of c-jun mRNA, which parallelled that of P450(arom). The suppression of P450(arom) expression and activity by puerarin treatment may associate with the down-regulation of transcription factor AP-1 or c-jun.

References

Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF- κ B pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res, 54(7):918-28. doi: 10.1002/mnfr.200900146.


Lin YJ, Hou YC, Lin CH, et al. (2009). Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochemical and Biophysical Research Communications, 378(4):683-8. doi:10.1016/j.bbrc.2008.10.178


Shao HM, Tang YH, Jiang PJ, et al. (2010). Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(2):296-9.


Yu C, Li Y, Chen H, Yang S, Xie G. (2008). Decreased expression of aromatase in the Ishikawa and RL95-2 cells by the isoflavone, puerarin, is associated with inhibition of c-jun expression and AP-1 activity. Food Chem Toxicol, 46(12):3671-6. doi: 10.1016/j.fct.2008.09.045.


Yu Z, Li WJ. (2006). Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters, 238(1):53-60.

Piperine

Cancer: Breast, prostate

Action: Autophagy inhibitor, anti-proliferative effect

Breast Cancer Stem Cells

Mammosphere formation assays were performed after curcumin, piperine and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging and percent of ALDH+ cells, by 50% at 5 µM and completely at 10 µM concentration in normal and malignant breast cells. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer-preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer-preventive agent efficacy and Wnt signaling assessment a mechanistic biomarker for use in human clinical trials (Kakarala et al., 2010).

HER-2 Overexpressing Breast Cancer

Results showed that piperine strongly inhibited proliferation and induced apoptosis of HER2-overexpressing breast cancer cells through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level.   Piperine pre-treatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression (Do et al., 2013).

Prostate Cancer

Piperine treatment resulted in a dose-dependent inhibition of the proliferation of prostate cancer DU145, PC-3 and LNCaP cell lines. Cell-cycle arrest at G₀/G₁ was induced and cyclin D1 and cyclin A were down-regulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell-cycle arrest in the former two cell lines than the latter one. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell-cycle arrest and autophagy (Ouyang et al., 2013).

References

Do MT, Kim HG, Choi JH, et al. (2013). Anti-tumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem, 141(3):2591-9. doi: 10.1016/j.foodchem.2013.04.125.


Kakarala M, Brenner DE, Korkaya H, et al. (2010). Targeting breast stem cells with the cancer-preventive compounds curcumin and piperine. Breast Cancer Res Treat, 122(3): 777–785.


Ouyang DY, Zeng LH, Pan H, et al. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell-cycle arrest and autophagy. Food Chem Toxicol, 60:424-30. doi: 10.1016/j.fct.2013.08.007.

Pinosylvin

Cancer: Colorectal, lung

Action: Anti-cancer, anti-inflammatory and anti-oxidant, chemo-preventive, anti-metastatic effect

Pinosylvin is a naturally occurring chemo-preventive trans-stilbenoid mainly found in plants of the Pinus genus (Pinus (L.) and Gnetum cleistostachyum (C. Y. Cheng)).

Anti-cancer, Anti-inflammatory and Anti-oxidant

Stilbenes are small molecular weight (approximately 200-300 g/mol), naturally occurring compounds and are found in a wide range of plant sources, aromatherapy products, and dietary supplements. These molecules are synthesized via the phenylpropanoid pathway and share some structural similarities to estrogen. Upon environmental threat, the plant host activates the phenylpropanoid pathway and stilbene structures are produced and subsequently secreted. Stilbenes act as natural protective agents to defend the plant against viral and microbial attack, excessive ultraviolet exposure, and disease. Stilbene compounds, piceatannol, pinosylvin, rhapontigenin, and pterostilbene possess potent anti-cancer, anti-inflammatory and anti-oxidant activities (Roupe et al., 2006).

Colorectal

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, has exhibited a potential cancer chemo-preventive activity. The anti-proliferative activity of pinosylvin was investigated in human colorectal HCT 116 cancer cells.

Pinosylvin was also found to attenuate the activation of proteins involved in focal adhesion kinase (FAK)/c-Src/extracellular signal-regulated kinase (ERK) signaling, and phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK-3β) signaling pathway. Subsequently, pinosylvin suppressed the nuclear translocation of β-catenin, one of downstream molecules of PI3K/Akt/GSK-3β signaling, and these events led to the sequential down-regulation of β-catenin-mediated transcription of target genes including BMP4, ID2, survivin, cyclin D1, MMP7, and c-Myc. These findings demonstrate that the anti-proliferative activity of pinosylvin might be associated with the cell-cycle arrest and down-regulation of cell proliferation regulating signaling pathways in human colorectal cancer cells (Park et al., 2013).

Anti-metastatic

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibits a potential cancer chemo-preventive activity and also inhibits the growth of various human cancer cell lines via the regulation of cell-cycle progression. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. Park et al. (2012) found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems.

The analysis of tumor in lung tissues indicated that the anti-metastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

References

Park EJ, Park HJ, Chung HJ, et al. (2012). Anti-metastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem, 23(8):946-52. doi: 10.1016/j.jnutbio.2011.04.021.


Park EJ, Chung HJ, Park HJ, et al. (2013). Suppression of Src/ERK and GSK-3/ β-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol, 55:424-33. doi:10.1016/j.fct.2013.01.007.


Roupe KA, Remsberg CM, Yá–ez JA, Davies NM. (2006). Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol, 1(1):81-101.

Pheophorbide

Cancer: Liver, lung, uterine sarcoma

Action: MDR

MDR

Pheoborbide is isolated from Scutellaria barbata, a Traditional Chinese Medicine native in southern China, and has been widely used for treating liver diseases.   Pheophorbide a (Pa), an active component from S. barbata, has been shown to have anti-proliferative and Multi-drug-resistant (MDR) effects on the human hepatoma cell line R-HepG2.

Significant reduction of P-glycoprotein expression on Pa-treated R-HepG2 cells was found at both transcriptional and translational levels, leading to reduction of P-glycoprotein activity. In addition, mechanistic study elucidated that Pa induced cell-cycle arrest at G2/M phase and inhibited the expressions of G2/M phase cell-cycle regulatory proteins, cyclin-A1 and cdc2 in a dose-dependent manner (Tang et al., 2007).

Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. The chemical constituents of Typhonium flagelliforme, particularly those which have anti-proliferative properties towards human cancer cell lines, have been investigated. Purification of the chemical constituents by various chromatographic procedures was guided by the anti-proliferative activity. Four pheophorbide related compounds, namely pheophorbide-a, pheophorbide-a', pyropheophorbide-a and methyl pyropheophorbide-a were identified in the most active fraction, D/F19.

These constituents exhibited anti-proliferative activity against cancer cells and activity increased following photoactivation. However, anti-proliferative activity exhibited by D/F19 alone, relative to the combined effect of pheophorbides and their subfractions, suggests some form of synergistic action between the constituents. The inhibitory effect of D/F19 and the pheophorbides was apoptotic in the absence of light. Most of the chemical constituents identified in this plant have not been reported previously (Lai, Mas, Nair, Mansor, & Navaratnam, 2010).

Prolonged cancer chemotherapy is associated with the development of multi-drug resistance (MDR), which is a major cause of treatment failure. Photodynamic therapy (PDT) has been applied as anti-cancer therapy and a means of circumventing MDR. The anti-proliferative effect of pheophorbide a-mediated photodynamic therapy (Pa-PDT) has been demonstrated in several human cancer cell lines, including the uterine sarcoma cell line, MES-SA.

Combined therapy using Pa-PDT and Dox, a common chemotherapeutic drug, was found to be synergistic in the cell line, MES-SA/Dx5. Both activity and expression of MDR1 and P-gp were reduced by Pa-PDT treatment and such reductions were attenuated by α-tocopherol, the scavenger of reactive oxygen species (ROS), suggesting that the effect of Pa-PDT was mediated by the generation of intracellular ROS (Cheung et al., 2013).

References

Cheung KK, Chan JY, Fung KP. (2013). Anti-proliferative effect of pheophorbide a-mediated photodynamic therapy and its synergistic effect with doxorubicin on multiple drug-resistant uterine sarcoma cell MES-SA/Dx5. Drug Chem Toxicol, 36(4):474-83. doi: 10.3109/01480545.2013.776584.


Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V. (2010). Chemical constituents and in vitro anti-cancer activity of Typhonium flagelliforme (Araceae).


Journal of Ethnopharmacology, 127(2), 486-94. doi: 10.1016/j.jep.2009.10.009.


Tang PM, Chan JY, Zhang DM, et al. (2007). Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated Multi-drug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther, 6(4):504-9.

Phenolics

Cancer: Prostate

Action: Chemo-preventive, anti-oxidant, modulate insulin-like growth factor-I (IGF-I)

Natural phenolic compounds play an important role in cancer prevention and treatment. Phenolic compounds from medicinal herbs and dietary plants include phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others. Various bioactivities of phenolic compounds are responsible for their chemo-preventive properties (e.g. anti-oxidant, anti-carcinogenic, or anti-mutagenic and anti-inflammatory effects) and also contribute to their inducing apoptosis by arresting cell-cycle, regulating carcinogen metabolism and ontogenesis expression, inhibiting DNA binding and cell adhesion, migration, proliferation or differentiation, and blocking signaling pathways. A review by Huang et al., (2010) covers the most recent literature to summarize structural categories and molecular anti-cancer mechanisms of phenolic compounds from medicinal herbs and dietary plants (Huang, Cai, & Zhang., 2010).

Phenolics are compounds possessing one or more aromatic rings bearing one or more hydroxyl groups with over 8,000 structural variants, and generally are categorized as phenolic acids and analogs, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others based on the number of phenolic rings and of the structural elements that link these rings (Fresco et al., 2006).

Phenolic Acids

Phenolic acids are a major class of phenolic compounds, widely occurring in the plant kingdom.   Predominant phenolic acids include hydroxybenzoic acids (e.g. gallic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, and syringic acid) and hydroxycinnamic acids (e.g. ferulic acid, caffeic acid, p-coumaric acid, chlorogenic acid, and sinapic acid). Natural phenolic acids, either occurring in the free or conjugated forms, usually appear as esters or amides.

Due to their structural similarity, several other polyphenols are considered as phenolic acid analogs such as capsaicin, rosmarinic acid, gingerol, gossypol, paradol, tyrosol, hydroxytyrosol, ellagic acid, cynarin, and salvianolic acid B (Fresco et al., 2006; Han et al., 2007).

Gallic acid is widely distributed in medicinal herbs, such as Barringtonia racemosa, Cornus officinalis, Cassia auriculata, Polygonum aviculare, Punica granatum, Rheum officinale, Rhus chinensis, Sanguisorba officinalis, and Terminalia chebula as well as dietary spices, for example, thyme and clove. Other hydroxybenzoic acids are also ubiquitous in medicinal herbs and dietary plants (spices, fruits, vegetables).

For example, Dolichos biflorus, Feronia elephantum, and Paeonia lactiflora contain hydroxybenzoic acid; Cinnamomum cassia, Lawsonia inermis, dill, grape, and star anise possess protocatechuic acid; Foeniculum vulgare, Ipomoea turpethum, and Picrorhiza scrophulariiflora have vanillic acid; Ceratostigma willmottianum and sugarcane straw possess syringic acid (Cai et al., 2004; Shan et al., 2005; Sampietro & Vattuone, 2006; Stagos et al., 2006; Surveswaran et al., 2007).

Ferulic, caffeic, and p-coumaric acid are present in many medicinal herbs and dietary spices, fruits, vegetables, and grains (Cai et al., 2004). Wheat bran is a good source of ferulic acids. Free, soluble-conjugated, and bound ferulic acids in grains are present in the ratio of 0.1:1:100. Red fruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, sweet cherry, sour cherry, elderberry, black currant, and red currant) are rich in hydroxycinnamic acids (caffeic, ferulic, p-coumaric acid) and p-hydroxybenzoic, ellagic acid, which contribute to their anti-oxidant activity (Jakobek et al., 2007).

Chlorogenic acids are the ester of caffeic acids and are the substrate for enzymatic oxidation leading to browning, particularly in apples and potatoes. Chlorogenic acid is a major phenolic acid from medicinal plants especially in the species of Apocynaceae and Asclepiadaceae (Huang et al., 2007).

Salvianolic acid B is a major water-soluble polyphenolic acid extracted from Radix salviae miltiorrhizae, which is a common herbal medicine clinically used as an anti-oxidant agent for thousands of years in China. There are 9 activated phenolic hydroxyl groups that may be responsible for the release of active hydrogen to block lipid peroxidation reaction. Rosmarinic acid is an anti-oxidant phenolic compound, which is found in many dietary spices such as mint, sweet basil, oregano, rosemary, sage, and thyme.

Gossypol, a polyphenolic aldehyde, derived from the seeds of the cotton plant (genus Gossypium, family Malvaceae), has contraceptive activity and can cause hypokalemia in some men. Gingerol, a phenolic substance, is responsible for the spicy taste of ginger.

Polyphenols

Polyphenols are a structural class of mainly natural, organic chemicals characterized by the presence of large multiples of phenol structural units. The number and characteristics of these phenol structures underlie the unique physical, chemical, and biological (metabolic, toxic, therapeutic, etc.) properties of particular members of the class. They may be broadly classified as phenolic acids, flavonoids, stilbenes, and lignans (Manach et al., 2004).

Initial evidence on cancer came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers.

Polyphenolic cancer action can be attributed not only to their ability to act as anti-oxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery – from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components – and provide insights into their beneficial health effects (Kampa et al., 2007).

Polyphenols and Copper

Anti-cancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as anti-oxidants, but can be pro-oxidants in the presence of copper ions. Through multiple assays, Khan et al. (2013) show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition.

Since the concentration of copper is significantly elevated in cancer cells, their results strengthen the idea that an important anti-cancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this pro-oxidant chemo-preventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.

IGF-1; Prostate Cancer

The ability of polyphenols from tomatoes and soy (genistein, quercetin, kaempferol, biochanin A, daidzein and rutin) were examined for their ability to modulate insulin-like growth factor-I (IGF-I)–induced in vitro proliferation and apoptotic resistance in the AT6.3 rat prostate cancer cell line. IGF-I at 50 µg/L in serum-free medium produced maximum proliferation and minimized apoptosis. Genistein, quercetin, kaempferol and biochanin A exhibited dose-dependent inhibition of growth with a 50% inhibitory concentration (IC50) between 25 and 40 µmol/L, whereas rutin and daidzein were less potent with an IC50 of >60 µmol/L. Genistein and kaempferol potently induced G2/M cell-cycle arrest.

Genistein, quercetin, kaempferol and biochanin A, but not daidzein and rutin, counteracted the anti-apoptotic effects of IGF-I. Human prostate epithelial cells grown in growth factor-supplemented medium were also sensitive to growth inhibition by polyphenols. Genistein, biochanin A, quercetin and kaempferol reduced the insulin receptor substrate-1 (IRS-1) content of AT6.3 cells and prevented the down-regulation of IGF-I receptor β in response to IGF-I binding.

Several polyphenols suppressed phosphorylation of AKT and ERK1/2, and more potently inhibited IRS-1 tyrosyl phosphorylation after IGF-I exposure. In summary, polyphenols from soy and tomato products may counteract the ability of IGF-I to stimulate proliferation and prevent apoptosis via inhibition of multiple intracellular signaling pathways involving tyrosine kinase activity (Wang et al., 2003).

Flavonoids

Flavonoids have been linked to reducing the risk of major chronic diseases including cancer because they have powerful anti-oxidant activities in vitro, being able to scavenge a wide range of reactive species (e.g. hydroxyl radicals, peroxyl radicals, hypochlorous acid, and superoxide radicals) (Hollman & Katan, 2000).

Flavonoids are a group of more than 4,000 phenolic compounds that occur naturally in plants (Ren et al., 2003). These compounds commonly have the basic skeleton of phenylbenzopyrone structure (C6-C3-C6) consisting of 2 aromatic rings (A and B rings) linked by 3 carbons that are usually in an oxygenated central pyran ring, or C ring (12). According to the saturation level and opening of the central pyran ring, they are categorized mainly into flavones (basic structure, B ring binds to the 2 position), flavonols (having a hydroxyl group at the 3 position), flavanones (dihydroflavones) and flavanonols (dihydroflavonols; 2–3 bond is saturated), flavanols (flavan-3-ols and flavan-3,4-diols; C-ring is 1-pyran), anthocyanins (anthocyanidins; C-ring is 1-pyran, and 1–2 and 3–4 bonds are unsaturated), chalcones (C-ring is opened), isoflavonoids (mainly isoflavones; B ring binds to the 3 position), neoflavonoids (B ring binds to the 4-position), and biflavonoids (dimer of flavones, flavonols, and flavanones) (Iwashina, 2000; Cai et al., 2004; Cai et al., 2006; Ren et al., 2003)

Tannins

Tannins are natural, water-soluble, polyphenolic compounds with molecular weight ranging from 500 to 4,000, usually classified into 2 classes: hydrolysable tannins (gallo- and ellagi-tannins) and condensed tannins (proanthocyanidins) (Cai et al., 2004).

The former are complex polyphenols, which can be degraded into sugars and phenolic acids through either pH changes or enzymatic or nonenzymatic hydrolysis. The basic units of hydrolysable tannins of the polyster type are gallic acid and its derivatives (Fresco et al., 2006). Tannins are commonly found combined with alkaloids, polysaccharides, and proteins, particularly the latter (Han et al., 2007).

Stilbenes

Stilbenes are phenolic compounds displaying 2 aromatic rings linked by an ethane bridge, structurally characterized by the presence of a 1,2-diarylethene nucleus with hydroxyls substituted on the aromatic rings. They are distributed in higher plants and exist in the form of oligomers and in monomeric form (e.g. resveratrol, oxyresveratrol) and as dimeric, trimeric, and polymeric stilbenes or as glycosides.

The well-known compound, trans-resveratrol, a phytoalexin produced by plants, is the member of this chemical famil most abundant in the human diet (especially rich in the skin of red grapes), possessing a trihydroxystilben skeleton (Han et al., 2007). There are monomeric stilbenes in 4 species of medicinal herbs, that is, trans-resveratrol in root of Polygonum cuspidatum, Polygonum multiflorum, and P. lactiflora; piceatannol in root of P. multiflorum; and oxyresveratrol in fruit of Morus alba (Cai et al., 2006).

It was reported that dimeric stilbenes and stilbene glycosides were identified from these species (Xiao et al., 2002). In addition, 40 stilbene oligomers were isolated from 6 medicinal plant species (Shorea hemsleyana, Vatica rassak, Vatica indica, Hopea utilis, Gnetum parvifolium, and Kobresia nepalensis). Other stilbenes that have recently been identified in dietary sources, such as piceatannol and its glucoside (usually named astringin) and pterostilbene, are also considered as potential chemo-preventive agents. These and other in vitro and in vivo studies provide a rationale in support of the use of stilbenes as phytoestrogens to protect against hormone-dependent tumors (Athar et al., 2007).

Curcuminoids

Curcuminoids are ferulic acid derivatives, which contain 2 ferulic acid molecules linked by a methylene with a β -diketone structure in a highly conjugated system. Curcuminoids and ginerol analogues are natural phenolic compounds from plants of the family Zingiberaceae. Curcuminoids include 3 main chemical compounds: curcumin, demethoxycurcumin, and bisdemethoxycurcumin (Cai et al., 2006). All 3 curcuminoids impart the characteristic yellow color to turmeric, particularly to its rhizome, and are also major yellow pigments of mustard. Curcuminoids containing Curcuma longa (turmeric) and ginerol analogues containing Zingiber officinale (ginger) are not only used as Chinese traditional medicines but also as natural color agents or ordinary spices.

In addition, curcuminoids with anti-oxidant properties have been isolated from various Curcuma or Zingiber species, such as the Indian medicinal herb Curcuma xanthorrhiza.

Coumarins

Coumarins are lactones obtained by cyclization of cis-ortho-hydroxycinnamic acid, belonging to the phenolics with the basic skeleton of C6+ C3. This precursor is formed through isomerization and hydroxylation of the structural analogs trans-hydroxycinnamic acid and derivatives. Coumarins are present in plants in the free form and as glycosides. In general, coumarins are characterized by great chemical diversity, mainly differing in the degree of oxygenation of their benzopyrane moiety.

In nature, most coumarins are C7-hydroxylated (Fresco et al., 2006; Cai et al., 2006). Major coumarin constituents included simple hydroxylcoumarins (e.g. aesculin, esculetin, scopoletin, and escopoletin), furocoumarins and isofurocoumarin (e.g. psoralen and isopsoralen from Psoralea corylifolia), pyranocoumarins (e.g. xanthyletin, xanthoxyletin, seselin, khellactone, praeuptorin A), bicoumarins, dihydro-isocoumarins (e.g. bergenin), and others (e.g. wedelolactone from Eclipta prostrata) (Shan et al., 2005).

Plants, fruits, vegetables, olive oil, and beverages (coffee, wine, and tea) are all dietary sources of coumarins; for example, seselin from fruit of Seseli indicum, khellactone from fruit of Ammi visnaga, and praeuptorin A from Peucedanum praeruptorum (Sonnenberg et al., 1995). In previous studies, it was found that coumarins occurred in the medicinal herbs Umbelliferae, Asteraceae, Convolvulaceae, Leguminosae, Magnoliaceae, Oleaceae, Rutaceae, and Ranunculaceae, such as simple coumarins from A. annua, furocoumarins (5-methoxyfuranocoumarin) from Angelica sinensis, pyranocoumarins from Citrus aurantium, and isocoumarins from Agrimonia pilosa. Coumarins have also been detected in some Indian medicinal plants (e.g. Toddalia aculeata, Murraya exotica, Foeniculum vulgare, and Carum copticum) and dietary spices (e.g. cumin and caraway). In addition, coumestans, derivatives of coumarin, including coumestrol, a phytoestrogen, are found in a variety of medicinal and dietary plants such as soybeans and Pueraria mirifica (Chansakaow et al., 2000).

Lignans

Lignans are also derived from cis-o-hydroxycinnamic acid and are dimers (with 2 C6-C3 units) resulting from tail–tail linkage of 2 coniferl or sinapyl alcohol units (Cai et al., 2007). Lignans are mainly present in plants in the free form and as glycosides in a few (Fresco et al., 2006). Main lignan constituents are lignanolides (e.g. arctigenin, arctiin, secoisolariciresinol, and matairesinol from Arctium lappa), cyclolignanolides (e.g. chinensin from Polygala tenuifolia), bisepoxylignans (e.g. forsythigenol and forsythin from Forsythia suspensa), neolignans (e.g. magnolol from Cedrus deodara and Magnolia officinalis), and others (e.g. schizandrins, schizatherins, and wulignan from Schisandra chinensis; pinoresinol from Pulsatilla chinensis; and furofuran lignans from Cuscuta chinensis) (Surveswaran et al., 2007).

The famous tumor therapy drug podophyllotoxin (cyclolignanolide) was first identified in Podophyllum peltatum, which Native Americans used to treat warts, and also found in a traditional medicinal plant Podophyllum emodi var. chinense (Efferth et al., 2007). Two new lignans (podophyllotoxin glycosides) were isolated from the Chinese medicinal plant, Sinopodophyllum emodi (Zhao et al., 2002). Different lignans (e.g. cubebin, hinokinin, yatein, and isoyatein) were identified from leaves, berries, and stalks of Piper cubeba L. (Piperaceae), an Indonesian medicinal plant (Elfahmi et al., 2007).

Milder et al. (2005) established a lignan database from Dutch plant foods by quantifying lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol in 83 solid foods and 26 beverages commonly consumed in The Netherlands. They reported that flaxseed (mainly secoisolariciresinol), sesame seeds, and Brassica vegetables (mainly pinoresinol and lariciresinol) contained unexpectedly high levels of lignans. Sesamol, sesamin, and their glucosides are also good examples of this type of compound, which comes from sesame oil and sunflower oil.

Quinones

Natural quinones in medicinal plants fall into 4 categories: anthraquinones, phenanthraquinones, naphthoquinones, and benzoquinones (Cai et al., 2004). Anthraquinones are the largest class of natural quinones and occur more widely in medicinal and dietary plants than other natural quinones (Cai et al., 2006). The hydroxyanthraquinones normally have 1 to 3 hydroxyl groups on the anthraquinone structure. Previous investigation found that quinones were distributed in 12 species of medicinal herbs from 9 families such as Polygalaceae, Rubiaceae, Boraginaceae, Labiatae, Leguminosae, Myrsinaceae, and so forth (Surveswaran et al., 2007).

For example, high content benzoquinones and derivatives (embelin, embelinol, embeliaribyl ester, embeliol) are found in Indian medicinal herb Embelia ribes; naphthoquinones (shikonin, alkannan, and acetylshikonin) come from Lithospermum erythrorhizon and juglone comes from Juglans regia; phenanthraquinones (tanshinone I, II A, and II B ) were detected in Salvia miltiorrhiza; denbinobin was detected in Dendrobium nobile; and many anthraquinones and their glycosides (e.g. rhein, emodin, chrysophanol, aloe-emodin, physcion, purpurin, pseudopurpurin, alizarin, munjistin, emodin-glucoside, emodin-malonyl-glucoside, etc.) were identified in the rhizomes and roots from P. cuspidatum (also in leaves), P. multiflorum, and R. officinale in the Polygalaceae and Rubia cordifolia in the Rubiaceae (Surveswaran et al., 2007; Huang et al., 2008). In addition, some naphthoquinones were isolated from maize (Zea mays L.) roots (Luthje et al., 1998).

References:

Athar M, Back JH, Tang XW, et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharm, 224:274–283.


Cai YZ, Luo Q, Sun M and Corke H. (2004). Anti-oxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74:2157–2184.


Cai YZ, Sun M, Xing J, Luo Q and Corke H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci, 78:2872–2888.


Chansakaow S, Ishikawa T, Seki H, et al. (2000). Identification of deoxymiroestrol as the actual rejuvenating principle of 'Kwao Keur', Pueraria mirifica. J. Nat. Prod, 63(2):173–5. doi:10.1021/np990547v.


Efferth T, Li P CH, Konkimalla V and Kaina B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends Mol Med, 13:353–361.


Elfahmi, Ruslan K, Batterman S, et al. (2007). Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem Syst Ecol, 35:397–402.


Fresco P, Borges F, Diniz C and Marques M PM. (2006). New insights on the anti-cancer properties of dietary polyphenols. Med Res Rev, 26:747–766.


Han XZ, Shen T and Lou HX. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci, 8:950–988


Hollman P and Katan M B. (2000). Flavonols, flavones, and flavanols—nature, occurrence, and dietary burden. J Sci Food Agric, 80:1081–1093.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2007). A potential anti-oxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot, 61:14–30.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2008). Comparative analysis of bioactivities of four Polygonum species. Planta Med, 74:43–49.


Huang WH, Cai YZ, Zhang Y. (2010). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1):1–20 doi: 10.1080/01635580903191585


Iwashina T. (2000). The structure and distribution of the flavonoids in plants. J Plant Res, 113:287–299.


Jakobek L, Seruga M, Novak I and Medvidovic-Kosanovic M. (2007). Flavonols, phenolic acids, and anti-oxidant activity of some red fruits. Deut Lebensm-Runsch, 103:369–378.


Kampa M, Nifli AP, Notas G, Castanas E. (2007). Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol, 159:79-113.


Khan HY, Zubair H, Faisal M, et al. (2013). Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemo-preventive action. Mol Nutr Food Res. doi: 10.1002/mnfr.201300417.


Luthje S, Van Gestelen P, Cordoba-Pedregosa MC, et al. (1998). Quinones in plant plasma membranes—a missing link?. Protoplasma, 205:43–51.


Manach C, Scalbert A, Morand C, RŽmŽsy C, JimŽnez L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727–47.


Milder I, Arts I, van de Putte B, Venema DP and Hollman P. (2005). Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Brit J Nutr, 93:393–402.


Ren WY, Qiao ZH, Wang HW, Zhu L and Zhang L. (2003). Flavonoids: promising anti-cancer agents. Med Res Rev, 23:519–534.


Sampietro DA and Vattuone MA. (2006). Sugarcane straw and its phytochemicals as growth regulators of weed and crop plants. Plant Growth Regul, 48: 21–27.


Shan B, Cai YZ, Sun M and Corke H. (2005). Anti-oxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53:7749–7759.


Sonnenberg H, Kaloga M, Eisenbac N and Fromming KK. (1995). Isolation and characterization of an angular-type dihydropyranocoumaringlycoside from the fruits of Ammi visnaga (L) Lam (Apiaceae). Zeitschrift Natur C-A J BioSci, 50: 729–731.


Stagos D, Kazantzoglou, G, Theofanidou, D, Kakalopoulou, G, Magiatis, P. (2006). Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat Res-Gen Tox En, 609:165–175.


Surveswaran S, Cai YZ, Corke H and Sun M. (2007). Systematic evaluation of natural phenolic anti-oxidants from 133 Indian medicinal plants. Food Chem, 102:938–953.


Wang SH, DeGroff VL, Clinton SK. (2003). Tomato and Soy Polyphenols Reduce Insulin-Like Growth Factor-I–Stimulated Rat Prostate Cancer Cell Proliferation and Apoptotic Resistance In Vitro via Inhibition of Intracellular Signaling Pathways Involving Tyrosine Kinase. J. Nutr, 133(7):2367-2376


Xiao K, Xuan LJ, Xu YM, Bai D, Zhong DX. (2002). Dimeric stilbene glycosides from Polygonum cuspidatum. Eur J Org Chem, 3:564–568.


Zhao C, Nagatsu A, Hatano K, Shirai N, Kato S. (2003). New lignan glycosides from Chinese medicinal plant, Sinopodophyllum emodi. Chem Pharm Bull, 51:255–261.

Periplocin

Cancer: Lung, colorectal, leukemia

Action: Apoptosis-inducing, cytostatic effect

Apoptosis

The anti-tumor component of Cortex periplocae is periplocin. Periplocin is one of the cardenolides isolated from cortex periplocae which is used for treatment of rheumatoid arthritis and reinforcement of bones and tendons in traditional medicine.

Periplocin has been reported to inhibit many cell lines, including MCF-7, TE-13, QG-56, SMMC-7721, T24, Hela, K562, TE-13 and Eca-109 cells. Studies have shown that periplocin reduces the expression of survivin, an inhibitor of apoptosis. It also releases caspases-3 and -7 from complexes and thereby increases their activities, ultimately inducing tumor cell apoptosis (Zhao et al., 2009).

Lung Cancer

The anti-tumor activity of periplocin was investigated in lung cancer cells both in vitro and in vivo, and its anti-cancer mechanism was explored. Periplocin inhibited the growth of lung cancer cells and induced their apoptosis in a time- and dose-dependent manner by cell-cycle arrest in G0/G1 phase. Periplocin exhibited anti-tumor activity both in human (A549) and mouse (LL/2) lung cancer xenograft models. Immunohistochemical analysis revealed that intratumoral angiogenesis was significantly suppressed.

Furthermore, anti-cancer activity mediated by periplocin was associated with decreased level of phosphorylated AKT and ERK both in vitro and in vivo, which are important for cell growth and survival. Moreover, periplocin induced apoptosis by down-regulating Bcl-2 and up-regulating Bax, leading to activation of caspase-3 and caspase-9.

These findings suggest that periplocin could inhibit the growth of lung cancer both in vitro and in vivo, which could be attributed to the inhibition of proliferation and the induction of apoptosis signaling pathways, such as AKT and ERK. These observations provide further evidence on the anti-tumor effect of periplocin, and it may be of importance to further explore its potential role as a therapeutic agent for cancer (Lu et al., 2010).

Colorectal Carcinomas

The Wnt/beta-catenin signaling pathway plays an important role in the development and progression of human cancers, especially in colorectal carcinomas. Periplocin extracted from cortex periplocae (CPP) significantly inhibited the proliferation of SW480 cells in a time-and dose-dependent manner (P<0.01). CPP (0.5 microg/mL) also caused G0/G1 cell-cycle arrest of SW480 cells and induced cell apoptosis (P<0.05). Compared to untreated control cells, after the treatment with CPP, the protein levels of beta-catenin in total cell lysates, cytosolic extracts, and nuclear extracts were reduced (P<0.01); the binding activity of the TCF complex in nucleus to its specific DNA binding site was suppressed; mRNAs of the downstream target genes survivin, c-myc and cyclin D1 were decreased (P<0.01) while beta-catenin mRNA remained unchanged.

CPP could significantly inhibit the proliferation of SW480 cells, which may be through down-regulating the Wnt/beta-catenin signaling pathway (Du et al., 2009).

Pro-apoptotic and Cytostatic Effect/Leukemia

Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na(+)/K(+)-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L., and the mechanisms underlying such an effect.

The pro-apoptotic and cytostatic effect of the compounds was tested in U937 (monocytic leukemia) and PC3 (prostate adenocarcinoma). Characterization of apoptosis and cell-cycle impairment was obtained by cytofluorimetry and WB. Periplocymarin and periplocin were the most active compounds, periplocymarin being more effective than the reference compound ouabain. The reduction of cell number by these two cardenolides was due in PC3 cells mainly to the activation of caspase-dependent apoptotic pathways, while in U937 cells to the induction of cell-cycle impairment without extensive cell death. Interestingly, periplocymarin, at cytostatic but non-cytotoxic doses, was shown to sensitize U937 cells to TRAIL. Taken together, these data outline that cardiac glycosides are promising anti-cancer drugs and contribute to the identification of new natural cardiac glycosides to obtain chemically modified non-cardioactive/low toxic derivatives with enhanced anti-cancer potency (Bloise et al., 2009).

References

Bloise E, Braca A, De Tommasi N, Belisario MA. (2009). Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol, 64(4):793-802. doi: 10.1007/s00280-009-0929-5.


Du YY, Liu X, Shan BE. (2009). Periplocin extracted from cortex periplocae induces apoptosis of SW480 cells through inhibiting the Wnt/beta-catenin signaling pathway. Ai Zheng, 28(5):456-60.


Lu ZJ, Zhou Y, Song Q, et al. (2010). Periplocin inhibits growth of lung cancer in vitro and in vivo by blocking AKT/ERK signaling pathways. Cell Physiol Biochem, 26(4-5):609-18. doi: 10.1159/000322328.


Zhao LM, Ai J, Zhang Q, et al. (2009). Periplocin (a sort of ethanol from Cortex periplocae) induces apoptosis of esophageal carcinoma cells by influencing expression of related genes. Tumor (Chin), 29:1025-1030.

Oleanolic Acid (OA)

Cancer:
Pancreatic, hepatocellular carcinoma, prostate, lung, gastric, breast

Action: Radio-sensitizer, pro-apoptotic with 5-FU

Oleanolic acid (OA), a pentacyclic triterpenoid isolated from several plants, including Rosa woodsii (Lindl.), Prosopis glandulosa (Torr.), Phoradendron juniperinum (Engelm. ex A. Gray), Syzygium claviflorum (Roxburgh), Hyptis capitata (Jacq.) and Ternstromia gymnanthera (L.) exhibits potential anti-tumor activity against many tumor cell lines. Mistletoe contains water-insoluble triterpenoids, mainly oleanolic acid, that have anti-tumorigenic effects (StrŸh et al., 2013).

Pancreatic Cancer

Results of a study by Wei et al. (2012) showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml−1. The study also showed that OA could induce remarkable apoptosis and revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells.

These results provide evidence that OA arrests the cell-cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cell.

The effects of the combination of OA and 5-fluorouracil (5-FU) on Panc-28 human pancreatic cells showed that combined use synergistically potentiated cell death effects on these cells, and that the pro-apoptotic effects were also increased. The expression of apoptosis related proteins was also affected in cells treated with the combination of OA and 5-FU, including activation of caspases-3 and the expression of Bcl-2/Bax, survivin and NF-κB (Wei et al., 2012).

Radio-sensitizer

The combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the down-regulation of γ-GCS activity. Therefore, the utilization of OA as a radio-sensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer (Wang et al., 2013).

Prostate Cancer, Lung Cancer, Gastric Cancer, Breast Cancer

Twelve derivatives of oleanolic acid (OA) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50=0.39 µM) and compound 28 displayed the best activity against A549 cell line (IC50=0.22 µM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines (Hao et al., 2013).

Hepatocellular Carcinoma

OA induced G2/M cell-cycle arrest through p21-mediated down-regulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell-cycle arrest. OA demonstrated significant anti-tumor activities in hepatocellular carcinoma (HCC) in vivo and in vitro models. These data provide new insights into the mechanisms underlying the anti-tumor effect of OA (Wang et al., 2013).

References

Hao J, Liu J, Wen X, Sun H. (2013). Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg Med Chem Lett, 23(7):2074-7. doi: 10.1016/j.bmcl.2013.01.129.


StrŸh CM, JŠger S, Kersten A, et al. (2013). Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One, 8(4):e62168. doi: 10.1371/journal.pone.0062168.


Wang J, Yu M, Xiao L, et al. (2013). Radio-sensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep, 30(2):917-24. doi: 10.3892/or.2013.2510.


Wang X, Bai H, Zhang X, et al. (2013). Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell-cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis, 34(6):1323-30. doi: 10.1093/carcin/bgt058.


Wei JT, Liu M, Liuz, et al. (2012). Oleanolic acid arrests cell-cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 33(8):756–765. doi: 10.1002/jat.2725


Wei J, Liu H, Liu M, et al. (2012). Oleanolic acid potentiates the anti-tumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol Rep, 28(4):1339-45. doi: 10.3892/or.2012.1921.

Nelumbo Extract (NLE):Neferine

Cancer: Liver, osteosarcoma, breast, melanoma

Action: Anti-angiogenic, cytostatic

Neferine is a major bis-benzylisoquinoline alkaloid derived from the green seed embryos of the Indian lotus (Nelumbo nucifera (Gaertn.)).

Identification of natural products that have anti-tumor activity is invaluable to the chemo-prevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. Neferine is a major alkaloid component in lotus embryos.

Hepatitis

Experimental results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. Results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment.

These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes (Yoon et al., 2013).

Osteosarcoma

It was found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell-cycle arrest at G1. The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. Zhang et al. (2012) showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Their results for the first time showed a direct anti-tumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

Breast Cancer

Qualitative analysis showed that NLE contained several compounds, including polyphenols. The polyphenols identified in NLE consisted primarily of gallic acid, rutin, and quercetin. Cell cycle analysis revealed that breast cancer MCF-7 cells treated with NLE were arrested at the G0/G1 phase. In an in vivo analysis, treatment with NLE (0.5 and 1%) effectively reduced tumor volume and tumor weight in mice inoculated with MCF-7 cells compared to the control samples.

These results confirmed that cell-cycle arrest was sufficient to elicit tumor regression following NLE treatment (Yang et al., 2011).

Melanoma

Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. 3-30 µM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 µM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 µM nuciferine inhibited the expression of TRP-2 mRNA (Nakamura et al., 2013).

References

Nakamura S, Nakashima S, Tanabe G, et al. (2013). Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem, 21(3):779-87. doi: 10.1016/j.bmc.2012.11.038.


Yang MY, Chang YC, Chan KC et al. (2011). Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine, 3(3):153-163. doi:10.1016/j.eujim.2011.08.008


Yoon JS, Kim HM, Yadunandam AK, et al. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell-cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11):1013–1022. doi:10.1016/j.phymed.2013.03.024.


Zhang XY, Liu ZJ, Xu B, et al. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3):47–54.

Moscatilin

Cancers:
Colon, lung, placenta, stomach, breast metastasis

Action: Anti-angiogenic, anti-metastatic, anti-tubulin, cytostatic, cytotoxic, cell-cycle arrest, anti-inflammatory

Stomach Cancer, Lung Cancer, Placental

The efficacy of using moscatilin, a natural anti-platelet agent extracted from the stems of Dendrobrium loddigesii, as an anti-cancer agent was studied. Results demonstrated that moscatilin exerts potent cytotoxic effect against cancer cell lines derived from different tissue origins, including those from the placenta, stomach, and lung, but not those from the liver. In addition, the mechanism of action of moscatilin may be related to its ability to induce a G2 phase arrest in responsive cells.

However, unlike some G2 arresting agents, moscatilin has no detectable inhibitory effect on cyclin B–cdc-2 kinase activity. Thus, the precise nature of its cytotoxic mechanism remains to be determined.

Results suggest that moscatilin is potentially efficacious for chemo-prevention and/or chemotherapy against some types of cancer (Ho & Chen, 2003).

Colorectal Cancer

The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on colorectal HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Moscatilin induced a time-dependent arrest of the cell-cycle at G2/M, with an increase of cells at sub-G1. Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. A parallel experiment showed that SP600125 significantly inhibits Taxol and vincristine induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents.

Collectively, results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage leading to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway (Chen et al., 2008).

Anti-inflammatory

Results showed that moscatilin (10-100 microM) had a significant inhibition in a concentration-dependent manner on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS (100 ng/mL) treatment.

Hypoxia-inducible factor 1 (HIF-1) alpha was reported to initiate inflammation under cytokine stimulation or hypoxic conditions. Moscatilin had significant inhibition on HIF-1 expression via down-regulation of HIF-1 mRNA without affecting cell viability, translation machinery, or proteasome-mediated degradation of HIF-1. Collective data demonstrarted that moscatilin inhibited both COX-2 and iNOS expressions after LPS treatment in RAW264.7. Furthermore, moscatilin's inhibitory effect appears to be dependent on the repression of HIF-1alpha accumulation and NF-kappaB activation (Liu et al., 2010).

Lung Cancer; Angiogenesis

Moscatilin significantly inhibited growth of lung cancer cell line A549 (NSCLC) and suppressed growth factor-induced neovascularization. In addition, VEGF- and bFGF-induced cell proliferation, migration, and tube formation of HUVECs was markedly inhibited by moscatilin. Western blotting analysis of cell signaling molecules indicated that moscatilin inhibited ERK1/2, Akt, and eNOS signaling pathways in HUVECs.

Results suggest that inhibition of angiogenesis by moscatilin may be a major mechanism in cancer therapy (Tsai et al., 2010).

Lung Cancer

Investigation demonstrated that non-toxic concentrations of moscatilin were able to inhibit human non-small-cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical was identified as a dominant species in the suppression of filopodia formation.

Results indicate a novel molecular basis of moscalitin inhibiting lung cancer cell motility and invasion. Moscalitin may have promising anti-metastatic potential as an agent for lung cancer therapy (Kowitdamrong, Chanvorachote, Sritularak & Pongrakhananon, 2013).

Breast Cancer; Metastasis

Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anti-cancer activity. The mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo was evaluated.

Moscatilin was found to significantly inhibit breast cancer MDA-MB-231 cell migration by using scratch assays and Boyden chambers.

In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity.

Results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways, consistent with moscatilin's anti-metastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis (Pai et al., 2013).

References

Chen TH, Pan SL, Guh JH, et al. (2008). Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clinical Cancer Research, 14(13), 4250-4258. doi: 10.1158/1078-0432.CCR-07-4578.


Ho CK, Chen CC. (2003). Moscatilin from the orchid Dendrobrium loddigesii is a potential anti-cancer agent. Cancer Investigation, 21(5), 729-736.


Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Research International., 2013, 765894. doi: 10.1155/2013/765894.


Liu YN, Pan SL, Peng CY, et al. (2010). Moscatilin repressed lipopolysaccharide-induced HIF-1alpha accumulation and NF-kappaB activation in murine RAW264.7 cells. Shock, 33(1), 70-5. doi: 10.1097/SHK.0b013e3181a7ff4a.


Pai HC, Chang LH, Peng CY, et al. (2013). Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway.

Journal of Molecular Medicine (Berlin), 91(3), 347-56. doi: 10.1007/s00109-012-0945-5.

Tsai AC, Pan SL, Liao CH, et al. (2010). Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Letters, 292(2), 163-70. doi: 10.1016/j.canlet.2009.11.020.

Indirubin

Cancer:
Chronic myelogenous leukemia, lung, breast, head and neck, prostate, acute myeloid leukemia, prostate

Action: Aryl hydrocarbon Receptor (AhR) regulator, inhibits angiogenesis

Indirubin is the active component of many plants from the Isatis (L.) genus, including Isatis tinctoria (L.).

Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. Indirubin and its analogues are potent inhibitors of cyclin-dependent kinases (CDKs). The crystal structure of CDK2 in complex with indirubin derivatives shows that indirubin interacts with the kinase's ATP-binding site through van der Waals interactions and three hydrogen bonds. Indirubin-3'-monoxime inhibits the proliferation of a large range of cells, mainly through arresting the cells in the G2/M phase of the cell-cycle. These results have implications for therapeutic optimization of indigoids (Hoessel et al., 1999).

Formula; Huang Lian (Rhizoma Coptidis Recens), Huang Qin (Radix Scutellariae Baicalensis), Huang Bai (Cortex Phellodendri), Zhi Zi (Fructus Gardeniae Jasminoidis), Dang Gui (Radix Angelicae Sinensis), Lu Hui (Herba Aloes), Long Dan Cao (Radix Gentianae Longdancao), Da Huang (Radix et Rhizoma Rhei), Mu Xiang (Radix Aucklandiae Lappae), Qing Dai (Indigo Pulverata Levis), She Xiang (Secretio Moschus)

Leukemia

Indirubin, a 3, 2' bisindole isomer of indigo was originally identified as the active principle of a traditional Chinese preparation and has been proven to exhibit anti-leukemic effectiveness in chronic myelocytic leukemia. Indirubin was detected to represent a novel lead structure with potent inhibitory potential towards cyclin-dependent kinases (CDKs) resulting from high affinity binding into the enzymes ATP binding site. This seminal finding triggered research to improve the pharmacological activities of the parent molecule within comprehensive structure-activity studies. Molecular modifications made novel anti-cancer compounds accessible with strongly improved CDK inhibitory potential and with broad-spectrum anti-tumor activity.

This novel family of compounds holds strong promise for clinical anti-cancer activity and might be useful also in several important non-cancer indications, including Alzheimer's disease or diabetes (Eisenbrand et al., 2004).

Aryl Hydrocarbon Receptor (AhR) Regulator; Breast Cancer

The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1. With 4 hours exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6–9 hours post-exposure and had disappeared by 24 hours, whereas TCDD-induced activities remained elevated for at least 72 hours.

Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism (Spink et al., 2003).

Chronic Myelogenous Leukemia (CML)

Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). In a study investigating its mechanism of action, indirubin derivatives (IRDs) were found to potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells.

Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients.

In sum, these findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients (Nam et al., 2012).

Lung Cancer

A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell-cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression (Yoon et al., 2012).

The control lung tissue showed a normal architecture with clear alveolar spaces. Interestingly, the indirubin-3-monoxime treated groups showed reduced adenocarcinoma with appearance of alveolar spaces. Transmission Electron Microscopic (TEM) studies of lung sections of [B(α)P]-induced lung cancer mice showed the presence of phaemorphic cells with dense granules and increased mitochondria.

The lung sections of mice treated with indirubin-3-monoxime showed the presence of shrunken, fragmented, and condensed nuclei implying apoptosis. The effects were dose-dependent and prominent in 10 mg/kg/5 d/week groups, suggesting the therapeutic role of indirubin analogue against this deadly human malignancy. These results indicate that indirubin-3-monoxime brings anti-tumor effect against [B(α)P]-induced lung cancer by its apoptotic action in A/J mice (Ravichandran et al., 2010).

Head and Neck Cancer

The effects of 5'-nitro-indirubinoxime (5'-NIO), an indirubin derivative, on metastasis of head and neck cancer cells were investigated and the underlying molecular mechanisms involved in this process explored.

After treatment of head and neck cancer cells with 5'-NIO, cell metastatic behaviors such as colony formation, invasion, and migration were inhibited in a concentration-dependent manner. 5'-NIO inhibited the beta1 Integrin/FAK/Akt pathway which can then facilitate invasion and/or migration of cancer cells through the extracellular matrix (ECM). Moreover, treatment of head and neck cancer cell with Integrin β1 siRNA or FAK inhibitor effectively inhibited the invasion and migration, suggesting their regulatory role in invasiveness and migration of head and neck cancer cells. It was concluded that 5'-NIO inhibits the metastatic ability of head and neck cancer cells by blocking the Integrin β1/FAK/Akt pathway (Kim et al., 2011).

Prostate Cancer; Inhibits Angiogenesis

Indirubin, the active component of a traditional Chinese herbal medicine, Banlangen, has been shown to exhibit anti-tumor and anti-inflammation effects; however, its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is unknown.

To address this shortfall in the existing research, it was identified that indirubin inhibited prostate tumor growth through inhibiting tumor angiogenesis. It was found that indirubin inhibited angiogenesis in vivo. The inhibition activity of indirubin in endothelial cell migration, tube formation and cell survival in vitro has also been shown. Furthermore, indirubin suppressed vascular endothelial growth factor receptor 2-mediated Janus kinase (JAK)/STAT3 signaling pathway. This study provided the first evidence for anti-tumor angiogenesis activity of indirubin and the related molecular mechanism.

These investigations suggest that indirubin is a potential drug candidate for angiogenesis-related diseases (Zhang et al., 2011).

Acute Myeloid Leukemia

Indirubin derivatives were identified as potent FLT3 tyrosine kinase inhibitors with anti-proliferative activity at acute myeloid leukemic cell lines, RS4;11 and MV4;11 which express FLT3-WT and FLT3-ITD mutation, respectively. Among several 5 and 5'-substituted indirubin derivatives, 5-fluoro analog, 13 exhibited potent inhibitory activity at FLT3 (IC(50)=15 nM) with more than 100-fold selectivity versus 6 other kinases and potent anti-proliferative effect for MV4;11 cells (IC(50)=72 nM) with 30-fold selectivity versus RS4;11 cells.

Cell cycle analysis indicated that compound 13 induced cell-cycle arrest at G(0)/G(1) phase in MV4;11 cells (Choi et al., 2010).

References

Choi SJ, Moon MJ, Lee SD, et al. (2010). Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells. Bioorg Med Chem Lett, 20(6):2033-7.


Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. (2004). Molecular mechanisms of indirubin and its derivatives: novel anti-cancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol, 130(11):627-35


Hoessel R, Leclerc S, Endicott JA, et al. (1999). Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol, 1(1):60-7.


Kim SA, Kwon SM, Kim JA, et al. (2011). 5'-Nitro-indirubinoxime, an indirubin derivative, suppresses metastatic ability of human head and neck cancer cells through the inhibition of Integrin β 1/FAK/Akt signaling. Cancer Lett, 306(2):197-204.


Nam S, Scuto A, Yang F, et al. (2012). Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol Oncol, 6(3):276-83.


Ravichandran K, Pal A, Ravichandran R. (2010). Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microsc Res Tech, 73(11):1053-8.


Spink BC, Hussain MM, Katz BH, Eisele L, Spink DC. (2003). Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol, 66(12):2313-21.


Yoon HE, Kim SA, Choi HS, et al. (2012). Inhibition of Plk1 and Pin1 by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett, 316(1):97-104.


Zhang X, Song Y, Wu Y, et al. (2011). Indirubin inhibits tumor growth by anti-tumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer, 129(10):2502-11. doi: 10.1002/ijc.25909.