Category Archives: Rectal cancer

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

Alkanna

Cancer: Colorectal

Action: Anti-cancer effect, apoptosis

In a continuing program to discover new anti-cancer agents from plants, especially naphthoquinones from the Alkanna genus, Alkanna cappadocica was investigated. Bioassay-guided fractionation of a dichloromethane/methanol (1:1) extract of the roots led to the isolation of four new and four known naphthoquinones. The known compounds are 11-deoxyalkannin (1), beta,beta-dimethylacrylalkannin (2), 11-O-acetylalkannin (3), and alkannin (4). The new compounds 5-O-methyl-11-deoxyalkannin (5), 8-O-methyl-11-deoxyalkannin (6), 5-O-methyl-11-O-acetylalkannin (7), and 5-O-methyl-beta,beta-dimethylacrylalkannin (8) were characterized by spectroscopic analyzes (LC-ESIMS, 1D and 2D NMR).

Cytotoxicity of the isolated compounds was evaluated versus 12 human cancer cell lines, HT-29, MDA-MB-231, PC-3, AU565, Hep G2, LNCaP, MCF7, HeLa, SK-BR-3, DU 145, Saos-2, and Hep 3B together with two normal cell lines, VERO and 3T3, by using the MTT assay. Compound 7 showed remarkable cytotoxicity with IC(50) values between 0.09 and 14.07 muM. It was more potent than the other compounds in six out of 12 cancer cell lines and the positive controls doxorubicin and etoposide (Sevimli-Gur et al., 2010).

Colorectal Cancer

The isolation of active compounds against human colorectal cancer from the root of Alkanna tinctoria (L.) Tausch led to the isolation of two naphthoquinones, alkannin (1) and angelylalkannin (2). Both of the two compounds showed significant inhibitory effects on the cancer cells. For alkannin (1) and angelylalkannin (2), the median inhibitory concentration (IC₅₀) values were 2.38 and 4.76  µM for HCT-116 cells, while for SW-480 cells they were 4.53 and 7.03  µM, respectively. The potential anti-proliferative mechanisms were also explored. At concentrations between 1-10  µM, both compounds arrested the cell-cycle at the G1 phase and induced cell apoptosis (Tung et al., 2013a).

To explore active anti-colorectal cancer compounds, we carried out phytochemical studies on Alkanna tinctoria and isolated eight quinone compounds. Using different spectral methods, compounds were identified as alkannin (1), acetylalkannin (2), angelylalkannin (3), 5-methoxyangenylalkannin (4), dimethylacryl alkannin (5), arnebifuranone (6), alkanfuranol (7), and alkandiol (8).

Among the eight compounds, alkannin (1), angelylalkannin (3), and 5-methoxyangenylalkannin (4) showed strong anti-proliferative effects, whereas compound 4 showed the most potent effects.   The structural-functional relationship assay suggested that to increase anti-cancer potential., future modifications on alkannin (1) should focus on the hydroxyl groups at C-5 and C-8 (Tung et al., 2013b).

References

Sevimli-Gur, C, Akgun, IH, Deliloglu-Gurhan, I, Korkmaz, KS, Bedir, E. (2010). Cytotoxic naphthoquinones from Alkanna cappadocica (perpendicular). J Nat Prod, 73(5):860-4. doi: 10.1021/np900778j.


Tung, NH, Du, GJ, Wang, CZ, Yuan, CS, Shoyama, Y. (2013a). Naphthoquinone components from Alkanna tinctoria (L.) Tausch show significant anti-proliferative effects on human colorectal cancer cells. Phytother Res, 27(1):66-70. doi: 10.1002/ptr.4680.


Tung, NH, Du, GJ, Yuan, CS, Shoyama, Y, Wang, CZ. (2013b). Isolation and chemo-preventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria. Anti-cancer Drugs, 24(10):1058-68. doi: 10.1097/CAD.0000000000000017.

Oxymatrine or Compound Matrine (Ku Shen)

Cancer: Sarcoma, pancreatic, breast, liver, lung, oral., rectal., stomach, leukemia, adenoid cystic carcinoma

Action: Anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, anti-angiogenesis

Ingredients: ku shen (Sophora flavescens), bai tu ling (Heterosmilax chinensis).

TCM functions: Clearing Heat, inducing diuresis, cooling Blood, removing Toxin, dispersing lumps and relieving pain (Drug Information Reference in Chinese: See end, 2000-12).

Indications: Pain and bleeding caused by cancer.

Dosage and usage:

Intramuscular injection: 2-4 ml each time, twice daily; intravenous drip: 12 ml mixed in 200 ml NaCl injection, once daily. The total amount of 200 ml administration makes up a course of treatment. 2-3 consecutive courses can be applied.

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012). The four major alkaloids in compound Ku Shen injection are matrine, sophoridine, oxymatrine and oxysophocarpine (Qi, Zhang, & Zhang, 2013).

Sarcoma

When a high dose was used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

T Cell Leukemia

Matrine, a small molecule derived from the root of Sophora flavescens AIT was demonstrated to be effective in inducing T cell anergy in human T cell leukemia Jurkat cells.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells could influence the ability of T cell anergy induction.

The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Osteosarcoma

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing osteosarcoma MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3 (Ling et al., 2011).

Rectal Carcinoma

Eighty-four patients diagnosed with rectal carcinoma at the People”s Hospital of Yichun city in Jiangxi province from September 2006 to September 2011, were randomly divided into two groups: therapeutic group and control group. The patients in the therapeutic group were treated with compound matrine and intensity modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT.

The clinical effect and survival rate in the therapeutic group were significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress in the therapeutic group.

However, the control group had 12 improvements, 14 stabilized, and 16 disease progress. Quality of life in the therapeutic group was higher than that in the control group by rank sum test. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post therapy, according to the student test. Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

Seventy-six cases of advanced gastric cancer were collected from June 2010 to November 2011, and randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively. The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

Adenoid cystic carcinoma (ACC-2) cells were cultured in vitro. MTT assay was used to measure the cell proliferative effect. Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer; Chemotherapy

A retrospective analysis of oncological data of 70 postoperative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days for a cycle) were compared.

The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An, & Wu, 2012).

Lung cancer; Pleural Effusion

The therapeutic efficiency of Fufang Kushen Injection Liquid (FFKSIL), IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected FFKSIL plus IL-2, FFKSIL plus α-tFN, and IL-2 plus α>-IFN, respectively. The control group was divided into three groups and injected FFKSIL, IL-2 and α>-IFN, respectively. The effective rate of FFKSIL, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. The effect of FFKSIL, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of FFKSIL plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Gastric Cancer

Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-αlevels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity (Zhou et al., 2012).

Colorectal Cancer; Chemotherapy

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mLád-1 compound Kushen injection, for 10d during chemotherapy. In the control group the numbers of CD3+,CD4+T cells,NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells ,NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

NSCLC; Chemotherapy

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term  efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group. The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05).

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone. Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Liver Cancer

Fifty-seven patients with unresectable primary liver cancer were randomly divided into 2 groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. One, two, and three year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

Chemotherapy

Ten RCTs were included in a meta-analysis, whose results suggest that compared with chemotherapy alone, the combination had a statistically significant benefit in healing efficacy and improving quality of life. As well,  the combination also had a statistically significant benefit in myelosuppression, white blood cell, hematoblast, liver function and in reducing the gastroenteric reaction, decreasing the of CD3, CD4, CD4/CD8, and NK cells (Huang et al., 2011).

Colorectal Cancer, NSCLC, Breast Cancer; Chemotherapy

Fufang kushen Injection might improve the efficacies of chemotherapy in patients with colorectal cancer, NSCLC and breast cancer.

The results of a meta-analysis of 33 studies of randomized controlled trials with a total of 2,897 patients demonstrated that the short-term efficacies in patients with colorectal cancer, NSCLC, and breast cancer receiving Fufangkushen Injection plus chemotherapy were significantly better than for those receiving chemotherapy alone. However the results for patients with gastric cancer on combined chemotherapy were not significantly different from those for patients on chemotherapy alone (Fang, Lin, & Fan, 2011).

References

An, A.J., An, G.W., & Wu, Y.C. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People”s Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen, G., Yu, B., Yuan, S.J., & Yuan, Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013). Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan, C.X., Lin, C.L., Liang, L., Zhao, Y.Y., Liu, J., Cui, J., Yang, Q.M., Wang, Y.L., & Zhang, A.R. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Fang, L., Lin, N.M., Fan, Y. (2011). Short-term  efficacies of Fufangkushen Injection plus chemotherapy in patients with solid tumors: a meta-analysis of randomized trials. Zhonghua Yi Xue Za Zhi, 91(35):2476-81.


Hu, D.J., & Mei, X.D. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Huang S, Fan W, Liu P, Tian J. (2011). Meta-analysis of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer. Zhongguo Zhong Yao Za Zhi, 36(22):3198-202.


Kong, Q-Z., Huang, D-S., Huang, T. et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Qi, L., Zhang, J., Zhang, Z. (2013). Determination of four alkaloids in Compound Kushen Injection by high performance liquid chromatography with ionic liquid as mobile phase additive. Chinese Journal of Chromatography, 31(3): 249-253. doi: 10.3724/SP.J.1123.2012.10039.


Shi, B., & Xu, H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012:373219. doi: 10.1155/2012/373219.


Wang, H.M., & Cheng, X.M. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia, G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin, W.H., Sheng, J.W., Xia, H.M., Chen, J., Wu, Y.W., & Fan, H.Z. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhou, S-K., Zhang, R-L., Xu, Y-F., Bi, T-N. (2012) Anti-oxidant and Immunity Activities of Fufang Kushen Injection Liquid. Molecules 2012, 17(6), 6481-6490; doi:10.3390/molecules17066481


Zhu, M.Y., Jiang, Z.H., Lu, Y.W., Guo, Y., & Gan, J.J. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Oridonin

Cancer: Prostate

Action: Growth arrest, autophagy

To investigate the mechanism of oridonin (ORI)-induced autophagy in prostate cancer PC-3 cells, PC-3 cells cultured in vitro were treated with ORI, and the inhibitory ratio of ORI on PC-3 cells was assayed by 3-4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. After ORI treatment, the proliferation of PC-3 cells was inhibited significantly in a concentration and time-dependent manner. SEM examination revealed cellular shrinkage and disappearance of surface microvilli in ORI-treated cells. Under TEM examination, the nuclei exhibited chromatin condensation and the appearance of a large number of autophagosomes with double-membrane structure in cytoplasm. AO staining showed the existence of AVOs. The expression of LC3 and the mRNA level of beclin 1 was increased by ORI. Furthermore, autophagy inhibitor 3-methyladenine reversed the increase of beclin 1 mRNA. The growth of PC-3 cells was inhibited, and autophagy was induced by ORI, indicating ORI may have a potential antitumor effect.

Source
Ye LH, Li WJ, Jiang XQ, et al. Study on the autophagy of prostate cancer PC-3 cells induced by oridonin. Anat Rec (Hoboken). 2012 Mar;295(3):417-22. doi: 10.1002/ar.21528.

 

Cancer: Multiple myeloma

Action: Inhibits proliferation and induces apoptosis

This study was purposed to investigate the antitumor effect of oridonin on human multiple myeloma cell line U266 The results showed that the oridonin obviously inhibited the growth of U266 cell in dose-and time-dependent manners. As for morphological changes, characteristic apoptotic cells presented in U266 cells treated with 10 µmol/L oridonin for 24 hours. The apoptotic rate of U266 cells increased in dose and time dependent manners; after treatment of U266 cells with oridonin the mRNA levels of FGFR3, BCL2, CCND1 and MYC as well as the their protein levels decreased. Occasionally, the oridonin up-regulated the protein levels of P53 in the same manner. It is concluded that the oridonin can exert its anti-tumor effect by inhibiting proliferation and inducing apoptosis of U266 cell in dose dependent and time dependent manners, that maybe give the clues about new program of target therapy for multiple myeloma.

Source:

Duan HQ, Li MY, Gao L, et al. Mechanism concerning antitumor effect of oridonin on multiple myeloma cell line U266. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014 Apr;22(2):364-9. doi: 10.7534/j.issn.1009-2137.2014.02.018.

Cancer: Multiple myeloma

Action: Induces apoptosis and autophagy

Exposure to oridonin (1-64 μmol/L) inhibited the proliferation of RPMI8266 cells in a concentration-dependent manner with an IC(50) value of 6.74 μmol/L. Exposure to oridonin (7 μmol/L) simultaneously induced caspase 3-mediated apoptosis and Beclin 1-dependent autophagy of RPMI8266 cells. Both the apoptosis and autophagy were time-dependent, and apoptosis was the main effector pathway of cell death. Exposure to oridonin (7 μmol/L) increased intracellular ROS and reduced SIRT1 nuclear protein in a time-dependent manner.

Oridonin simultaneously induces apoptosis and autophagy of human multiple myeloma RPMI8266 cells via regulation of intracellular ROS generation and SIRT1 nuclear protein. The cytotoxicity of oridonin is mainly mediated through the apoptotic pathway, whereas the autophagy protects the cells from apoptosis.

Source

Zeng R, Chen Y, Zhao S, Cui GH.Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin. 2012 Jan;33(1):91-100. doi: 10.1038/aps.2011.143.

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Chemoresistance, Ara-C, VP-16 

Cancer cell arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. Weng et al., (2014) compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S–mediated apoptosis.

Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.

Reference

Weng Hy, Huang Hl, Dong B, et al. Inhibition of miR-17 and miR-20a by Oridonin Triggers Apoptosis and Reverses Chemoresistance by Derepressing BIM-S. Cancer Res; 74(16); 1–11. doi: 10.1158/0008-5472.CAN-13-1748

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.

 

Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.

 

Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681

 

Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.

 

Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.

 

Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.

 

Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.

 

Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.

 

Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.

 

Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.

 

Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.

 

Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.

 

Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.

 

Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.

 

Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.

Isorhamnetin

Cancer:
Lung, colon, acute myeloid leukemia, T lymphoma, Ehrlich carcinoma, gastric, esophageal squamous cell, chronic myelogenous leukemia

Action: Dox-induced cardiotoxicity, anti-oxidant

Isorhamnetin, the anti-tumor component of Hippophae rhamnoides Linn, is also a member of the ßavonoid class of compounds. Its chemical name is 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl) chromen-4-one and its molecular formula is C16H12O7.

Lung Cancer

Isorhamnetin shows good inhibitory effects on human lung adenocarcinoma A549 cells, human colon cancer HT-29 cells, human chronic myeloid leukemia K562 cells, human acute myeloid leukemia HL-60 cells, mouse T lymphoma YAC-1 cells and mouse Ehrlich carcinoma. In terms of its mechanism of action, it seems that isorhamnetin simultaneously reduces the expression of Bcl-2 and increases the expression of Bax, which activates caspase-9 and its downstream factor caspase-3, thus resulting in cell death (Zhu et al. 2005).

Colorectal Cancer

It was demonstrated that isorhamnetin prevents colorectal tumorigenesis. Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. Magnetic resonance imaging, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than control diet.

These observations suggest the chemo-protective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression (Saud et al., 2013).

Gastric Cancer

The potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, were investigated on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, gastric cancer (GC) cell lines, and xenograft mice model.

It was observed that IH exerted a strong anti-proliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of gastric cancer cells, which could be reversed in the presence of PPAR-γ inhibitor.

Using molecular docking analysis, Ramachandran et al. (2013) demonstratd that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, these findings clearly indicate that anti-tumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

Cardiac-protective; Doxorubicin

Isorhamnetin is a natural anti-oxidant with obvious cardiac-protective effect. Its action against doxorubicin-induced cardotoxicity and underlying mechanisms were investigated. Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. The aim of this study is to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity.

Daily pre-treatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes, and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox (Sun et al., 2013).

Chronic Myelogenous Leukemia

The isorhamnetin 3-o-robinobioside and its original extract, ethyl acetate extract, from Nitraria retusa leaves, were evaluated for their ability to induce anti-oxidant and anti-genotoxic effects in human chronic myelogenous leukemia cell line. They were shown to have a great anti-oxidant and anti-genotoxic potential on human chronic myelogenous leukemia cell line K562 (Boubaker et al., 2012).

Esophageal Cancer

The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells and it inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro (Shi et al., 2012).

References

Boubaker J, Ben Sghaier M, Skandrani I, et al. (2012). Isorhamnetin 3-O-robinobioside from Nitraria retusa leaves enhance anti-oxidant and anti-genotoxic activity in human chronic myelogenous leukemia cell line K562. BMC Complement Altern Med, 12:135. doi: 10.1186/1472-6882-12-135.


Ramachandran L, Manu KA, Shanmugam MK, et al. (2013). Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem, 288(26):18777. doi: 10.1074/jbc.A112.388702.


Saud SM, Young MR, Jones-Hall YL, et al. (2013). Chemo-preventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β -catenin. Cancer Res, 73:5473.


Shi C, Fan LY, Cai Z, Liu YY, Yang CL. (2012). Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin. Neoplasma, 59(4):361-9. doi: 10.4149/neo_2012_047.


Sun J, Sun G, Meng X, et al. (2013). Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One, 8(5):e64526. doi: 10.1371/journal.pone.0064526.


Zhu L, Wang ZR, Zhou LM, et al. (2005). Effects and mechanisms of isorhamnetin on lung carcinoma. Space Med Med Eng (Chin), 18:381-383.

Ai Di Injection (ADI)

Cancers: Breast, colorectal., glioma, lung

Action: Chemo-sensitizer, cytostatic, radio-sensitizer

 

Ingredients: Mylabris phalerata (ban mao), Panax ginseng (ren shen), Astragalus membranaceus (huang qi).

TCM functions: Clearing Heat, removing Toxin, resolving stagnant Blood, dissolving lumps.

Indications: Primary liver cancer, lung cancer, colorectal cancer, malignant lymphoma, and gynecological malignancies.

Dosage and usage:

For adults: 50-100ml, mixed with 400-500ml of 0.9% NaCl injection or 5-10% glucose injection for intravenous drip, once daily.

When combined with radiotherapy or chemotherapy, the course of treatment is synchronized to radiotherapy or chemotherapy.

Application before or after the surgery: 10 days as a course of treatment.

Intervention treatment: 10 days as a course of treatment.

Single application: 15 days as a cycle, with 3 days interval., 2 cycles as a course of treatment.

 

Cachexia patients in advanced stage: 30 consecutive days as a course of treatment (Drug Information Reference in Chinese: See end).

 

Glioma; Radio-sensitization

The inhibition ratio was determined by MTT assay, the change in the cell-cycle was analyzed by flow cytometry and the expression of cyclin B1 and Wee1 was detected by Western blot analysis. The reproductive activity of the group treated with irradiation (IR) and Aidi injection was suppressed significantly, and the cloning efficiency and divisional index also declined. Aidi injection (15 µg/ml) induced G2/M phase arrest in the cell line after 48 h.

 

Aidi injection (ADI) is effective in radio-sensitization. The possible mechanisms involved may be associated with G2/M phase cell arrest, the down-regulation of cyclin B1 and up-regulation of Wee1 expression, which influences cell size by inhibiting the entry into mitosis, through inhibiting Cyclin-dependent kinase 1 (Xu, Song, Qin, Wang, & Zhou, 2012).

 

Breast Cancer

ADI significantly inhibited the proliferation of MCF-7 cells in a dose-dependent manner. The IC50 of ADI was 55.71 mg/mL after treatment for 48 h. The 60 mg/mL ADI was used as the therapeutic drug concentration. Microarray analysis identified 45 miRNAs that were up-regulated and 55 miRNAs that were down-regulated in response to ADI treatment. Many ADI-induced miRNAs were related to breast cancers. The 12 potential target genes of mir-126 were predicted by both TargetScan and PicTar software.

 

The miRNA may serve as therapeutic targets for ADI, and its modulation of expression is an important mechanism of ADI inhibition of breast cancer cell growth (Zhang, Zhou, Lu, Du, & Su, 2011).

 

Colorectal Cancer; FOLFOX4

A consecutive cohort of 100 patients was divided into two groups. The experimental group was treated with a combination of Aidi injection and FOLFOX4, while the control group was only administered FOLFOX4. After a minimum of two courses of treatment, efficacy, quality of life, and side-effects were evaluated.

 

The response rate of the experimental group was not significantly different compared to the control group (P > 0.05). However, there were significant differences in clinical benefit response and KPS score. In addition, adverse gastrointestinal reactions and the incidence of leukopenia were lower than that of the control group (P < 0.05).

Aidi injection, combined with FOLFOX4, is associated with reduced toxicity of chemotherapy, enhanced clinical benefit response, and improved quality of life in patients with advanced colorectal cancer (Xu, Huang, Li, Li, & Tang, 2011).

 

NSCLC

Ninety-eight cases of advanced NSCLC were randomly divided into two groups: a trial group and control group. In the trial group Navelbine/Cisplatin (NP) plus Ai Di Injection (ADI) (60-80 ml) was administered intravenously, via dissolution in 400 ml of normal saline, per day for 8-10 days. In the control group, only NP chemotherapy was administered at the dosages of: Navelbine (25 mg/m², d1, 8) and Cisplastin (40 mg/m², d1-3). Each patient received at least two cycles of treatment.

 

The effective rate in the trial group and the control group was 53.1% and 44.9% respectively, without significant difference between the two groups (P > 0.05). However, the rate of progression, adverse reactions in the bone marrow, digestive tract, and immune function in the trial group were all lower than those in the control group (P < 0.05). In addition, improvement in Karnofsky score in the trial group was higher than that in the control group (P < 0.05).

 

A chemotherapy regiment of NP, combined with ADI, shows benefit in the treatment of advanced NSCLC. AI could minimize the adverse reactions of chemotherapy, and improve the quality of life in patients with NSCLC (Wang et al., 2004).

 

NSCLC; Meta-analysis

PubMed (1980-2008), Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 3, 2008), EMBASE (1984-2008), CancerLit (1996-2003), CBMdisc (1980-2008), CNKI database (1980-2008), Wanfang database (1980-2008), and Chongqing VIP database (1980-2008) were searched. Relevant Chinese periodicals were manually searched as well. All randomized controlled trials comparing Aidi Injection with other treatment methods of NSCLC were included. Two reviewers selected studies, assessed the quality of studies, and extracted the data independently.

 

Fourteen randomized controlled trials were included in the meta-analysis, but unfortunately, the quality of reports of the 14 included studies were poor. Aidi Injection combined with cobalt-60, or navelbine and platinol (NP), showed statistically significant differences in improving the response rate, compared to the use of cobalt-60 alone (P = 0.0002) or NP alone (P = 0.04). However, Aidi Injection combined with etoposide and platinol (EP), taxinol and platinol (TP) or gamma knife showed no significant differences when compared with single use of EP (P=0.60), TP (P=0.16) or gamma knife (P=0.34), respectively. The RR and 95% CI of EP, TP, and gamma knife were 1.17 [0.65, 2.09], 1.27 [0.91, 1.78] and 1.08 [0.92, 1.26] respectively.

 

Six studies indicated that Aidi Injection, combined with NP or gamma knife, could improve quality of life. Six studies showed that Aidi Injection, combined with NP or TP, could improve the bone marrow’s hematopoietic function. The results of the meta-analysis indicate that Aidi Injection may have adjuvant therapeutic effects in the treatment of NSCLC patients. However, sample sizes are small, study quality is poor, and the existence of publication bias had been found. The effects of Aidi Injection need to be confirmed by large multicenter randomized controlled trials (Ma, Duan, Feng, She, Chen & Zhang, 2009).

 

NSCLC; Neo-adjuvant Chemotherapy

Sixty patients, with stage IIIA non-small-cell lung cancer (NSCLC), underwent two courses of bronchial arterial infusion (BAI) chemotherapy, before tumor incision. They were assigned to either the treatment or control group, using a random number table. Thirty patients were allocated to each. An ADI of 100 mL, added into 500 mL of 5% glucose, was given to the patients in the treatment group via intravenous drip. Treatment was once a day, beginning 3 days prior and throughout each of two 14-day courses of chemotherapy.

 

Levels of T-lymphocyte subsets, natural killer cell activity, and interleukin-2 in peripheral blood were measured before and after the treatment. The effective rate in the treatment group was higher than that in the control group (70.0% vs. 56.7%, P < 0.05).

 

Moreover, bone marrow suppression and liver function damage (P < 0.05) was less in the treatment group relative to the control. Cellular immune function was suppressed in NSCLC patients, but was ameliorated after treatment, showing a significant difference when compared to the control group (P < 0.05).

 

ADI could potentially act as an ideal auxiliary drug for patients with stage IIIA NSCLC, receiving BAI neo-adjuvant chemotherapy, before surgical operation. It could enhance the effectiveness of chemotherapy, ameliorate adverse reactions, and elevate patient’s cellular immune function (Sun, Pei, Yin, Wu & Yang, 2010).

 

References

Ma, W.H., Duan, K.N., Feng, M., She, B., Chen, Y., & Zhang, R.M. (2009). Aidi Injection as an adjunct therapy for non-small-cell lung cancer: a systematic review. Journal of Chinese Integrative Medicine, 7(4), 315-324.

Sun, X.F., Pei, Y.T., Yin, Q.W., Wu, M.S., & Yang, G.T. (2010). Application of Aidi injection in the bronchial artery infused neo-adjuvant chemotherapy for stage III A non-small-cell lung cancer before surgical operation. Chinese Journal of Integrative Medicine, 16(6), 537-541.

Wang, D., Chen, Y., Ren, J., Cai, Y., M. Liu, M., & Zhan, Q. (2004). A randomized clinical study on efficacy of Aidi injection combined with chemotherapy in the treatment of advanced non-small-cell lung cancer. Journal of Chinese Integrative Medicine, 7(3), 247-249.

Xu, H.X., Huang, X.E., Li, Y., Li, C.G., & Tang, J.H. (2011). A clinical study on safety and efficacy of Aidi injection combined with chemotherapy. Asian Pacific Journal of Cancer Prevention, 12(9), 2233-2236.

Xu, X.T., Song, Y., Qin, S., Wang, L.L., & Zhou, J.Y. (2012). Radio-sensitization of SHG44 glioma cells by Aidi injection in vitro. Molecular Medicine Reports, 5(6), 1415-1418.

Zhang, H., Zhou, Q.M., Lu, L.L., Du, J., & Su, S.B. (2011). Aidi injection alters the expression profiles of microRNAs in human breast cancer cells. Journal of Traditional Chinese Medicine, 31(1), 10-16.

Isorhamnetin

Cancer:
Lung, colon, acute myeloid leukemia, T lymphoma, Ehrlich carcinoma, gastric, esophageal squamous cell, chronic myelogenous leukemia

Action: Dox-induced cardiotoxicity, anti-oxidant

Isorhamnetin, the anti-tumor component of Hippophae rhamnoides Linn, is also a member of the ßavonoid class of compounds. Its chemical name is 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl) chromen-4-one and its molecular formula is C16H12O7.

Lung Cancer

Isorhamnetin shows good inhibitory effects on human lung adenocarcinoma A549 cells, human colon cancer HT-29 cells, human chronic myeloid leukemia K562 cells, human acute myeloid leukemia HL-60 cells, mouse T lymphoma YAC-1 cells and mouse Ehrlich carcinoma. In terms of its mechanism of action, it seems that isorhamnetin simultaneously reduces the expression of Bcl-2 and increases the expression of Bax, which activates caspase-9 and its downstream factor caspase-3, thus resulting in cell death (Zhu et al. 2005).

Colorectal Cancer

It was demonstrated that isorhamnetin prevents colorectal tumorigenesis. Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. Magnetic resonance imaging, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than control diet.

These observations suggest the chemo-protective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression (Saud et al., 2013).

Gastric Cancer

The potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, were investigated on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, gastric cancer (GC) cell lines, and xenograft mice model.

It was observed that IH exerted a strong anti-proliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of gastric cancer cells, which could be reversed in the presence of PPAR-γ inhibitor.

Using molecular docking analysis, Ramachandran et al. (2013) demonstratd that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, these findings clearly indicate that anti-tumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

Cardiac-protective; Doxorubicin

Isorhamnetin is a natural anti-oxidant with obvious cardiac-protective effect. Its action against doxorubicin-induced cardotoxicity and underlying mechanisms were investigated. Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. The aim of this study is to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity.

Daily pre-treatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes, and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox (Sun et al., 2013).

Chronic Myelogenous Leukemia

The isorhamnetin 3-o-robinobioside and its original extract, ethyl acetate extract, from Nitraria retusa leaves, were evaluated for their ability to induce anti-oxidant and anti-genotoxic effects in human chronic myelogenous leukemia cell line. They were shown to have a great anti-oxidant and anti-genotoxic potential on human chronic myelogenous leukemia cell line K562 (Boubaker et al., 2012).

Esophageal Cancer

The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells and it inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro (Shi et al., 2012).

Cancer:
Actions: Overcomes MDR; P-glycoproteins, breast cancer resistance proteins (BCRP), efflux transporters

Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated.

Isorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin’s permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (p<0.01).

Efflux transporters, P-glycoproteins (P-gp), breast cancer resistance proteins (BCRP) and multidrug resistance proteins (MRPs) participated in the isorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571).

References

Boubaker J, Ben Sghaier M, Skandrani I, et al. (2012). Isorhamnetin 3-O-robinobioside from Nitraria retusa leaves enhance anti-oxidant and anti-genotoxic activity in human chronic myelogenous leukemia cell line K562. BMC Complement Altern Med, 12:135. doi: 10.1186/1472-6882-12-135.


Ramachandran L, Manu KA, Shanmugam MK, et al. (2013). Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem, 288(26):18777. doi: 10.1074/jbc.A112.388702.


Saud SM, Young MR, Jones-Hall YL, et al. (2013). Chemo-preventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β -catenin. Cancer Res, 73:5473.


Shi C, Fan LY, Cai Z, Liu YY, Yang CL. (2012). Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin. Neoplasma, 59(4):361-9. doi: 10.4149/neo_2012_047.


Sun J, Sun G, Meng X, et al. (2013). Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One, 8(5):e64526. doi: 10.1371/journal.pone.0064526.


Zhu L, Wang ZR, Zhou LM, et al. (2005). Effects and mechanisms of isorhamnetin on lung carcinoma. Space Med Med Eng (Chin), 18:381-383.


Duan J, Xie Y, Luo H, Li G, Wu T, Zhang T. (2014) Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem Toxicol. 2014 Apr;66:313-20. doi: 10.1016/j.fct.2014.02.003.

Tanshinone II A & Tanshinone A (See also Cryptotanshinone)

Cancer:
Leukemia, prostate, breast, gastric, colorectal, nasopharyngeal carcinoma

Action: Chemo-sensitizer, cytostatic, cancer stem cells, anti-cancer, autophagic cell death, cell-cycle arrest

Anti-cancer

Tanshinone IIA and cryptotanshinone could induce CYP3A4 activity (Qiu et al., 2103).

Tanshinone II-A (Tan IIA) is the most abundant diterpene quinone isolated from Danshen (Salvia miltiorrhiza), which has been used in treating cardiovascular diseases for more than 2,000 years in China. Interest in its versatile protective effects in cardiovascular, metabolic, neurodegenerative diseases, and cancers has been growing over the last decade.

Tan IIA is a multi-target drug, whose molecular targets include transcription factors, scavenger receptors, ion channels, kinases, pro- and anti-apoptotic proteins, growth factors, inflammatory mediators, microRNA, and others. More recently, enhanced or synergistic effects can be observed when Tan IIA is used in combination therapy with cardio-protective and anti-cancer drugs (Xu & Liu, 2013).

Leukemia

The in vitro anti-proliferation and apoptosis-inducing effects of Tanshinone IIA on leukemia THP-1 cell lines and its mechanisms of action were investigated. MTT assay was used to detect the cell growth-inhibitory rate; cell apoptotic rate and the mitochondrial membrane potential (Deltapsim) were investigated by flow cytometry (FCM); apoptotic morphology was observed by Hoechst 33258 staining and DNA fragmentation analysis.

It was therefore concluded that Tanshinone IIA has significant growth inhibition effects on THP-1 cells by induction of apoptosis, and that Tanshinone IIA-induced apoptosis on THP-1 cells is mainly related to the disruption of Deltapsim and activation of caspase-3 as well as down-regulation of anti-apoptotic protein Bcl-2, survivin and up-regulation of pro-apoptotic protein Bax. The results indicate that Tanshinone IIA may serve as a potential anti-leukemia agent (Liu et al., 2009).

Prostate Cancer

Chiu et al. (2013) explored the mechanisms of cell death induced by Tan-IIA treatment in prostate cancer cells in vitro and in vivo. Results showed that Tan-IIA caused prostate cancer cell death in a dose-dependent manner, and cell-cycle arrest at G0/G1 phase was noted, in LNCaP cells. The G0/G1 phase arrest correlated with increased levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. Tan-IIA also induced ER stress in prostate cancer cells: activation and nuclear translocation of GADD153/CCAAT/enhancer-binding protein-homologous protein (CHOP) were identified, and increased expression of the downstream molecules GRP78/BiP, inositol-requiring protein-1α and GADD153/CHOP were evidenced. Blockage of GADD153/CHOP expression by siRNA reduced Tan-IIA-induced cell death in LNCaP cells.

Gastric Cancer

Tan IIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Tan IIA (1, 5, 10 µg/ml) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that Tan IIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. Tan IIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that Tan IIA markedly decreased migratory and invasive abilities of SGC7901 cells (Xu et al., 2013).

Cell-cycle Arrest

MTT and SRB assays were applied to measure the effects of tanshinone A on cell viability. Cell-cycle distribution and apoptosis were assessed via flow cytometry using PI staining and the Annexin V/PI double staining method respectively. Changes to mitochondrial membrane potential was also detected by flow cytometry. The spectrophotometric method was utilized to detect changes of caspase-3 activity. Western blotting assay was used to evaluate the expression of Bcl-2, Bax and c-Myc proteins.

Results indicated that Tan-IIA displayed significant inhibitory effect on the growth of K562 cells in a dose- and time- dependent manner, and displayed only minimal damage to hepatic LO2 cells.

Tan-IIA could arrest K562 cells in the G0/G1 phase and induce apoptosis, decrease mitochondrial transmembrane potential, and the expressions of Bcl-2 and c-Myc proteins, increase the expression of Bax protein and activity of caspase-3. Accordingly, it was presumed that the induction of apoptosis may be through the endogenous pathway. Subsequently, tanshinone A could be a promising candidate in the development of a novel anti-tumor agent (Zhen et al., 2011).

Prostate Cancer, Chemo-sensitizer

Treatment with a combination of Chinese herbs and cytotoxic chemotherapies has shown a higher survival rate in clinical trials.

Tan-IIA displayed synergistic anti-tumor effects on human prostate cancer PC3 cells and LNCaP cells, when combined with cisplatin in vitro. Anti-proliferative effects were detected via MTT assay. Cell-cycle distribution and apoptosis were detected by flow cytometer. Protein expression was detected by Western blotting. The intracellular concentration of cisplatin was detected by high performance liquid chromatography (HPLC).

Results demonstrated that tanshinone II A significantly enhanced the anti-proliferative effects of cisplatin on human prostate cancer PC3 cells and LNCaP cells with an increase in the intracellular concentration of cisplatin. These effects were correlated with cell-cycle arrest at the S phase and induction of cell apoptosis. Apoptosis could potentially be achieved through the death receptor and mitochondrial pathways, decreased expression of Bcl-2.

Collectively, results indicated that the combination of tanshinone II A and cisplatin had a better treatment effect, in vitro, not only on androgen-dependent LNCaP cells but also on androgen-independent PC3 cells (Hou, Xu, Hu, & Xie, 2013).

Autophagic Cell Death, CSCs

Tan IIA significantly increased the expression of microtubule-associated protein light chain 3 (LC3) II as a hallmark of autophagy in Western blotting and immunofluorescence staining. Tan IIA augmented the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and attenuated the phosphorylation of mammalian target of rapamycin (mTOR) and p70 S6K in a dose-dependent manner.Tan IIA dramatically activated the extracellular signal regulated kinase (ERK) signaling pathway including Raf, ERK and p90 RSK in a dose-dependent and time-dependent manner. Consistently, ERK inhibitor PD184352 suppressed LC3-II activation induced by Tan IIA, whereas PD184352 and PD98059 did not affect poly (ADP-ribose) polymerase cleavage and sub-G1 accumulation induced by Tan IIA in KBM-5 leukemia cells.

Tan IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 cells as a potent natural compound for leukemia treatment (Yun et al., 2013).

Cancer stem cells (CSCs) are maintained by inflammatory cytokines and signaling pathways. Tanshinone IIA (Tan-IIA) possesses anti-cancer and anti-inflammatory activities. The purpose of this study is to confirm the growth inhibition effect of Tan-IIA on human breast CSCs growth in vitro and in vivo and to explore the possible mechanism of its activity. After Tan-IIA treatment, cell proliferation and mammosphere formation of CSCs were decreased significantly; the expression levels of IL-6, STAT3, phospho-STAT3 (Tyr705), NF-κBp65 in nucleus and cyclin D1 proteins were decreased significantly; the tumor growth and mean tumor weight were reduced significantly.

Tan-IIA has the potential to target and kill CSCs, and can inhibit human breast CSCs growth both in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways (Lin et al., 2013).

Colorectal Cancer

Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF. Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis (Zhou et al., 2012). The results showed that Tan IIA inhibited the proliferation of inflammation-related colon cancer cells HCT116 and HT-29 by decreasing the production of inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which are generated by macrophage RAW264.7 cell line.

Treatment with TanshinoneIIA prevented increased PU.1, a transcriptional activator of miR-155, and hence increased miR-155, whereas aspirin could not. These findings support that the interruption of signal conduction between activated macrophages and colon cancer cells could be considered as a new therapeutic strategy and miR-155 could be a potential target for the prevention of inflammation-related cancer (Tu et al., 2012).

Breast Cancer

The proliferation rate of T47D and MDA-MB-231 cells influenced by 1×10-6 mol·L-1 and 1×10-7 mol·L-1 Tanshinone IIA was analyzed by MTT assay. Estrogen receptor antagonist ICI182, 780 was employed as a tool. Level of ERα and ERβ mRNA in T47D cells was quantified by Real-time RT-PCR assay. Expression of ERα and ERβ protein was measured by flow cytometry. The proliferation rates of T47D cells treated with Tanshinone IIA decreased significantly. Such effects could be partly blocked by ICI182, 780.

Meanwhile, the proliferation rates of MDA-MB-231 cells treated with Tanshinone IIA decreased much more dramatically. Real-time RT-PCR and flow cytometry results showed that Tanshinone IIA could induce elevation of ERα and ERβ, especially ERα mRNA, and protein expression level in T47D cells. Tanshinone IIA shows inhibitory effects on proliferation of breast cancer cell lines (Zhao et al., 2010).

The role of cell adhesion molecules in the process of inflammation has been studied extensively, and these molecules are critical components of carcinogenesis and cancer metastasis. This study investigated the effect of tanshinone I on cancer growth, invasion and angiogenesis on human breast cancer cells MDA-MB-231, both in vitro and in vivo. Tanshinone I dose-dependently inhibited ICAM-1 and VCAM-1 expressions in human umbilical vein endothelial cells (HUVECs) that were stimulated with TNF-α for 6 h.

Additionally, reduction of tumor mass volume and decrease of metastasis incidents by tanshinone I were observed in vivo. In conclusion, this study provides a potential mechanism for the anti-cancer effect of tanshinone I on breast cancer cells, suggesting that tanshinone I may serve as an effective drug for the treatment of breast cancer (Nizamutdinova et al., 2008).

Nasopharyngeal Carcinoma

To investigate anti-cancer effect and potential mechanism of tanshinone II(A) (Tan II(A)) on human nasopharyngeal carcinoma cell line CNE cells, the anti-proliferative effect of Tan II(A) on CNE cells was evaluated by morphological examination, cell growth curves, colonial assay and MTT assay. Tan II(A) could inhibit CNE cell proliferation in dose- and time-dependent manner. After treatment with Tan II(A), intracellular Ca2+ concentration of CNE cells was increased, mitochondria membrane potential of the cells was decreased, relative mRNA level of Bad and MT-1A was up-regulated. Tan II(A) had an anti-cancer effect on CNE cells through apoptosis via a calcineurin-dependent pathway and MT-1A down-regulation, and may be the next generation of chemotherapy (Dai et al., 2011).

References

Chiu SC, Huang SY, Chen SP, et al. (2013). Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis. doi: 10.1038/pcan.2013.38.


Dai Z, Huang D, Shi J, Yu L, Wu Q, Xu Q. (2011). Apoptosis inducing effect of tanshinone II(A) on human nasopharyngeal carcinoma CNE cells. Zhongguo Zhong Yao Za Zhi, 36(15):2129-33.


Hou LL, Xu QJ, Hu GQ, Xie SQ. (2013). Synergistic anti-tumor effects of tanshinone II A in combination with cisplatin via apoptosis in the prostate cancer cells. Acta Pharmaceutica Sinica, 48(5), 675-679.


Lin C, Wang L, Wang H, et al. (2013). Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem, 114(9):2061-70. doi: 10.1002/jcb.24553.


Liu JJ, Zhang Y, Lin DJ, Xiao RZ. (2009). Tanshinone IIA inhibits leukemia THP-1 cell growth by induction of apoptosis. Oncol Rep, 21(4):1075-81.


Nizamutdinova IT, Lee GW, Lee JS, et al. (2008). Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 29(10):1885-1892. doi:10.1093/carcin/bgn151


Qiu F, Jiang J, Ma Ym, et al. (2013). Opposite Effects of Single-Dose and Multidose Administration of the Ethanol Extract of Danshen on CYP3A in Healthy Volunteers. Evidence-Based Complementary and Alternative Medicine, 2013(2013) http://dx.doi.org/10.1155/2013/730734


Tu J, Xing Y, Guo Y, et al. (2012). TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int Immunopharmacol, 14(4):353-61. doi: 10.1016/j.intimp.2012.08.015.


Xu M, Cao FL, Li NY, et al. (2013). Tanshinone IIA reverses the malignant phenotype of SGC7901 gastric cancer cells. Asian Pac J Cancer Prev, 14(1):173-7.


Xu S, Liu P. (2013). Tanshinone II-A: new perspectives for old remedies. Expert Opin Ther Pat, 23(2):149-53. doi: 10.1517/13543776.2013.743995.


Yun SM, Jung JH, Jeong SJ, et al. (2013). Tanshinone IIA Induces Autophagic Cell Death via Activation of AMPK and ERK and Inhibition of mTOR and p70 S6K in KBM-5 Leukemia Cells. Phytother Res. doi: 10.1002/ptr.5015.


Zhen X, Cen J, Li YM, Yan F, Guan T, Tang, XZ. (2011). Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. European Journal of Pharmacology, 667(1-3), 129-135. doi: 10.1016/j.ejphar.2011.06.004.


Zhao PW, Niu JZ, Wang JF, Hao QX, Yu J, et al. (2010). Research on the inhibitory effect of Tanshinone IIA on breast cancer cell proliferation. Zhong Guo Yao Li Xue Tong Bao, 26(7):903-906.


Zhou LH, Hu Q, Sui H, et al. (2012). Tanshinone II–a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer. Asian Pac J Cancer Prev, 13(9):4453-8.

Apigenin

Cancer:
Breast, gastrointestinal., prostate, ovarian, pancreatic

Action: Anti-proliferative effect, induces apoptosis, chemo-sensitizer

Apigenin (4′,5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. There is evidence that the actions of apigenin might hinder the ability of gastrointestinal cancers to progress and spread.

Induces Apoptosis, Anti-metastatic

Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease (Lefort, 2013).

Chemo-sensitizer, Induces Apoptosis

Choi & Kim (2009) investigated the effects of combined treatment with 5-fluorouracil and apigenin on proliferation and apoptosis, as well as the underlying mechanism, in human breast cancer MDA-MB-453 cells. The MDA-MB-453 cells, which have been shown to overexpress ErbB2, were resistant to 5-fluorouracil; 5-fluorouracil exhibited a small dose-dependent anti-proliferative effect, with an IC50 of 90 microM. Interestingly, combined treatment with apigenin significantly decreased the resistance. Cellular proliferation was significantly inhibited in cells exposed to 5-fluorouracil at its IC50 and apigenin (5, 10, 50 and 100 microM), compared with proliferation in cells exposed to 5-fluorouracil alone.

This inhibition in turn led to apoptosis, as evidenced by an increased number of apoptotic cells and the activation of caspase-3. Moreover, compared with 5-fluorouracil alone, 5-fluorouracil in combination with apigenin at concentrations >10 microM exerted a pro-apoptotic effect via the inhibition of Akt expression.

Taken together, results suggest that 5-fluorouracil acts synergistically with apigenin inhibiting cell growth and inducing apoptosis via the down-regulation of ErbB2 expression and Akt signaling (Choi, 2009).

Breast Cancer, Prostate Cancer

Two flavonoids, genistein and apigenin, have been implicated as chemo-preventive agents against prostate and breast cancers; however, the mechanisms behind their respective cancer-protective effects may vary significantly. It was thought that the anti-proliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) β is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17β-estradiol, exhibited anti-proliferative effects and pro-apoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERβ transactivation, particularly at lower concentrations.

However, in mammalian assay, apigenin was found to be more ERβ-selective than genistein, which has equal potency in inducing transactivation through ERα and ERβ. Small interfering RNA-mediated down-regulation of ERβ abrogated the anti-proliferative effect of apigenin in both cancer cells but did not reverse that of genistein. These results unveil that the anti-cancer action of apigenin is mediated, in part, by ERβ. The differential use of ERα and ERβ signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anti-cancer properties (Mak, 2006).

Ovarian Cancer

Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. It has been demonstrated that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin has been found to suppress the expression of Id1 through activating transcription factor 3 (ATF3). These results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells (Li, 2009).

Pancreatic Cancer

Simultaneous treatment or pre-treatment (0, 6, 24 and 42 hours) of apigenin and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Simultaneous treatment with apigenin (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of apigenin, followed by Gem for 36 hours was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of apigenin for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of apigenin hence effectively aids in the anti-proliferative activity of chemotherapeutic drugs (Johnson, 2013).

Induces Apoptosis, Inhibits Angiogenesis and Metastasis.

Preclinical studies have also shown that Ocimum sanctum L. and some of the phytochemicals it contains (including apigenin) prevents chemical-induced skin, liver, oral., and lung cancers. These effects are thought to be mediated by increasing the anti-oxidant activity, altering gene expression, inducing apoptosis, and inhibiting angiogenesis and metastasis. The aqueous extract of Ocimum sanctum L. has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. In particular, important phytochemicals like apigenin have also been shown to prevent radiation-induced DNA damage. This warrants its future research to establish its activity and utility in cancer prevention and treatment (Baliga, 2013).

Lung Cancer

Apigenin has been found to induce apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 µM for 48 hours treatment. Target identification investigations using A549 cells and in cell-free systems demonstrate that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 µM. Interestingly, apigenin also showed synergistic anti-cancer effects with another natural anti-tubulin agent, curcumin. Apigenin and curcumin synergistically induce cell death and apoptosis and also block cell-cycle progression at G2/M phase of A549 cells.

Understanding the mechanism of the synergistic effect of apigenin and curcumin could help to develop anti-cancer combination drugs from cheap and readily available nutraceuticals (Choudhury, 2013).

Induces Apoptosis

It has been shown that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by up-regulation of DR5, making it a potential cancer therapeutic agent. Apigenin has been found to enhance Apo2L/TRAIL-induced apoptosis in cancer cells by inducing DR5 expression through binding ANT2. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by up-regulating DR5 expression at the post-transcriptional level.

Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin Up-regulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. ANT2 inhibitors like apigenin may hence contribute to Apo2L/TRAIL therapy (Oishi, 2013).

Colorectal Cancer

Apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumor growth and anti-metastasis effects. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression.

This research provides direct evidence that apigenin inhibits tumor growth and metastasis both in vitro and in vivo. Apigenin up-regulates TAGLN and down-regulates MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cancer cell proliferation and migration (Chunhua, 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum Sanctum L (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

 

 

Choi EJ, Kim GH. (2009). 5-Fluorouracil combined with apigenin enhances anti-cancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep, 22(6):1533-7.

 

Choudhury D, Ganguli A, Dastidar DG, et al. (2013). Apigenin shows synergistic anti-cancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6):1297-309. doi: 10.1016/j.biochi.2013.02.010.

 

Chunhua L, Donglan L, Xiuqiong F, et al. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. doi: 10.1016/j.jnutbio.2013.03.006.

 

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 20:83-91. doi: 10.1016/j.fct.2013.07.036.

 


Lefort ƒC, Blay J. (2013). Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res, 57(1):126-44. doi: 10.1002/mnfr.201200424.

 

Li ZD, Hu XW, Wang YT & Fang J. (2009). Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Letters, 583(12):1999-2003 doi:10.1016/j.febslet.2009.05.013.

 

Mak P, Leung YK, Tang WY, Harwood C & Ho SM. (2006). Apigenin suppresses cancer cell growth through ERβ. Neoplasia, 8(11):896–904.

 

Oishi M, Iizumi Y, Taniguchi T, et al. (2013). Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2. PLoS One, 8(2):e55922. doi: 10.1371/journal.pone.0055922.

Andrographolide

Cancer: Leukemia, colorectal, lung

Action: Immunomodulatory,anti-inflammatory,anti-metastatic

Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata [(Burm. f.) Wall. Ex Nees], is known to possess multiple pharmacological activities. Andrographolide has been shown to exhibit antioxidative, anti-cancer, anti-inflammatory, anti-diabetes, and anti-aging properties (Trivedi et al., 2007; Chao et al., 2010).

Immunomodulatory Activity

The immunomodulatory activity of HN-02, an extract containing a mixture of andrographolides, was evaluated at 1.0, 1.5, and 2.5 mg/kg on different in vivo and in vitro experimental models. It was also found that HN-02 treatment stimulated phagocytosis in mice. A significant increase in total WBC count and relative weight of spleen and thymus was observed in mice during 30 days of treatment with HN-02.

The present experimental findings demonstrate that HN-02 has the ability to enhance immune function, possibly through modulation of immune responses altered during antigen interaction, and to reverse the immunosuppression induced by CYP (Naik, 2009).

The ethanol extract and purified diterpene andrographolides of Andrographis paniculata (Acanthaceae) induced significant stimulation of antibody and delayed type hypersensitivity (DTH) response to sheep red blood cells (SRBC) in mice. The plant preparations also stimulated non-specific immune response of the animals measured in terms of macrophage migration index (MMI) phagocytosis of Escherichia coli and proliferation of splenic lymphocytes. The stimulation of both antigen specific and non-specific immune response was, however, of lower order with andrographolide than with the ethanol extract, suggesting that substance(s) other than andrographolide present in the extract may also be contributing towards immunostimulation (Puri, 1993)

Anti-inflammatory and Leukemic Therapies

Andrographolide has been shown to attenuate MMP-9 expression, with its main mechanism likely involving the NF-κB signal pathway. These results provide new opportunities for the development of new anti-inflammatory and leukemic therapies. This activity was shown in a study in which andrographolide (1–50µM) exhibited concentration-dependent inhibition of MMP-9 activation, induced by either tumor necrosis factor-α (TNF-α), or lipopolysaccharide (LPS), in THP-1cells.

Anti-inflammatory

Lee et al (2012) found that andrographolide could significantly inhibit the degradation of inhibitor-κB-α (IκB-α) induced by TNF-α. They used electrophoretic mobility shift assay and reporter gene detection to show that andrographolide also markedly inhibited NF-signaling, anti-translocation and anti-activation. These results provide new opportunities for the development of new anti-inflammatory and leukemic therapies.

Lung Cancer Metastasis

Andrographolide is known to have the potential to be developed as a chemotherapeutic agent, in particular in the treatment of lung cancer. In order to understand the anti-cancer properties of andrographolide, its effect on migration and invasion in human lung cancer A549 cells was examined. The results of the wound-healing assay and the in vitro transwell assay revealed that andrographolide inhibited dose-dependently the migration and invasion of A549 cells under non-cytotoxic concentrations.

These results indicated that andrographolide exerted an inhibitory effect on the activity and the mRNA and protein levels of MMP-7, but not MMP-2 or MMP-9. The andrographolide-inhibited MMP-7 expression or activity appeared to occur via activator protein-1 (AP-1) because its DNA binding activity was suppressed by andrographolide. Additionally, the transfection of Akt over-expression vector (Akt1 cDNA) to A549 cells could result in an increase expression of MMP-7 concomitantly with a marked induction on cell invasion. These findings suggested that the inhibition on MMP-7 expression by andrographolide may be through suppression on PI3K/Akt/AP-1 signaling pathway, which in turn leads to the reduced invasiveness of the cancer cells (Lee, 2010).

Colorectal Cancer

Andrographolide has also been shown to have potent anti-cancer activity against human colorectal carcinoma Lovo cells by inhibiting cell-cycle progression. To further investigate the mechanism for the anti-cancer properties of andrographolide, it was used to examine the effect on migration and invasion of Lovo cells. The results of wound-healing assay and in vitro transwell assay revealed that andrographolide inhibited dose-dependently the migration and invasion of Lovo cells under non-cytotoxic concentrations.

The down-regulation of MMP-7 appeared to be via the inactivation of activator protein-1 (AP-1) since the treatment with andrographolide suppressed the nuclear protein level of AP-1, which was accompanied by a decrease in DNA-binding level of the factor. Taken together, these results indicate that andrographolide reduces the MMP-7-mediated cellular events in Lovo cells, and provide a new mechanism for its anti-cancer activity (Shi, 2009)

Anti-inflammatory, Induces Apoptosis

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor subfamily with great potential in cancer therapy; additionally andrographolide is known to possess potent anti-inflammatory and anti-cancer activities which may be attributed to its action on TRAIL. It has been shown that pre-treatment with andrographolide significantly enhances TRAIL-induced apoptosis in various human cancer cell lines, including those TRAIL-resistant cells.

Pre-treatment with an anti-oxidant (N-acetylcysteine) or a c-Jun NH(2)-terminal kinase inhibitor (SP600125) effectively prevented andrographolide-induced p53 activation and DR4 up-regulation and eventually blocked the andrographolide-induced sensitization on TRAIL-induced apoptosis. Taken together, these results present a novel anti-cancer effect of andrographolide and support its potential application in cancer therapy to overcome TRAIL resistance (Zhou, 2008).

References

Chao HP, Kuo CD, Chiu JH, Fu SL. (2010). Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Medica, 76(16):1827–1833. doi: 10.1055/s-0030-1250039.


Lee WR, Chung CL, Hsiao CJ, et al. (2012). Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF- κB activation. Phytomedicine, 19(3):270-277. doi: 10.1016/j.phymed.2011.11.012


Lee YC, Lin HH, Hsu CH, et al. (2010). Inhibitory effects of andrographolide on migration and invasion in human non-small-cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol, 632(1-3):23-32. doi: 10.1016/j.ejphar.2010.01.009.


Naik SR, Hule A. (2009). Evaluation of Immunomodulatory Activity of an Extract of Andrographolides from Andographis paniculata. Planta Med, 75(8):785-91. doi: 10.1055/s-0029-1185398.


Puri A, Saxena R, Saxena RP, et al. (1993). Immunostimulant agents from Andrographis paniculata. J Nat Prod, 56(7):995-9.


Shi MD, Lin HH, Chiang TA, et al. (2009). Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression. Chem Biol Interact, 180(3):344-52. doi: 10.1016/j.cbi.2009.04.011.


Trivedi NP, Rawal UM, Patel BP. (2007). Hepato-protective effect of andrographolide against hexachlorocyclohexane- induced oxidative injury. Integrative Cancer Therapies, 6(3):271–280. doi: 10.1177/1534735407305985.


Zhou J, Lu GD, Ong CS, Ong CN, Shen HM. (2008). Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol Cancer Ther, 7(7):2170-80. doi: 10.1158/1535-7163.MCT-08-0071.

Oridonin

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681


Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.


Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.


Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.


Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.


Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.


Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.


Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.


Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.


Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.


Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.


Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.


Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.

Fucoidan

Cancer:
Lymphoma, prostate, hepatocellular carcinoma, breast, colorectal

Action: Chemotherapy protective

Fucoidan is a ulphated polysaccharide found in brown seaweed, including Sargassum thunbergii [(Mertens ex Roth) Kuntze] and Fucus vesiculosus (L.).

Lymphoma

Fucoidan, a sulfated polysaccharide in brown seaweed, was found to inhibit proliferation and induce apoptosis in human lymphoma HS-Sultan cell lines. Fucoidan-induced apoptosis was accompanied by the activation of caspase-3 and was partially prevented by pre-treatment with a pan-caspase inhibitor, z-VAD-FMK. The neutralizing antibody, Dreg56, against human l-selectin, did not prevent the inhibitory effect of fucoidan on the proliferation of IM9 and MOLT4 cells, both of which express l-selectin; thus it is possible fucoidan induced apoptosis through different receptors. These results demonstrate that fucoidan has direct anti-cancer effects on human HS-Sultan cells through caspase and ERK pathways (Aisa et al., 2005).

Colorectal Cancer; Chemotherapy

A total of 20 patients with unresectable advanced or recurrent colorectal cancer scheduled to undergo treatment with FOLFOX or FOLFIRI were randomly allocated into a fucoidan treatment group (n=10) and a control group without fucoidan treatment (n=10). Results showed that fucoidan regulated the occurrence of fatigue during chemotherapy. Chemotherapy with fucoidan was continued for a longer period than chemotherapy without fucoidan. Additionally, the survival of patients with fucoidan treatment was longer than that of patients without fucoidan, although the difference was not significant.

Thus, fucoidan may enable the continuous administration of chemotherapeutic drugs for patients with unresectable advanced or recurrent colorectal cancer, and as a result, the prognosis of such patients is prolonged (Ikeguchi et al., 2011).

Prostate Cancer

Fucoidan obtained from Undaria pinnatifida induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. The data support that fucoidan might have potential for the treatment of prostate cancer (Boo et al., 2013).

Hepatocellular Carcinoma

Fucoidan isolated from U. pinnatifida induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, and a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation (Yang et al., 2013).

Breast Cancer

Fucoidan exerts its anti-cancer activity through down-regulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer. Fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell- cycle arrest in breast cancer 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan down-regulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin (Xue et al., 2013).

References

Aisa Y, Miyakawa Y, Nakazato T, Shibata H, et al. (2005). Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK Pathways. Am. J. Hematol, 78:7–14. doi: 10.1002/ajh.20182.


Boo HJ, Hong JY, Kim SC, et al. (2013). The anti-cancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs, 11(8):2982-99. doi: 10.3390/md11082982.


Ikeguchi M, Yamamoto M, Arai Y, et al. (2011). Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncology Letters, 2(2). doi: 10.3892/ol.2011.254.


Xue M, Ge Y, Zhang J, et al. (2013). Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via down-regulation of Wnt/β -catenin signaling. Nutr Cancer, 65(3):460-8. doi: 10.1080/01635581.2013.757628.


Yang L, Wang P, Wang H, et al. (2013). Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs, 11(6):1961-76. doi: 10.3390/md11061961.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.

Longan Seed Extract

Cancer: Colorectal

Action: Cell-cycle arrest

Polyphenols of longan seeds (LSP) were extracted and measured by colorimetry. Four CRC cell lines (Colo 320DM, SW480, HT-29 and LoVo) were treated with LSP and assessed for viability by trypan blue exclusion, for cell cycle distribution by flow cytometry, for apoptosis by annexin V labelling and for changes in the levels of proteins involved in cell cycle control or apoptosis by immunoblotting. Total phenol content of LSP was 695 mg g(-1) and total flavonoids were 150 mg g(-1). LSP inhibited the proliferation (25 microg mL(-1)-200 microg mL(-1)) of Colo 320DM, SW480 and HT-29, but not LoVo.

LSP inhibited the proliferation by blocking cell cycle progression during the DNA synthesis phase and inducing apoptotic death. Western blotting indicated that LSP blocks the S phase, reducing the expression of cyclin A and cyclin D1. Colo 320DM and SW480 treated with LSP also showed the activation of caspase 3 and increased Bax : Bcl-2 ratio. LSP induces S phase arrest of the cell cycle and apoptotic death in three CRC cell lines. The results indicate that LSP is a potential novel chemoprevention and treatment agent for colorectal cancer (Chung et al., 2010).

Reference

Chung YC, Lin CC, Chou CC, Hsu CP. (2010) Eur J Clin Invest. 2010 Aug;40(8):713-21. doi: 10.1111/j.1365-2362.2010.02322.x.

Spica Prunellae Extract

Cancer: Colorectal

Action: Promotes apoptosis, anti-angiogenic, induces angiogenesis

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, Lin et al., (2013) found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro.

CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.

EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreasedanti-angiogenic cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.

Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Reference

Lin W, Zheng L, Zhuang Q, Zhao J, et al. (2013) Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun 24;13(1):144.