Category Archives: Rectal cancer

Zerumbone

Cancer:
Colorectal, renal carcinoma, glioblastoma, ovarian and cervical

Action: CSCs, anti-inflammatory

Zerumbone is isolated from Zingiber zerumbet [(L.) Roscoe ex Sm.].

Colorectal Cancer

Numerous agents from 'mother nature' (also called nutraceuticals) that have potential to both prevent and treat CRC have been identified. The most significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin, diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs, these agents modulate multiple targets, including transcription factors, growth factors, tumor cell survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC. We describe the potential of these dietary agents to suppress the growth of human CRC cells in culture and to inhibit tumor growth in animal models (Aggarwal et al., 2013).

Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh) signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays a critical role in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemo-preventives, and their anti-tumor effects have been demonstrated both in vitro and in vivo.

Compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade, were reviewed by Huang et al. (2013) and given that Shh signaling antagonism has been clinically proven as an effective strategy against CSCs, this review may be exploitable for the development of novel anti-cancer agents from complementary and alternative medicine.

Renal Carcinoma

Sun et al. (2013) reported that zerumbone, a monosesquiterpine, shows anti-cancer effects on human RCC cells via induction of apoptosis in vitro. Human renal clear cell carcinoma 786-0 and 769-P cell lines were used as the model system. Exposure of RCC cells to zerumbone resulted in cell viability inhibition, accompanied by DNA fragmentation and increased apoptotic index. Mechanically, treatment of RCC cells with zerumbone activated caspase-3 and caspase-9 finally led to cleavage of PARR.

Taken together, our studies provided the first evidence that zerumbone imparted strong inhibitory and apoptotic effects on human RCC cells. The zerumbone-induced apoptosis might be related to the activation of the caspase cascade and deregulation of the Gli-1/Bcl-2 pathway. Our results suggest that zerumbone merit further investigation as an apoptosis inducer as well as a novel RCC chemotherapeutic agent in the clinical setting.

Glioblastoma

Zerumbone (10~50 µM) induced death of human glioblastoma multiforme (GBM8401) cells in a dose-dependent manner. Flow cytometry studies showed that zerumbone increased the percentage of apoptotic GBM cells. Zerumbone also caused caspase-3 activation and poly (ADP-ribose) polymerase (PARP) production. N-benzyloxycarbonyl -Val-Ala-Asp- fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, hindered zerumbone-induced cell death. Moreover, transfection of GBM8401 cells with WT IKKα reduced the zerumbone-induced decrease in Akt and FOXO1 phosphorylation. However, transfection with WT Akt decreased FOXO1, but not IKKα, phosphorylation.

The results suggest that inactivation of IKKα, followed by Akt and FOXO1 phosphorylation and caspase-3 activation, contributes to zerumbone-induced GBM cell apoptosis (Weng et al., 2012).

Ovarian and Cervical Cancer

A study by Abdelwahab et al., (2012) was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition in a dose-dependent manner as determined by the MTT reduction assay. The studies conducted seem to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. These results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells.

This study concludes that the compound, zerumbone, inhibits cancer cell growth through the induction of apoptosis, arrests cell-cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells.

References

Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH. (2012). Zerumbone inhibits interleukin-6 and induces apoptosis and cell-cycle arrest in ovarian and cervical cancer cells. Int Immunopharmacol,12(4):594-602. doi: 10.1016/j.intimp.2012.01.014.


Aggarwal B, Prasad S, Sung B, Krishnan S, Guha S. (2013). Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. Curr Colorectal Cancer Rep, 9(1):37-56.


Huang YC, Chao KS, Liao HF, Chen YJ. (2013). Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evid Based Complement Alternat Med, 2013:748587. doi: 10.1155/2013/748587.


Sun Y, Sheng Q, Cheng Y, et al. (2013). Zerumbone induces apoptosis in human renal cell carcinoma via Gli-1/Bcl-2 pathway. Pharmazie, 68(2):141-5.


Weng HY, Hsu MJ, Wang CC, et al. (2012). Zerumbone suppresses IKK α , Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. J Biomed Sci, 19:86. doi: 10.1186/1423-0127-19-86.

Ursolic acid

Cancer:
Glioblastoma, Lung, breast, colorectal, gastric, esophageal squamous carcinoma, prostate

Action:

Mitochondrial function, reactive oxygen species (ROS) generation.

Cytostatic, anti-inflammatory, chemo-prevention, COX-2 inhibitor, suppresses NF- κ B, induces IL-1 β , induces apoptosis

Ursolic acid, a pentacyclic triterpene acid found ubiquitously in the plant kingdom, including Rosmarinus officinalis (L.), Salvia officinalis (L.), Prunella vulgaris (L.), Psychotria serpens (L.) and Hyptis capitata (Jacq.). It has been shown to suppress the expression of several genes associated with tumorigenesis resulting in anti-inflammatory, anti-tumorigenic and chemo-sensitizing effects (Liu, 1995).

Glioblastoma Cancer

Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human GBM DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate.

Ursolic acid effectively reversed TMZ resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptotic and autophagic-related signaling networks. The necrotic death was characterized by annexin V/PI double-positive detection and release of HMGB1 and LDH. These ursolic acid-elicited responses were accompanied by ROS generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. MPT is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by CypD, and ATP decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and -involved key regulators.

The study by Lu et al., (2014) is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.

Gastric Cancer

Ursolic acid (UA) inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. These results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis (Wang et al., 2011).

Esophageal Squamous Carcinoma

The anti-neoplastic effects of combinations of anti-cancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy- 4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2 cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell-cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells.

These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer (Yamai et al., 2009).

COX-2 Inhibitor

Subbaramaiah et al. (2000) studied the effects of ursolic acid, a chemo-preventive agent, on the expression of cyclooxygenase-2 (COX-2). Treatment with ursolic acid suppressed phorbol 12-myristate 13-acetate (PMA)-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Ursolic acid also suppressed the induction of COX-2 mRNA by PMA. Increased activator protein-1 activity and the binding of c-Jun to the cyclic AMP response element of the COX-2 promoter, effects were blocked by ursolic acid (Subbaramaiah et al., 2000).

Lung Cancer, Suppresses NF- κB

In terms of general anti-cancer mechanism, ursolic acid has also been found to suppress NF-κB activation induced by various carcinogens through the inhibition of the DNA binding of NF-κB. Ursolic acid also inhibits IκBα kinase and p65 phosphorylation (Shishodia et al., 2003). In particular, ursolic acid has been found to block cell-cycle progression and trigger apoptosis in lung cancer and may hence act as a chemoprevention agent for lung cancer (Hsu et al., 2004).

Breast Cancer

Ursolic acid is a potent inhibitor of MCF-7 cell proliferation. This triterpene exhibits both cytostatic and cytotoxic activity. It exerts an early cytostatic effect at G1 followed by cell death. Results suggest that alterations in cell-cycle phase redistribution of MCF-7 human breast cancer, by ursolic acid, may significantly influence MTT (colorimetric assays) reduction to formazan (Es-Saady et al., 1996).

Induces IL-1 β

Interleukin (IL)-1beta is a pro-inflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. It has recently been found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, Ikeda et al. (2008) investigated the ability of UA to induce IL-1beta production in pMphi from 4 different strains of female mice as well as an established macrophage line. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi.

Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, these results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility.

Induces Apoptosis: Breast Cancer, Prostate Cancer

Ursolic acid (UA) induced apoptosis and modulated glucocorticoid receptor (GR) and Activator Protein-1 (AP-1) in MCF-7 breast cancer cells. UA is a GR modulator and may be considered as a potential anti-cancer agent in breast cancer (Kassi et al., 2009).

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells (Kwon et al., 2010). In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition (Zhang et al., 2010). A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression (Yeh et al., 2010).

Ursolic acid additionally stimulates the release of cytochrome C in HL-60 cells and breast cancer MCF-7 cells. The activation of caspase-3 in a cytochrome C-dependent manner induces apoptosis via the mitochondrial pathway (Qian et al., 2011).

Colorectal Cancer

Ursolic acid (UA) has strong anti-proliferative and apoptotic effects on human colon cancer HT-29 cells. UA dose-dependently decreased cell proliferation and induced apoptosis, accompanied by activation of caspase 3, 8 and 9. The effects may be mediated by alkaline sphingomyelinase activation (Andersson et al., 2003).

Ursolic acid (UA), using the colorectal cancer (CRC) mouse xenograft model and the HT-29 human colon carcinoma cell line, was evaluated for its efficacy against tumor growth in vivo and in vitro, and its molecular mechanisms were investigated. It was found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation.

These data demonstrate that UA possesses a broad range of anti-cancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment (Lin et al., 2013).

Action: Anti-tumor, inhibits tumor cell migration and invasion

Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars’ attention. This review explained anti-tumor actions of UA, including (1) the protection of cells’ DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells.

Inhibition of Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Pathway
Activation of mitogen-activated protein kinase (MAPK) allows cell excessive proliferation involved in the carcinogenic process (Park et al., 1999). Subfamilies of MAPK, metastasis.(24) Otherwise, UA suppresses the activation of NF-κB and down-regulation of the MMP-9 protein, which in turn contributes to its inhibitory effects on IL-1β or tumor necrosis factor α (TNF-α)-induced C6 glioma cell invasion (Huang et al., 2009).

U A suppresses inter cellular adhesion molecules-1 (ICAM-1) expression of non-small cell lung cancer (NSCLC) H3255, A549, Calu-6 cells, and significantly inhibits fibronectin expression in a concentration-dependent way. UA significantly suppresses the expression of MMP-9 and MMP-2 and inhibits protein kinase C activity in test cell lines, at the same time, UA reduces cell invasion in a concentration-dependent manner (Huang et al., 2011).

Cancer: Multiple myeloma

Action: Anti-inflammatory, down-regulates STAT3

When dealing with the multiple myeloma, by the way of activating the proto-oncogene-mediated c-Src, JAK1, JAK2, and ERKs, ursolic acid (UA) can not only inhibit the expression of IL-6-induced STAT3 but also downregulates the STAT3 by regulating gene products, such as cyclin D1, Bcl-2, Bcl-xL, surviving, Mcl-1 and VEGF. Above all, UA can inhibit the proliferation of multiple myeloma cells and induce apoptosis, to arrest cells at G1 phase and G0 phase of cell cycle (Pathak et al., 2007).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Cancer: Colorectal

Wong et al., have previously reported Signal Transducer and Activator of Transcription 3 (STAT3) to be constitutively activated in aldehyde dehydrogenase (ALDH)(+)/cluster of differentiation-133 (CD133)(+) colon cancer-initiating cells. In the present study they tested the efficacy of inhibiting STAT3 signaling in human colon cancer-initiating cells by ursolic acid (UA), which exists widely in fruits and herbs.

ALDH(+)/CD133(+) colon cancer-initiating cells. UA also reduced cell viability and inhibited tumor sphere formation of colon cancer-initiating cells, more potently than two other natural compounds, resveratrol and capsaicin. UA also inhibited the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells. Furthermore, daily administration of UA suppressed HCT116 tumor growth in mice in vivo.

Their results suggest STAT3 to be a target for colon cancer prevention. UA, a dietary agent, might offer an effective approach for colorectal carcinoma prevention by inhibiting persistently activated STAT3 in cancer stem cells.

References

 

Andersson D, Liu JJ, Nilsson A, Duan RD. (2003). Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anti-cancer Research, 23(4):3317-22.

 

Es-Saady D, Simon A, Jayat-Vignoles C, Chulia AJ, Delage C. (1996). MCF-7 cell-cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anti-cancer Research, 16(1):481-6.

 

Hsu YL, Kuo PL, Lin CC. (2004). Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small-cell lung cancer A549 cells. Life Sciences, 75(19), 2303-2316.

 

Ikeda Y, Murakami A, Ohigashi H. (2008). Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci, 83(1-2):43-9. doi: 10.1016/j.lfs.2008.05.001.

 

Kassi E, Sourlingas TG, Spiliotaki M, et al. (2009). Ursolic Acid Triggers Apoptosis and Bcl-2 Down-regulation in MCF-7 Breast Cancer Cells. Cancer Investigation, 27(7):723-733. doi:10.1080/07357900802672712.

 

Kwon SH, Park HY, Kim JY, et al. (2010). Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett, 20:6435–6438. doi: 10.1016/j.bmcl.2010.09.073.

 

Lin J, Chen Y, Wei L, et al. (2013). Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol, (4):1235-43. doi: 10.3892/ijo.2013.2040.

 

Liu J. (1995). Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57-68.

 

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. (2003). Ursolic Acid Inhibits Nuclear Factor-OE ∫ B Activation Induced by Carcinogenic Agents through Suppression of IOE ∫ BOE± Kinase and p65 Phosphorylation. Cancer Research, 63(15), 4375-4383.

 

Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. (2000). Ursolic Acid Inhibits Cyclooxygenase-2 Transcription in Human Mammary Epithelial Cells. Cancer Res, 60:2399

 

Qian J, Li X, Guo GY, et al. (2011). Potent anti-tumor activity of emodin on CNE cells in vitro through apoptosis. J Zhejiang Sci-Tech Univ (Chin), 42:756-759

 

Wang X, Zhang F, Yang L, et al. (2011). Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo. J Biomed Biotechnol, 2011:419343. doi: 10.1155/2011/419343.

 

Yamai H, et al. (2009). Triterpenes augment the inhibitory effects of anti-cancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer, 125(4):952-60. doi: 10.1002/ijc.24433.

 

Yeh CT, Wu CH, Yen GC. (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res, 54:1285–1295. doi: 10.1002/mnfr.200900414.

 

Zhang Y, Kong C, Zeng Y, et al. (2010). Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog, 49:374–385.

 

Zhang LL, Wu BN, Lin Y et al. (2014) Research Progress of Ursolic Acid’s Anti-Tumor Actions. Chin J Integr Med 2014 Jan;20(1):72-79

 

Reference

 

Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009;48:517-531

 

Huang CY, Lin CY, Tsai CW, Yin MC. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro 2011;25:1274-1280.

 

Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999;81:1116-1121.

 

 

Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 2007;5:943-595

 

 

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

 

 

Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. (2013) Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84.

 
Lu C-C, Huang B-R, Liao P-J, Yen G-C. Ursolic acid triggers a non-programmed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Molecular Nutrition & Food Research. 2014 DOI: 10.1002/mnfr.201400051

 

 

 

Steamed American Ginseng Berry Ginsenosides

Cancer: Colorectal cancer

Action: Cell-cycle arrest, induces apoptosis

Research

The steaming of American ginseng berries augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

It has been found to inhibit the colorectal cancer growth both in vitro and in vivo, and the mechanism of this inhibition is likely through cell-cycle arrest and induced apoptosis in the cells (Xie et al., 2009).

References

Wang CZ, Zhang B, Song WX, Wang A, Ni M, Luo X, et al. (2006). Steamed American Ginseng Berry:,Äâ Ginsenoside Analyzes and Anti-cancer Activities. Journal of Agricultural and Food Chemistry, 54(26): 9936-9942.


Xie JT, Wang CZ, Zhang B, Mehendale SR, Li XL, Sun S, et al. (2009). In Vitro and in Vivo Anti-cancer Effects of American Ginseng Berry: Exploring Representative Compounds. Biological and Pharmaceutical Bulletin, 32(9):1552-1558.

Sophoridine (See also oxymatrine,Matrine)

Cancer: Colorectal, lung

Action: Cell-cycle arrest

Cell-cycle Arrest

Matrine, sophoridine and oxymatrine are isolates from Sophora Flavescens (Aiton).

Sophoridine (SRI) inhibited the growth of SW620 cells significantly in a dose-and time-dependent manner, and morphological characteristics of apoptosis were observed with condensation of the nucleus, cytoplasmic bubbling, and DNA fragmentation. A DNA ladder pattern of inter-nucleosomal fragmentation was observed. Compared with that of the control group, the percentage of the G0/G1 phase and the S phase cells increased after treatment by SRI. Apoptosis was induced in SW620 cells and underwent G0/G1 arrest with exposure to SRI as evidenced by flow cytometry results. Sophoridine could induce the inhibition of cell growth by means of apoptosis in a dose-and time-dependent manner, and cellcycle arrest at G0/G1 (Liang et al., 2008).

Colorectal Cancer

The anti-proliferation of sophoridine (SRI) in human colorectal cells SW480 was detected by3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The pathology and ultrastructure of xenograft tumors treated with SRI were also observed. SRI significantly inhibited the growth of SW480 cells, and the administration of SRI significantly inhibited the growth of xenograft tumors without apparent toxicity. SRI's mechanism of action involved the induction of apoptosis.

These results suggest that SRI produces obvious anti-tumor effects in vitro and in vivo. It supports the viability of developing SRI as a novel therapeutic prodrug for colorectal cancer treatment, as well as providing a method for identifying new anti-tumor drugs in traditional Chinese medicine (Liang et al., 2012).

Sophoridine can inhibit the growth of transplanted solid tumor of human colon cancer SW480 cell line, the mechanism of which involves the inhibition of p53 and VEGF expression. The volume and weight of the tumor xenograft in sophoridine group decreased in comparison with those in the control group. Sophoridine treatment resulted in lowered expressions of p53 and VEGF at both the protein and mRNA levels in the tumor explants as compared with the control group, with a tumor inhibition rate of 34.07% in nude mice (Wang et al., 2010).

References

Liang L, Zhang XH, Wang XY, Chen Y, Deng HZ. (2008). Effect of sophoridine on proliferation and apoptosis of human colon adenocarcinoma cells (SW620). Zhong Guo Yao Li Xue Tong Bao, 24(6): 782-787.


Liang W, Wang XY, Zhang XH, et al. (2012). Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and in vivo. Life Sciences, 91(25–26):1295–1303


Wang QR, Li CH, Fu XQ, et al. (2010). Effects of sophoridine on the growth and expressions of p53 and vascular endothelial growth factor of transplanted solid tumor SW480 in nude mice. Nan Fang Yi Ke Da Xue Xue Bao, 30(7):1593-6.

Sanguinarine (See also chelerythrine)

Cancer:
Prostate, bladder, breast, colon, melanoma, leukemia

Action: Pro-oxidative, anti-inflammatory, apoptosis induction

AR+/AR- Prostate Cancer

Sanguinarine, a benzophenanthridine alkaloid derived from the bloodroot plant Sanguinaria canadensis (L.), has been shown to possess anti-microbial, anti-inflammatory, anti-cancer and anti-oxidant properties. It has been shown that sanguinarine possesses strong anti-proliferative and pro-apoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, the anti-proliferative properties of sanguinarine against prostate cancer were also examined.

The mechanism of the anti-proliferative effects of sanguinarine against prostate cancer were examined by determining the effect of sanguinarine on critical molecular events known to regulate the cell-cycle and the apoptotic machinery.

A highlight of this study was the fact that sanguinarine induced growth-inhibitory and anti-proliferative effects in human prostate carcinoma cells irrespective of their androgen status. To our knowledge, this is the first study showing the involvement of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery during cell-cycle arrest and apoptosis of prostate cancer cells by sanguinarine. These results suggest that sanguinarine may be developed as an agent for the management of prostate cancer (Adhami et al., 2004).

Breast Cancer

The effects of this compound were examined on reactive oxygen species (ROS) production and its association with apoptotic tumor cell death using a human breast carcinoma MDA-MB-231 cell line. Cytotoxicity was evaluated by trypan blue exclusion methods. Apoptosis was detected using DAPI staining, agarose gel electrophoresis and flow cytometer. The expression levels of proteins were determined by Western blot analyzes and caspase activities were measured using colorimetric assays.

These observations clearly indicate that ROS is involved in the early molecular events in the sanguinarine-induced apoptotic pathway. Data suggests that sanguinarine-induced ROS are key mediators of MMP collapse, which leads to the release of cytochrome c followed by caspase activation, culminating in apoptosis (Choi, Kim, Lee & Choi, 2008).

Leukemia

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy.

This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210. Sanguinarine and chelerythrine produced a dose-dependent increase in DNA damage and cytotoxicity in both primary mouse spleen cells and L1210 cells. Chelidonine did not show a significant cytotoxicity or damage DNA in both cell types, but completely arrested growth of L1210 cells.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

T-lymphoblastic Leukemia

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus, were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells were accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells.

The involvement of the mitochondria in apoptosis induction by both alkaloids was supported by cytochrome C elevation in cytosol, with an accompanying decrease in cytochrome C content in the mitochondrial fraction. At the same time, two alkaloids under study differed drastically in their cell-cycle phase-specific effects, since only CHE arrested MT-4 cells at the G2/M phase. It was previously demonstrated, that CHE, in contrast to SAN, does not interact directly with DNA. (Philchenkov, Kaminskyy, Zavelevich, & Stoika, 2008).

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), however chelidonine did not affect mitochondrial integrity.

Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h. Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy & Stoika, 2008).

Colorectal Cancer

The effects of sanguinarine, a benzophenanthridine alkaloid, was examined on reactive oxygen species (ROS) production, and the association of these effects with apoptotic cell death, in a human colorectal cancer HCT-116 cell line. Sanguinarine generated ROS, followed by a decrease in mitochondrial membrane potential (MMP), activation of caspase-9 and -3, and down-regulation of anti-apoptotic proteins, such as Bcl2, XIAP and cIAP-1. Sanguinarine also promoted the activation of caspase-8 and truncation of Bid (tBid).

Observations clearly indicate that ROS, which are key mediators of Egr-1 activation and MMP collapse, are involved in the early molecular events in the sanguinarine-induced apoptotic pathway acting in HCT-116 cells (Han, Kim, Yoo, & Choi, 2013).

Bladder Cancer

Although the effects of sanguinarine, a benzophenanthridine alkaloid, on the inhibition of some kinds of cancer cell growth have been established, the underlying mechanisms are not completely understood. This study investigated possible mechanisms by which sanguinarine exerts its anti-cancer action in cultured human bladder cancer cell lines (T24, EJ, and 5637). Sanguinarine treatment resulted in concentration-response growth inhibition of the bladder cancer cells by inducing apoptosis.

Taken together, the data provide evidence that sanguinarine is a potent anti-cancer agent, which inhibits the growth of bladder cancer cells and induces their apoptosis through the generation of free radicals (Han et al., 2013).

Melanoma

Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Current study has found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨ m), released cytochrome C and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Thus, pre-treatment with the thiol anti-oxidants NAC and GSH abrogated the killing activity of sanguinarine. Collectively, data suggests that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress (Burgeiro, Bento, Gajate, Oliveira, & Mollinedo, 2013).

References

Adhami YM, Aziz MH, Reagan-Shaw SR, et al. (2004). Sanguinarine causes cell-cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther, 3:933


Burgeiro A, Bento AC, Gajate C, Oliveira PJ, Mollinedo F. (2013). Rapid human melanoma cell death induced by sanguinarine through oxidative stress. European Journal of Pharmacology, 705(1-3), 109-18. doi: 10.1016/j.ejphar.2013.02.035.


Choi WY, Kim GY, Lee WH, Choi YH. (2008). Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy, 54(4), 279-87. doi: 10.1159/000149719.


Han MH, Kim GY, Yoo YH, Choi YH. (2013). Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicology Letters, 220(2), 157-66. doi: 10.1016/j.toxlet.2013.04.020.


Han MH, Park C, Jin CY, et al. (2013). Apoptosis induction of human bladder cancer cells by sanguinarine through reactive oxygen species-mediated up-regulation of early growth response gene-1. PLoS One, 8(5), e63425. doi: 10.1371/journal.pone.0063425.


Kaminskyy V, Lin KW, Filyak Y, Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International, 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O, Stoika R. (2008) A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Philchenkov A, Kaminskyy V, Zavelevich M, Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.

Quxie Extract (QXC)

Cancer: Colorectal

Action: Raises immune function, increased QoL

Colorectal Carcinoma

Forty patients with advanced colorectal carcinoma were observed in a randomized controlled clinical trial (RCT). Out of them, the 37 evaluable patients were assigned into the treatment group (18 patients) and the control group (19 patients). They were all treated by the routine treatment for cancer, including chemotherapy and radiotherapy, while those in the treatment group were administered with QXC additionally. The scores of TCM symptom, QOF and KPS in the treatment group were 15.59 +/- 3.78, 54.06 +/- 3.96 and 64.71 +/- 6.24 before treatment, and 10.53 +/- 5.57, 58.65 +/- 4.03, 69.41 +/- 4.29 after treatment, respectively, showing significant improvement (P<0.05).

While the three scores in the control group were 16.11 +/- 3.99, 54.06 +/- 4.39 and 64.44 +/- 5.11 before treatment, and 19.61 +/- 7.78, 50.17 +/- 8.26 and 60.00 +/- 9.70 after treatment, respectively, showing a statistically significant worsening tendency in the latter two (P <0.05). QXC can reduce the FR, prolong the ST, mST, mCFPT, and improve the QOF in patients with advanced colorectal carcinoma (Yang et al., 2008).

Forty four patients chosen from 48 patients with colorectal cancer at post-operational period (with 2 dropped out and 2 loss of follow-up) were assigned into two groups (A and B) according to randomized block design and received intervention treatment with QXC and placebo, respectively, which started after terminating the post-operational adjuvant treatment and lasted for 6 m. Out of the 44 patients, 28 were of stage H (15 in Group A and 13 in Group B) and 16 of stage Ill (8 in Group A and 8 in Group B). The relapse-metastasis (R-M) rate, median time of R- M, changes of symptoms, Karnofsky (KPS) score and immune function before and after intervention, as well as the safety of QXC, were observed.

The symptoms and KPS score in Group A were obviously better (P< 0.05), with improvement in B lymphocyte (P< 0.05) superior to that in Group B. No obvious adverse reaction to QXC was found. QXC might be effective in delaying the R-M of colorectal cancer, but the ultimate confirmation only could be obtained through 1– 2 y observation. Post-operational intervention with QXC in patients with colorectal cancer could apparently improve the quality of life and raise the immune function of patients; it is safe and might have some clinical significance in preventing the R-M of cancer (Yang et al., 2007).

Formula

Semen Crotonis (ba dou), Fructus Evodiae Rutaecarpae (wu zhu yu), Rhizoma Zingiberis Officinalis (gan jiang), Cortex Cinnamomi Cassiae (rou gui), Radix Aconiti Carmichaeli (chuan wu), Rhizoma Pinelliae Ternatae (ban xia), Exocarpium Citri Erythrocarpae (ju hong)

References

Yang YF, Xu Y, Wu Y, Wang L, Li Z, Zhang L, Zhu Y, Guo Z, Guo Q, Yan X. (2007). Clinical Randomized Double-blinded Controlled Study on Quxie Capsule in Reducing Post-operational Relapse and Metastasis of Colorectal Cancer. Zhong Guo Zhong Xi Yi Jie He Za Zhi, 27(10):879-892.


Yang Y, Chen Z, Xu Y, Wu Y. Wu X, Zhu Y, Li P, Shudi G. (2008). Randomized Controlled Study on Effect of Quxie Capsule on the Median Survival Time and Qualify of Life in Patients with Advanced Colorectal Carcinoma. Zhong Guo Zhong Xi Yi Jie He Za Zhi, 28(2):111-114.

Puerarin

Cancer: Colon, breast, acute myeloid leukemia

Action: MDR, aromatase inhibition, induces apoptosis

Induces Apoptosis, Colorectal Cancer

Puerarin is isolated from Pueraria radix (Pueraria lobata [(Willd.) Ohwi]) and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders, as well as anti-cancer properties. Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has anti-thrombotic and anti-allergic properties and stimulates estrogenic activity.

Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments with ³ 25µM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. Puerarin also affects the expression of apoptosis-associated genes, revealing an increase of bax and decreases of c-myc and bcl-2.

Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemo-preventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis (Li, et al., 2006).

Induces Apoptosis, Breast Cancer

Puerarin exhibits a dose-dependent inhibition of cell growth in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell-cycle distribution and apoptosis assays revealed that puerarin induced cell apoptosis through a caspase-3-dependent pathway and mediated cell-cycle arrest in the G2/M phase. It is therefore suggested that puerarin may act as a chemo-preventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis (Lin et al., 2009).

Breast Cancer, MDR

Purearin down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation.

The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, these results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells (Hien et al., 2010).

Acute Myeloid Leukemia (AML)

The results showed that a certain concentration of puerarin (PR) could inhibit the proliferation of these four cell lines effectively in time-and dose-dependent manners, and the intensity of inhibition on four kinds of acute myeloid leukemia (AML) cell lines was from high to low as follows: NB4>Kasumi-1>U937>HL-60. Meanwhile, PR could also change cycle process, cell proportion in G1/G0 phase decreased, cells in S phase increased and Sub-diploid peak also appeared. It is concluded that PR can selectively inhibit the proliferation of four AML cell lines and block cell-cycle process, especially for NB4 cells (Shao et al., 2010).

Aromatase Inhibition

Aromatase P450 (P450 (arom)) is overexpressed in endometriosis, endometrial cancers and uterine fibroids. With weak estrogen agonists/antagonists and some other enzymatic activities, isoflavones are increasingly advocated as a natural alternative to estrogen replacement therapy (ERT) and are available as dietary supplements. Puerarin is a major isoflavonoid compound isolated from Pueraria lobata (ge gen).

Yu et al. (2008) found that puerarin exerted a time-course effect on the inhibition of c-jun mRNA, which parallelled that of P450(arom). The suppression of P450(arom) expression and activity by puerarin treatment may associate with the down-regulation of transcription factor AP-1 or c-jun.

References

Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF- κ B pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res, 54(7):918-28. doi: 10.1002/mnfr.200900146.


Lin YJ, Hou YC, Lin CH, et al. (2009). Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochemical and Biophysical Research Communications, 378(4):683-8. doi:10.1016/j.bbrc.2008.10.178


Shao HM, Tang YH, Jiang PJ, et al. (2010). Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(2):296-9.


Yu C, Li Y, Chen H, Yang S, Xie G. (2008). Decreased expression of aromatase in the Ishikawa and RL95-2 cells by the isoflavone, puerarin, is associated with inhibition of c-jun expression and AP-1 activity. Food Chem Toxicol, 46(12):3671-6. doi: 10.1016/j.fct.2008.09.045.


Yu Z, Li WJ. (2006). Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters, 238(1):53-60.

Pinosylvin

Cancer: Colorectal, lung

Action: Anti-cancer, anti-inflammatory and anti-oxidant, chemo-preventive, anti-metastatic effect

Pinosylvin is a naturally occurring chemo-preventive trans-stilbenoid mainly found in plants of the Pinus genus (Pinus (L.) and Gnetum cleistostachyum (C. Y. Cheng)).

Anti-cancer, Anti-inflammatory and Anti-oxidant

Stilbenes are small molecular weight (approximately 200-300 g/mol), naturally occurring compounds and are found in a wide range of plant sources, aromatherapy products, and dietary supplements. These molecules are synthesized via the phenylpropanoid pathway and share some structural similarities to estrogen. Upon environmental threat, the plant host activates the phenylpropanoid pathway and stilbene structures are produced and subsequently secreted. Stilbenes act as natural protective agents to defend the plant against viral and microbial attack, excessive ultraviolet exposure, and disease. Stilbene compounds, piceatannol, pinosylvin, rhapontigenin, and pterostilbene possess potent anti-cancer, anti-inflammatory and anti-oxidant activities (Roupe et al., 2006).

Colorectal

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, has exhibited a potential cancer chemo-preventive activity. The anti-proliferative activity of pinosylvin was investigated in human colorectal HCT 116 cancer cells.

Pinosylvin was also found to attenuate the activation of proteins involved in focal adhesion kinase (FAK)/c-Src/extracellular signal-regulated kinase (ERK) signaling, and phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK-3β) signaling pathway. Subsequently, pinosylvin suppressed the nuclear translocation of β-catenin, one of downstream molecules of PI3K/Akt/GSK-3β signaling, and these events led to the sequential down-regulation of β-catenin-mediated transcription of target genes including BMP4, ID2, survivin, cyclin D1, MMP7, and c-Myc. These findings demonstrate that the anti-proliferative activity of pinosylvin might be associated with the cell-cycle arrest and down-regulation of cell proliferation regulating signaling pathways in human colorectal cancer cells (Park et al., 2013).

Anti-metastatic

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibits a potential cancer chemo-preventive activity and also inhibits the growth of various human cancer cell lines via the regulation of cell-cycle progression. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. Park et al. (2012) found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems.

The analysis of tumor in lung tissues indicated that the anti-metastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

References

Park EJ, Park HJ, Chung HJ, et al. (2012). Anti-metastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem, 23(8):946-52. doi: 10.1016/j.jnutbio.2011.04.021.


Park EJ, Chung HJ, Park HJ, et al. (2013). Suppression of Src/ERK and GSK-3/ β-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol, 55:424-33. doi:10.1016/j.fct.2013.01.007.


Roupe KA, Remsberg CM, Yá–ez JA, Davies NM. (2006). Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol, 1(1):81-101.

Paeoniflorin

Cancer: Hepatocellular carcinoma, colorectal, liver

Action: Radio-protective, ameliorated myelosuppression, MDR

Radio-protective

The radio-protective effect of paeoniflorin (PF), a main bioactive component in the traditional Chinese herb peony, on irradiated thymocytes and the possible mechanisms of protection have been investigated. Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS).

It was found 60Co γ-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pre-treatment of thymocytes with PF (50–200 µg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and up-regulate Bcl-2 and down-regulate Bax in 4 Gy-irradiated thymocytes, were determined.

Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase, were activated by 4 Gy irradiation, with their activation partly blocked by pre-treatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4 Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases (Li et al., 2007).

Liver Cancer

Prostaglandin E2 (PGE2) has been shown to play an important role in tumor development and progression. PGE2 mediates its biological activity by binding any one of four prostanoid receptors (EP1 through EP4). Paeoniflorin, a monoterpene glycoside, significantly inhibited the proliferation of HepG2 and SMMC-7721 cells stimulated by butaprost at multiple time points (24, 48, and 72 hours). Paeoniflorin induced apoptosis in HepG2 and SMMC-7721 cells, which was quantified by annexin-V and propidium iodide staining. Our results indicate that the expression of the EP2 receptor and Bcl-2 was significantly increased, whereas that of Bax and cleaved caspase-3 was decreased in HepG2 and SMMC-7721 cells.

Paeoniflorin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in hepatocellular carcinoma cells by down-regulating EP2 expression and also increased the Bax-to-Bcl-2 ratio, thus up-regulating the activation of caspase-3 (Hu et al., 2013).

Colorectal Cancer

Results showed that positive cells of Proliferating Cell Nuclear Antigen (PCNA) in paeoniflorin (PF) and docetaxel-treated group was decreased to 30% and 15% respectively, compared with control group of tumors. But apoptosis cells in docetaxel treated groups studied by TUNEL is increased to 40 ± 1.2% and 30 ± 1.5% respectively, compared with 24 ± 2.3% in negative control. Furthermore, the efficiency of tumor-bearing mice treated by PF was superior to docetaxel in vivo. Overall, PF may be an effective chemo-preventive agent against colorectal cancer HT29 (Wang et al., 2012).

Ameliorates Myelosuppression

The administration of paeoniflorin and albiflorin (CPA) extracted from Paeonia radix, significantly ameliorated myelosuppression in all cases. For the X-ray irradiated mice and the chemotherapy treated mice and rabbits, high dosages of CPA resulted in the recovery of, respectively, 94.4%, 95.3% and 97.7% of hemoglobin content; 67.7%, 92.0% and 94.3% of platelet numbers; 26.8%, 137.1% and 107.3% of white blood cell counts; as well as a reversal in the reduction of peripheral differential white blood cell counts.

There was also a recovery of 50.9%, 146.1% and 92.3%, respectively, in the animals' relative spleen weight. Additionally, a recovery of 35.7% and 87.2% respectively in the number of bone marrow nucleated cells was observed in the radio- and chemo -therapy-treated mice. Bone marrow white blood cell counts also resumed to normal levels (Xu et al., 2011).

MDR

Studies have shown that NF-κB activation may play an essential role in the development of chemotherapy resistance in carcinoma cells. Paeonißorin, a principal bioactive component of the root of Paeonia lactißora, has been reported to exhibit various pharmacological effects. In the present study, Fanh et al. (2012) reported for the first time that paeoniflorin at non-toxic concentrations may effectively modulate multi-drug resistance (MDR) of the human gastric cancer cell line SGC7901/vincristine (VCR) via the inhibition of NF-κB activation and, at least partly, by subsequently down-regulating its target genes MDR1, BCL-XL and BCL-2.

References

Fang S, Zhu W, Zhang Y, Shu Y, Liu P. (2012). Paeoniflorin modulates Multi-drug resistance of a human gastric cancer cell line via the inhibition of NF- κB activation. Mol Med Rep, 5(2):351-6. doi: 10.3892/mmr.2011.652.


Hu S, Sun W, Wei W, et al. (2013). Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anti-cancer Drugs, 24(2):140-9. doi: 10.1097/CAD.0b013e32835a4dac.


Li CR, Zhou Z, Zhu D, et al. (2007). Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases. The International Journal of Biochemistry & Cell Biology, 39(2):426–438


Wang H, Zhou H, Wang CX, et al. (2012). Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol, 50(5):1560-7. doi: 10.1016/j.fct.2012.01.035.


Xu W, Zhou L, Ma X, et al. (2011). Therapeutic effects of combination of paeoniflorin and albiflorin from Paeonia radix on radiation and chemotherapy-induced myelosuppression in mice and rabbits. Asian Pac J Cancer Prev, 12(8):2031-7.

Oxymatrine (Ku Shen)

Cancer:
Sarcoma, pancreatic, breast, liver, lung, oral, colorectal, stomach, gastric, adenoid cystic carcinoma

Action: Anti-angiogenesis, anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, immunotolerance, induces apoptosis, decreases side-effects of Intensity Modulated Radiation Therapy (IMRT), Transcatheter Hepatic Arterial Chemoembolization (TACE)

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012).

Angiogenesis

Oxymatrine has been found to inhibit angiogenesis when administered by injection. The tumor-inhibitory rate and the vascular density were tested in animal tumor model with experimental treatment. The expression of VEGF and bFGF were measured by immunistological methods. When high doses were used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group, and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

Immunotolerance

Matrine, a small molecule derived from the root of Sophora flavescens AIT, was demonstrated to be effective in inducing T cell anergy in human Jurkat cells. Induction of immunotolerance has become a new strategy for treating autoimmune conditions in recent decades. However, so far there is no ideal therapeutics available for clinical use. Medicinal herbs are a promising potential source of immunotolerance inducers. Bioactive compounds derived from medicinal plants were screened for inducing T cell anergy in comparison with the effect of well-known T cell anergy inducer, ionomycin.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells, could influence the ability of T cell anergy induction. The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy, when the cells were stimulated by antigens, anti-OKT3 plus anti-CD28. Mechanistic study showed that ionomycin and matrine could up-regulate the anergy-associated gene expressions of CD98 and Jumonji and activate nuclear factor of activated T-cells (NFAT) nuclear translocation in absence of cooperation of AP-1 in Jurkat cells. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Induces Apoptosis

The cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential ( Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit.

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Induces Apoptosis in Pancreatic Cancer

Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was up-regulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c, and activation of caspase-3 (Ling et al., 2011).

Decreases Side-effects of Intensity Modulated Radiation Therapy (IMRT)

The levels of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer were measured after treatment with the compound matrine, in combination with radiation. Eighty-four patients diagnosed with rectal carcinoma were randomly divided into two groups: therapeutic group and control group.

The patients in the therapeutic group were treated with compound matrine and intensity- modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT. The clinical effects and the levels of IL-8 and sIL-2R tested by ELISA pre-radiation and post-radiation were compared. In addition, 42 healthy people were singled out from the physical examination center in the People's Hospital of Yichun city, which were considered as healthy controls.

The clinical effect and survival rate in the therapeutic group was significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress, in the therapeutic group. However, the control group had 12 improvements, 14 stabilized, and 16 progress.

The quality of life in the therapeutic group was higher than tthat in the control group, by rank sum test. SIL-2R and IL-8 examination found that serum levels of sIL-2R and IL-8 were higher in rectal cancer patients before treatments than those in the healthy groups, by student test.

However, sIL-2R and IL-8 serum levels were found significantly lower in the 84 rectal cancer patients after radiotherapy. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post-radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post- therapy, according to the student test. Side-effects of hepatotoxicity (11.9%) and radiation proctitis (9.52%) were fewer in the therapeutic group.

Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

The clinical effect of matrine injection, combined with S-1 and cisplatin (SP), in the treatment of advanced gastric cancer was investigated. Seventy-six cases of advanced gastric cancer were randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively.

The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively. Therapeutic effect of the two groups of patients did not differ significantly. Occurrence rate of symptom indexes in the treatment group were lower than those of control group, with exception of nausea and vomiting, in which there was no significant difference.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

The effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells was investigated.

Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). IC50 of ACC-2 was 0.84 g/ml. Flow cytometry indicated that radix Sophorae flavescentis injection could arrest ACC-2 cells at the G0/G1 phase, with a gradual decrease of presence in the G2/M period and S phase. With an increase in dosage, ACC-2 cell apoptosis rate increased significantly (P < 0.05 or P < 0.01).

Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer Post-operative Chemotherapy

A retrospective analysis of oncological data of 70 post-operative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days to a cycle) were compared.

The objective remission rate of therapy group compared with that of control group was not statistically significant (P > 0.05), while the difference of the disease control rate in two groups was statistically significant (P < 0.05). The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An & Wu, 2012).

Lung Cancer Pleural Effusions

The therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected fufangkushen plus IL-2, fufangkushen plus α-tFN, and IL-2 plus α-IFN, respectively. The control group was divided into three groups and injected fufangkushen, IL-2 and α-IFN, respectively. Therapeutic efficiency and adverse reactions were observed after four weeks.

The effective rate of fufangkushen, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. In adverse reactions, the incidence of fever, chest pains, and the reaction of gastrointestinal tract in the treatment group were significantly less than in the matched group.

The effect of fufangkushen, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of fufangknshen plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Colorectal Cancer Immunologic Function

The effects of compound Kushen (Radix sophorae flavescentis) injection on the immunologic function of patients after colorectal cancer resection, were studied.

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mL·d-1 compound Kushen injection, for 10 days during chemotherapy.

In the control group the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells, NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

After chemotherapy, the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio were higher in the experimental group than in the control group (P0.05), while the number of CD8+T lymphocyte was similar between two groups. Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

Stage III and IV non-small-cell lung cancer (NSCLC)

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The chemotherapy was performed for 4 cycles of 3 weeks, and the therapeutic efficacy was evaluated every 2 weeks. The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference. (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group.

The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05). The serum lgA levels were not significantly different in the two groups.

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Suppression effects of different concentrations of matrine injection and matrine injection combined with anti-tumor drugs on lung cancer cells were measured by methyl thiazolyl tetrazolium (MTT) colorimetric assay.

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone.

Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Transcatheter Hepatic Arterial Chemoembolization (TACE)

The effect of composite Kushen injection combined with transcatheter hepatic arterial chemoembolization (TACE) on unresectable primary liver cancer, was studied.

Fifty-seven patients with unresectable primary liver cancer were randomly divided into two groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. The clinical curative effects were observed after treatment in both groups.

One-, 2-, and 3-year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

References

An AJ, An GW, Wu YC. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen G, Yu B, Yuan SJ, Yuan Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013) Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF- κ B-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan CX, Lin CL, Liang L, et al. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Hu DJ, Mei, XD. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α -IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Kong QZ, Huang DS, Huang T, et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Shi B, Xu H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012;2012:373219. doi: 10.1155/2012/373219.


Wang HM, Cheng XM. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin WH, Sheng JW, Xia HM, et al. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhu MY, Jiang ZH, Lu YW, Guo Y, Gan JJ. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Norcantharidin (NCTD)

Cancer: Colorectal., CSCs, breast

Action: Anti-metastatic, MDR

Norcantharidin is a metastatic inhibitor derived from cantharidin, which is found in many species of blister beetles, including Mylabris phalerata (Pall.) and Lytta vesicatoria (Linnaeus).

Norcantharidin (NCTD) is a small-molecule metastatic inhibitor without renal toxicity derived from a renal toxic compound cantharidin, which is found in blister beetles (Mylabris phalerata Pall.), commonly used in traditional Chinese medicine.

Colorectal Cancer; Anti-metastatic

The aim of this study was to clarify the transcriptional regulation of MMP-9 gene by NCTD in colorectal cancer CT-26 cells. NCTD not only down-regulated MMP-9 mRNA and protein expression, but also inhibited gelatinase activity in a concentration- and time-dependent manner. Evidence by electrophoretic mobility shift assay demonstrated that NCTD inhibited the DNA-binding activity of Sp1. In addition, the increase effect of NF-kappaB-luciferase activity by NCTD may include the up-expression of nuclear STAT1 and result in competitive suppression of NF-kappaB-binding activity in MMP-9 promoter. In conclusion, the metastasis inhibitor NCTD down-regulates MMP-9 expression by inhibiting Sp1 transcriptional activity in colorectal cancer CT26 cells (Chen et al., 2009).

MDR; Cancer Stem Cells

Hsieh et al. (2013) investigated the modulation of self-renewal pathways and MDR in CSCs by NCTD. They suggest that using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

Breast Cancer

Cantharidin and norcantharidin induced apoptosis and repressed MCF-7 cell growth, adhesion and migration. They repressed MCF-7 cell adhesion to platelets through down-regulation of α2 integrin, an adhesion molecule present on the surface of cancer cells. The repression of α2 integrin expression was found to be executed through the protein kinase C pathway, the activation of which could have been due to PP2A inhibition (Shou et al. 2013).

References

Chen YJ, Chang WM, Liu YW, et al. (2009). A small-molecule metastasis inhibitor, norcantharidin, downregulates matrix metalloproteinase-9 expression by inhibiting Sp1 transcriptional activity in colorectal cancer cells. Chem Biol Interact., 181(3):440-6.


Hsieh CH, Chao KS, Liao HF, Chen YJ. (2013). Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells. Evid Based Complement Alternat Med, 2013;2013:838651.


Shou LM, Zhang QY, Li W, et al. (2013). Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent down-regulation of α 2 integrin. Oncol Rep. doi: 10.3892/or.2013.2601.

Moscatilin

Cancers:
Colon, lung, placenta, stomach, breast metastasis

Action: Anti-angiogenic, anti-metastatic, anti-tubulin, cytostatic, cytotoxic, cell-cycle arrest, anti-inflammatory

Stomach Cancer, Lung Cancer, Placental

The efficacy of using moscatilin, a natural anti-platelet agent extracted from the stems of Dendrobrium loddigesii, as an anti-cancer agent was studied. Results demonstrated that moscatilin exerts potent cytotoxic effect against cancer cell lines derived from different tissue origins, including those from the placenta, stomach, and lung, but not those from the liver. In addition, the mechanism of action of moscatilin may be related to its ability to induce a G2 phase arrest in responsive cells.

However, unlike some G2 arresting agents, moscatilin has no detectable inhibitory effect on cyclin B–cdc-2 kinase activity. Thus, the precise nature of its cytotoxic mechanism remains to be determined.

Results suggest that moscatilin is potentially efficacious for chemo-prevention and/or chemotherapy against some types of cancer (Ho & Chen, 2003).

Colorectal Cancer

The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on colorectal HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Moscatilin induced a time-dependent arrest of the cell-cycle at G2/M, with an increase of cells at sub-G1. Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. A parallel experiment showed that SP600125 significantly inhibits Taxol and vincristine induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents.

Collectively, results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage leading to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway (Chen et al., 2008).

Anti-inflammatory

Results showed that moscatilin (10-100 microM) had a significant inhibition in a concentration-dependent manner on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS (100 ng/mL) treatment.

Hypoxia-inducible factor 1 (HIF-1) alpha was reported to initiate inflammation under cytokine stimulation or hypoxic conditions. Moscatilin had significant inhibition on HIF-1 expression via down-regulation of HIF-1 mRNA without affecting cell viability, translation machinery, or proteasome-mediated degradation of HIF-1. Collective data demonstrarted that moscatilin inhibited both COX-2 and iNOS expressions after LPS treatment in RAW264.7. Furthermore, moscatilin's inhibitory effect appears to be dependent on the repression of HIF-1alpha accumulation and NF-kappaB activation (Liu et al., 2010).

Lung Cancer; Angiogenesis

Moscatilin significantly inhibited growth of lung cancer cell line A549 (NSCLC) and suppressed growth factor-induced neovascularization. In addition, VEGF- and bFGF-induced cell proliferation, migration, and tube formation of HUVECs was markedly inhibited by moscatilin. Western blotting analysis of cell signaling molecules indicated that moscatilin inhibited ERK1/2, Akt, and eNOS signaling pathways in HUVECs.

Results suggest that inhibition of angiogenesis by moscatilin may be a major mechanism in cancer therapy (Tsai et al., 2010).

Lung Cancer

Investigation demonstrated that non-toxic concentrations of moscatilin were able to inhibit human non-small-cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical was identified as a dominant species in the suppression of filopodia formation.

Results indicate a novel molecular basis of moscalitin inhibiting lung cancer cell motility and invasion. Moscalitin may have promising anti-metastatic potential as an agent for lung cancer therapy (Kowitdamrong, Chanvorachote, Sritularak & Pongrakhananon, 2013).

Breast Cancer; Metastasis

Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anti-cancer activity. The mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo was evaluated.

Moscatilin was found to significantly inhibit breast cancer MDA-MB-231 cell migration by using scratch assays and Boyden chambers.

In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity.

Results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways, consistent with moscatilin's anti-metastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis (Pai et al., 2013).

References

Chen TH, Pan SL, Guh JH, et al. (2008). Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clinical Cancer Research, 14(13), 4250-4258. doi: 10.1158/1078-0432.CCR-07-4578.


Ho CK, Chen CC. (2003). Moscatilin from the orchid Dendrobrium loddigesii is a potential anti-cancer agent. Cancer Investigation, 21(5), 729-736.


Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Research International., 2013, 765894. doi: 10.1155/2013/765894.


Liu YN, Pan SL, Peng CY, et al. (2010). Moscatilin repressed lipopolysaccharide-induced HIF-1alpha accumulation and NF-kappaB activation in murine RAW264.7 cells. Shock, 33(1), 70-5. doi: 10.1097/SHK.0b013e3181a7ff4a.


Pai HC, Chang LH, Peng CY, et al. (2013). Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway.

Journal of Molecular Medicine (Berlin), 91(3), 347-56. doi: 10.1007/s00109-012-0945-5.

Tsai AC, Pan SL, Liao CH, et al. (2010). Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Letters, 292(2), 163-70. doi: 10.1016/j.canlet.2009.11.020.

Matricaria chamomilla/Matricaria recutita

Cancer: Colorectal., ovarian, testicular, bladder, lung

Action: Neuropathy, anti-inflammatory

Colorectal Cancer; Ovarian Cancer; Testicular Cancer; Bladder Cancer; Lung Cancer; Chemotherapy

Studies have shown that cisplatin could have painful effects on human and animal models. Matricaria chamomilla (MC) has analgesic and anti-inflammatory effects, and may hence be an effective treatment for ciplatin-induced peripheral neuropathy as a replacement for morphine. Experiments were performed on 60 NMRI male mice weighed 25 g to 30 g, which have been divided into 6 groups. The first group received normal saline; the second group received MC hydroalcoholic extract; the third group received cisplatin; the fourth group received MC hydroalcoholic extract and cisplatin, 96 hours before formalin test; the fifth group received morphine and the sixth group received cisplatin and morphine.

Results showed that formalin induced significant (P < 0.05) pain response (the first phase: 0–5 min and the second phase: 15–40 min after injection). Administration of MC extract before formalin injection showed significant (P < 0.05) decrease of pain responses in the first and second phase. Administration of cisplatin produced significant (P < 0.05) increase in pain response in both phases of formalin test. Injection of MC extract and cisplatin together have shown that MC is able to decrease the second phase of cisplatin-induced pain significantly (P < 0.05).

In comparison morphine has analgesic effects in the first phase and MC extract has anti- inflammatory effects in the second phase of formalin test significantly (P < 0.05). MC and cisplatin have analgesic and painful neuropathic respective effects, and MC hydroalcoholic extract is able to decrease cisplatin-induced pain and inflammation better than morphine (Abad et al., 2011).

Anti-inflammatory

Flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the anti-inflammatory action, which is due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner (Bulgari et al., 2012).

The anti-cancer properties of aqueous and methanolic extracts of Matricaria chamomilla against various human cancer cell lines were investigated. Chamomile exposure resulted in differential apoptosis in cancer cells but not in normal cells at similar doses. HPLC analysis of chamomile extract confirmed apigenin 7-O-glucoside as the major constituent of chamomile; some minor glycoside components were also observed. Apigenin glucosides inhibited cancer cell growth but to a lesser extent than the parent aglycone, apigenin (Srivastava & Gupta, 2007).

References

Abad NA, Nouri MHK, Gharjanie A, Tavakoli F. (2011). Effect of Matricaria chamomilla Hydroalcoholic Extract on Cisplatin-induced Neuropathy in Mice. Chinese Journal of Natural Medicines, 9(2):126–131


Bulgari M, Sangiovanni E, Colombo E, et al. (2012). Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion. Phytother Res, 26(12):1817-22. doi: 10.1002/ptr.4657.


Srivastava JK, Gupta S. (2007). Anti-proliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem, 55(23):9470-8.

Hedyotis Diffusa Extract

Cancer: Colon

Action: CYP3A4 induction, inhibits angiogenesis

Hedyotis diffusa is a herb native to East Asia, particularly China, Japan, and Nepal.

Inhibition of tumor angiogenesis has become an attractive target of anti-cancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor-associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer.

Inhibits Angiogenesis

The angiogenic effects of the ethanol extract of EEHDW were investigated, in order to find a molecular mechanism for its anti-cancer activity. It was found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, EEHDW dose- and time-dependently inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) by blocking the cell-cycle G1 to S progression.

Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. These findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy (Lin et al., 2011).

Colorectal Cancer

Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). The ethanol extract of Hedyotis diffusa Willd (EEHDW) reduced tumor volume and tumor weight, and suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax (Cai et al., 2012).

EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. Lin et al. (2012) observed that EEHDW treatment blocked the cell-cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21 (Lin et al., 2012).

Recently, Lin et al. (2013) reported that HDW could inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of anti-tumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2 (Lin et al., 2013).

CYP3A4 Induction

Patients are warned against the concomitant use of Oldenlandia diffusa and Rehmannia glutinosa, which could result in induction of CYP3A4, leading to a reduced efficacy of drugs that are CYP3A4 substrates and have a narrow therapeutic window (Lau et al., 2013).

References

Cai Q, Lin J, Wei L, Zhang L, et al. (2012). Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway. Int J Mol Sci, 13(5):6117-28. doi: 10.3390/ijms13056117.


Lau C, Mooiman KD, Maas-Bakker RF, et al. (2013). Effect of Chinese herbs on CYP3A4 activity and expression in vitro. J Ethnopharmacol, 149(2):543-9. doi: 10.1016/j.jep.2013.07.014.


Lin J, Wei L, Xu W, et al. (2011). Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis. Mol Med Report, 4(6):1283-8. doi: 10.3892/mmr.2011.577.


Lin M, Lin J, Wei L, et al. (2012). Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell-cycle arrest. Exp Ther Med, 4(2):307-310.


Lin J, Wei L, Shen A, et al. (2013). Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis. Int J Oncol, 42(2):651-6. doi: 10.3892/ijo.2012.1753.

Guben Xiaoliu Extract

Cancer: Colorectal., lung

Action: Improves cellular immune function, relieves myelosuppression

Colorectal

Seventy eight advanced colorectal cancer patients were randomly assigned to treatment group (38 patients) and control group (40 patients). Oxaliplatin 85 mg/m^2 IV infusion for 2 hours, dl. CF 200 mg/m^2 IV infusion for 2 hours followed by 5-FU 400 mg/m^2 iv infusion for 22 hours, d1-2, were administered. Every two weeks was a cycle. The control group was treated by FOLFOX4 regimen, while Guben Xiaoliu capsule was added in the treatment group. Patients were evaluated after 4 cycles. Clinical beneficial rate of treatment and contral group were 76.3% and 57.5% respectively (P<0.05).

Guben Xiaoliu capsule decreased blood hypercoagulability, improved cellular immune function of patients, relieved myelosuppression of chemotherapeutic agents and improved quality of life of patients. FOLFOX4 regimen combined with Guben Xiaoliu capsule had better effect in the treatment of advance colorectal cancer patients (Hu et al., 2007).

NSCLC

One hundred and ninety eight NSCLC in-patients were divided into the integrative treated group (Group A, 54 patients treated with chemotherapy (CT) plus GXC), the TCM treated group (Group B, 96 patients treated with GXC alone) and the chemotherapeutic group (Group C, 48 patients treated with CT alone). Randomized controlled observation was applied to Group A and Group C. The clinical effect, quality of life (QOL), adverse reaction and survival period in the three groups were observed. The immediate effective rate (CR+PR) in Groups A, B, and C was 16.7%, 3.1% and 8.3%, respectively; in Group A, it was better than in the other two groups (P<0 05).

The improvement of clinical symptoms and QOL in Groups A and B were superior to those in Group C (P<0 05). The median survival rate in the three groups was 12, 15 and 9 months, respectively, the 1-, 2-, and 3-year survival rate in Group A being 57.4%, 11.1% and 3.7%, respectively, in Group B, 67.7%, 9.4% and 3.1%, and in Group C, 39.6%, 4.2% and 0, respectively. Comparison between the three groups showed that the survival rates in the former two were higher than those in Group C (P<0 05).

Moreover, the incidence rate and degree of CT toxicity were milder in Group A than in Group C (P<0 05). GXC has definite effect in treating NSCLC; it could raise the QOL and prolong the survival period of patients, and also reduce the toxicity and enhance the efficacy of CT (Wang et al., 2004).

Lewis lung carcinoma

In vivo animal experiment was used to investigate the growth of mice tumors. Immunological (SP) and quantitative pathologic image analysis were used to investigate the microvessel density (MVD) and expression of vascular endothelial growth factor (VEGF) in tumor tissue. The inhibitory rates on mouse tumor of GC group, chemotherapy group and GC chemotherapy group were 40.58%, 52.69%, 61.09% respectively.

The inhibitory rates are significantly higher than for the control, while MVD and expression of VEGF of GC group and GC chemotherapy group and MVD of chemotherapy group decreased significantly. GC could inhibit the growth and angiogenesis of Lewis lung carcinoma of mice (Yang et al., 2004).

Formula

Sclerotium Cordyceps Chinensis (dong chong xia cao), Fructificatio Ganodermatus (ling zhi), Radix Panacis Quinque Folii (xi yang shen), Herba Epimedii (yin yang huo), Bulbus Fritillariae Thunbergii (zhe bei mu), Semen Coicis Lachryma-Jobi (yi yi ren), Hirudo seu Whitmaniae (shui zhi), Buthus Martensi (quan xie), Herba Solanum Nigrum (long kui), Rhizoma Curcumae Ezhu (e zhu), Rhizoma Smilacis Glabrae (tu fu ling), Scolopendra Subspinipes (wu gong)

References

Hu F, Zhang Q, Wang X, Yang G, Zhao W. (2007). Clinical Study of Guben Xiaoliu Capsule Combined with FOLFOX4 Regimen in Treating Advanced Colorect Cancer. Zhong Guo Zhong Yi Yao Xin Xi Za Zhi, 14(7): 13-14.


Wang X, Xin H, Yang Z, Zhao W, Yang G, Liu J, Tang W, Zhang Q, Han D, Yu R. (2004). Clinical Study on Treatment of Advanced Stage Non Small Cell Lung Cancer. Zhong Guo Zhong Xi Yi Jie He Za Zhi, 24(11): 986-988.


Yang GW, Wang XM, Wang Z, Peng RY, Gao YB, Wang XM. (2004). Inhibitory Effect and Antiangiogenesis of Gubenxiaoliu Capsule on Lewis Lung Carcinoma of Mouse. China Journal of Experimental Traditional Medical Formulae, 10(5):50-52.

Ent-clerodane diterpenoids

Cancer: Nasopharangeal., oral epidermoid, colorectal

Action: none noted

Ent-clerodane Diterpenoids are isolated from Scutellaria barbata (D. Don).

Nasopharangeal Cancer, Oral Epidermoid Carcinoma, Colorectal Cancer

Four new ENT-clerodane diterpenoids were isolated from the whole plant of Scutellaria barbata D. Don. (Labiatae). Their structures were elucidated by chemical methods and spectral analyzes. in vitro, the four new compounds showed significant cytotoxic activities against three human cancer lines (HONE-1 nasopharyngeal., KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells), and gave IC50 values in the range 3.1-7.2 microM (Dai et al., 2007).

Two new ent-clerodane diterpenoids have been isolated from Scutellaria barbata, and their structures were established by detailed spectroscopic analyzes as (13R)-6agr,7β-dihydroxy-8β,13-epoxy-11β-nicotinyloxy-ent-clerodan-3-en-15,16-olide (scutelinquanine D, 1) and (11E)-6agr-acetoxy-7β,8β-dihydroxy-ent-clerodan-3,11,13-trien-15,16-olide (6-acetoxybarbatin C, 2). In vitro, the isolated two new compounds showed significant cytotoxic activities against three human cancer cell lines (HONE-1 nasopharyngeal., KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells), and gave IC50 values in the range of 2.5-6.6 µM (Qu et al. 2010).

References

Dai SJ, Sun JY, Ren Y, Liu K, Shen L. (2007). Bioactive ent-clerodane diterpenoids from Scutellaria barbata. Planta Med, 73(11):1217-20.


Qu GW, Yue XD, Li GS, Yu QY, Dai SJ. (2010). Two new cytotoxic ent-clerodane diterpenoids from Scutellaria barbata. Journal of Asian Natural Products Research, 12(10):859-64. doi: 10.1080/10286020.2010.507546.

EGCG, ECG, CG, EC

Cancer: Breast, pancreatic, lung, colorectal

Action: Chemo-preventive effects, metastasis

(-)-Epigallocatechin gallate (EGCG) is isolated from Camellia sinensis [(L.) Kuntze].

Epidemiological evidence suggests tea (Camellia sinensis L.) has chemo-preventive effects against various tumors. (-)-Epigallocatechin gallate (EGCG), a catechin polyphenol compound, represents the main ingredient of green tea extract and is chemo-preventive and an anti-oxidant. EGCG shows growth inhibition of various cancer cell lines, such as lung, mammary, and stomach.

Breast Cancer, Colorectal Cancer

Although EGCG has been shown to be growth-inhibitory in a number of tumor cell lines, it is not clear whether the effect is cancer-specific. The effect of EGCG on the growth of SV40 virally transformed WI38 human fibroblasts (WI38VA) was compared with that of normal WI38 cells. The IC50 value of EGCG was estimated to be 120 and 10 microM for WI38 and WI38VA cells, respectively. Similar differential growth inhibition was also observed between a human colorectal cancer cell line (Caco-2), a breast cancer cell line (Hs578T) and their respective normal counterparts.

EGCG at a concentration range of 40-200 microM induced a significant amount of apoptosis in WI38VA cultures, but not in WI38 cultures, as determined by terminal deoxynucleotidyl transferase assay. It is possible that differential modulation of certain genes, such as c-fos and c-myc, may cause differential effects of EGCG on the growth and death of cancer cells (Chen et al., 1998).

Breast Cancer

Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically-induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Green tea significantly increased mean latency to the first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; however, it did not affect tumor number in female rats.

Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27Kip1 cyclin-dependent kinase inhibitor (CKI) expression.

Thus, green tea had significant chemo-preventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27Kip1 (Kavanagh et al., 2001).

Pancreatic Cancer

The in vitro anti-tumoral properties of EGCG were investigated in human PDAC (pancreatic ductal adenocarcinoma) cells PancTu-I, Panc1, Panc89 and BxPC3 in comparison with the effects of two minor components of green tea catechins, catechin gallate (CG) and epicatechin gallate (ECG). It was found that all three catechins inhibited proliferation of PDAC cells in a dose- and time-dependent manner.

Interestingly, CG and ECG exerted much stronger anti-proliferative effects than EGCG. Importantly, catechins, in particular ECG, inhibited TNFα-induced activation of NF-κB and consequently secretion of pro-inflammatory and invasion promoting proteins like IL-8 and uPA.

Overall, these data show that green tea catechins ECG and CG exhibit potent and much stronger anti-proliferative and anti-inflammatory activities on PDAC cells than the most studied catechin EGCG (KŸrbitz et al., 2011).

Okabe et al. (1997) assessed the ability of EGCG to inhibit HGF signaling in the immortalized, nontumorigenic breast cell line, MCF10A, and the invasive breast carcinoma cell line, MDA-MB-231. The ability of alternative green tea catechins to inhibit HGF-induced signaling and motility was investigated. (-)-Epicatechin-3-gallate (ECG) functioned similarly to EGCG by completely blocking HGF-induced signaling as low as 0.6 muM and motility at 5 muM in MCF10A cells; whereas, (-)-epicatechin (EC) was unable to inhibit HGF-induced events at any concentration tested. (-)-Epigallocatechin (EGC), however, completely repressed HGF-induced AKT and ERK phosphorylation at concentrations of 10 and 20 muM, but was incapable of blocking Met activation. Despite these observations, EGC did inhibit HGF-induced motility in MCF10A cells at 10 muM.

Metastsis Inhibition

These observations suggest that the R1 galloyl and the R2 hydroxyl groups are important in mediating the green tea catechins' inhibitory effect towards HGF/Met signaling. These combined in vitro studies reveal the possible benefits of green tea polyphenols as cancer therapeutic agents to inhibit Met signaling and potentially block invasive cancer growth (Bigelow et al., 2006).

Colorectal Cancer

Panaxadiol (PD) is a purified sapogenin of ginseng saponins, which exhibits anti-cancer activity. Epigallocatechin gallate (EGCG), a major catechin in green tea, is a strong botanical anti-oxidant. Effects of selected compounds on HCT-116 and SW-480 human colorectal cancer cells were evaluated by a modified trichrome stain cell proliferation analysis. Cell-cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or annexin V/PI. Cell growth was suppressed after treatment with PD (10 and 20  µm) for 48 h. When PD (10 and 20  µm) was combined with EGCG (10, 20, and 30  µm), significantly enhanced anti-proliferative effects were observed in both cell lines.

Combining 20  µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p  < 0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Action: Anti-inflammatory, antioxidant

Green tea catechins, especially epigallocatechin-3-gallate (EGCG), have been associated with cancer prevention and treatment. This has resulted in an increased number of studies evaluating the effects derived from the use of this compound in combination with chemo/radiotherapy. Most of the studies on this subject up to date are preclinical. Relevance of the findings, impact factor, and date of publication were critical parameters for the studies to be included in the review.

Additive and synergistic effects of EGCG when combined with conventional cancer therapies have been proposed, and its anti-inflammatory and antioxidant activities have been related to amelioration of cancer therapy side effects. However, antagonistic interactions with certain anticancer drugs might limit its clinical use.

The use of EGCG could enhance the effect of conventional cancer therapies through additive or synergistic effects as well as through amelioration of deleterious side effects. Further research, especially at the clinical level, is needed to ascertain the potential role of EGCG as adjuvant in cancer therapy.

Cancer: Pancreatic ductal adenocarcinoma

Action: Anti-proliferative and anti-inflammatory

In the present study, Kürbitz et al., (2011) investigated the in vitro anti-tumoral properties of EGCG on human PDAC (pancreatic ductal adenocarcinoma) cells PancTu-I, Panc1, Panc89 and BxPC3 in comparison with the effects of two minor components of green tea catechins catechin gallate (CG) and epicatechin gallate (ECG). We found that all three catechins inhibited proliferation of PDAC cells in a dose- and time-dependent manner. Interestingly, CG and ECG exerted much stronger anti-proliferative effects than EGCG. Western blot analyses performed with PancTu-I cells revealed catechin-mediated modulation of cell cycle regulatory proteins (cyclins, cyclin-dependent kinases [CDK], CDK inhibitors). Again, these effects were clearly more pronounced in CG or ECG than in EGCG treated cells. Importantly, catechins, in particular ECG, inhibited TNFα-induced activation of NF-κB and consequently secretion of pro-inflammatory and invasion promoting proteins like IL-8 and uPA. Overall, our data show that green tea catechins ECG and CG exhibit potent and much stronger anti-proliferative and anti-inflammatory activities on PDAC cells than the most studied catechin EGCG.

References

Bigelow RLH, & Cardelli JA. (2006). The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene, 25:1922–1930. doi:10.1038/sj.onc.1209227

Chen ZP, Schell JB, Ho CT, Chen KY. (1998). Green tea epigallocatechin gallate shows a pronounced growth-inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett,129(2):173-9.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Kavanagh KT, Hafer LJ, Kim DW, et al. (2001). Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. Journal of Cellular Biochemistry, 82(3):387-98. doi:10.1002/jcb.1164


KŸrbitz C, Heise D, Redmer T, et al. (2011). Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Science, 102(4):728-734. doi: 10.1111/j.1349-7006.2011.01870.x


Okabe S, Suganuma M, Hayashi M, et al. (1997). Mechanisms of Growth Inhibition of Human Lung Cancer Cell Line, PC-9, by Tea Polyphenols. Cancer Science, 88(7):639–643. doi: 10.1111/j.1349-7006.1997.tb00431.x

Lecumberri E, Dupertuis YM, Miralbell R, Pichard C. (2013) Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clinical Nutrition. Volume 32, Issue 6, December 2013, Pages 894–903.

Kürbitz C, Heise D, Redmer T, Goumas F, et al. Cancer Science. Online publication Jan 2011. DOI: 10.1111/j.1349-7006.2011.01870.x

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Curzerenone

Cancer: Breast, cervical., colorectal

Action: Inhibits proliferation

Breast Cancer, Cervical Cancer, Colorectal Cancer

Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay.

Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner.

The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemo-preventive and chemotherapeutic strategies (Syed Abdul Rahman, Abdul Wahab & Abd Malek, 2013).

Reference

Syed Abdul Rahman SN, Abdul Wahab N, & Abd Malek SN. (2013). In vitro morphological assessment of apoptosis induced by anti-proliferative constituents from the rhizomes of Curcuma zedoaria. Evidence-Based Complementary and Alternative Medicine, 2013(2013), 257108. doi: 10.1155/2013/257108.

Cordycepin

Cancer: Melanoma, colorectal

Action: Inhibits proliferation

Cordyceps sinensis is a parasitic fungus on the larvae of Lepidoptera (particularly Ophiocordyceps sinensis [(Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora]) and has been used as a traditional Chinese medicine. Cordycepin is isolated from corydyceps.

Melanoma

It has been reported that the growth of B16-BL6 mouse melanoma (B16-BL6) cells was inhibited by cordycepin (3'-deoxyadenosine), an active ingredient of C. sinensis, and its effect was antagonized by MRS1191, a selective adenosine A3 receptor antagonist. The radioligand binding assay has shown that B16-BL6 cells express adenosine A3 receptors and that cordycepin binds to these receptors. Adenosine A3 receptors are also involved in the action of cordycepin using MRS1523 and MRS1220, specific adenosine A3 receptor antagonists.

Indirubin, a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, antagonized the growth suppression induced by cordycepin. Furthermore, the level of cyclin D1 protein in B16-BL6 cells was decreased by cordycepin. Cordycepin hence inhibits the proliferation of B16-BL6 cells by stimulating adenosine A3 receptors followed by the Wnt signaling pathway, including GSK-3beta activation and cyclin D1 inhibition (Yoshikawa et al., 2007).

Colorectal Cancer

The proliferation of SW480 (IC50 is 2 mmol/L) and SW620 (IC50 is 0.72 mmol/L) cells was significantly inhibited with increasing concentration of cordycepin (P<0.05 or P<0.01).

Additionally, the results showed that the cell numbers were significantly reduced with cordycepin in a dose- and time-dependent manner (P<0.01). These combined results imply that cordycepin directly inhibit the proliferation of colorectal cancer cells (He et al., 2010).

References

He W, Zhang Mf, Ye J, et al. (2010). Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J Zhejiang Univ Sci B, 11(9): 654–660. doi: 10.1631/jzus.B1000081.


Yoshikawa N, Yamada S, Takeuchi C, et al. (2008). Cordycepin (3′ -deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3 β activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch Pharmacol, 377(4-6):591-5. doi: 10.1007/s00210-007-0218-y.