Category Archives: NB4

Berbamine

Cancer: Breast, leukemia, liver, neutropenia

Action: Anti-metastatic, chemo-sensitizer

Breast Cancer, Leukemia

Berbamine (BER), isolated from the Chinese herb Berberis amurensis and Berberis vulgaris (L.), selectively induces apoptosis in certain breast cancer and leukemia cell lines.

Studies have shown that berbamine suppresses the growth, migration and invasion in highly-metastatic human breast cancer cells by possibly inhibiting Akt and NF-kappaB signaling with their upstream target c-Met and downstream targets Bcl-2/Bax, osteopontin, VEGF, MMP-9 and MMP-2.

BER has synergistic effects with anti-cancer agents trichostatin A, celecoxib and carmofur on inhibiting the growth of MDA-MB-231 cells and reducing the ratio of Bcl-2/Bax and/or VEGF expressions in the cancer cells. These findings suggest that berbamine may have wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer and other cancers (Wang, 2009).

MDR, Leukemia stem cells

Previous studies have shown that berbamine selectively induces apoptosis of imatinib (IM)-resistant-Bcr/Abl-expressing leukemia cells from the K562 cell line and CML patients. Berbamine derivatives obtained by synthesis were found to have very high activity in vitro. Six of these exhibited consistent high anti-tumor activity for imatinib-resistant K562 leukemia cells. Their IC(50) values at 48h were 0.36-0.55 microM, whereas berbamine IC(50) value was 8.9 microM. Cell cycle analysis results showed that compound 3h could reduce G0/G1 cells. In particular, these compounds displayed potent inhibition of the cytoplasm-to-nucleus translocation of NF-kappaB p65 which plays a critical role in the survival of leukemia stem cells (Xie, 2009).

Liver Cancer, Leukemia

Meng et al. (2013) reported that berbamine and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+/calmodulin-dependent protein kinase II (CAMKII). Furthermore, berbamine inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice and downregulated the self-renewal abilities of liver cancer-initiating cells. Berbamine inhibits proliferation and induces apoptosis of KU812 leukaemia cells by increasing Smad3 activity (Kapoor, 2012).

Chronic Myeloid Leukemia, Leukopenia

During imatinib therapy, many patients with chronic myeloid leukemia (CML) develop severe neutropenia, leading to treatment interruptions, and potentially compromising response to imatinib. Berbamine (a bisbenzylisoquinoline alkaloid) has been widely used in Asian countries for managing leukopenia associated with chemotherapy. With berbamine support, the time to achieve complete cytogenetic response was significantly shorter (median, 6.5 vs. 10 months, p = 0.007). There were no severe adverse events associated with berbamine treatment. In conclusion, the present study reveals the potential clinical value of berbamine in the treatment of CML with imatinib-induced neutropenia (Zhao et al., 2011).

References

Kapoor S. (2012). Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. Zhejiang Univ Sci B, 13(9):761-2.


Meng Z, Li T, Ma X, et al. (2013). Berbamine Inhibits the Growth of Liver Cancer Cells and Cancer-Initiating Cells by Targeting Ca2+/Calmodulin-Dependent Protein Kinase II. Mol Cancer Ther.


Wang S, Liu Q, Zhang Y, et al. (2009). Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer, 8:81.


Xie J, Ma T, Gu Y, et al. (2009). Berbamine derivatives: A novel class of compounds for anti-leukemia activity. Eur J Med Chem, 44(8):3293-8. doi: 10.1016/j.ejmech.2009.02.018


Zhao Y, Tan Y, Wu G, et al. (2011). Berbamine overcomes imatinib-induced neutropenia and permits cytogenetic responses in Chinese patients with chronic-phase chronic myeloid leukemia. Int J Hematol, 94(2):156-62. doi: 10.1007/s12185-011-0887-7.

Oridonin

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681


Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.


Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.


Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.


Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.


Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.


Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.


Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.


Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.


Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.


Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.


Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.


Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.