Category Archives: IL-10

Corosolic acid

Cancer:
Myeloid leukemia, cervical., glioblastoma, gastric, sarcoma

Action: Immunosuppressive activity

Corosolic Acid is isolated from Lagerstroemia speciosa [(L.) Pers.] and Crataegus pinnatifida var. psilosa (C. K. Schneider).

Sarcoma; Immunosuppressive Activity

The results from an in vivo study showed that Corosolic acid (CA) administration did not suppress the tumor proliferation index, but significantly impaired subcutaneous tumor development and lung metastasis.

CA administration inhibited signal transducer and activator of transcription-3 (Stat3) activation and increased in the number of infiltrating lymphocytes in tumor tissues. Ex vivo analysis demonstrated that a significant immunosuppressive effect of MDSC in tumor-bearing mice was abrogated and the mRNA expressions of cyclooxygenase-2 and CCL2 in MDSC were significantly decreased by CA administration.

Furthermore, CA enhanced the anti-tumor effects of adriamycin and cisplatin in vitro. Since Stat3 is associated with tumor progression not only in osteosarcoma, but also in other malignant tumors, these findings indicate that CA might be widely useful in anti-cancer therapy by targeting the immunosuppressive activity of MDSC and through its synergistic effects with anti-cancer agents (Horlad et al., 2013).

Cervical Cancer

Xu et al. (2009) investigated the response of human cervix adenocarcinoma HeLa cells to Corosolic acid (CRA) treatment. These results showed that CRA significantly inhibited cell viability in both a dose- and a time-dependent manner. CRA treatment induced S cell-cycle arrest and caused apoptotic death in HeLa cells. It was found that CRA increased in Bax/Bcl-2 ratios by up-regulating Bax expression, disrupted mitochondrial membrane potential and triggered the release of cytochrome c from mitochondria into the cytoplasm.

These results, taken together, indicate CRA could have strong potentials for clinical application in treating human cervix adenocarcinoma and improving cancer chemotherapy.

Glioblastoma

Tumor-associated macrophages (TAMs) of M2 phenotype promote tumor proliferation and are associated with a poor prognosis in patients with glioblastoma.

The natural compounds possessing inhibitory effects on M2 polarisation in human monocyte-derived macrophages were investigated. Among 130 purified natural compounds examined, corosolic acid significantly inhibited the expression of CD163, one of the phenotype markers of M2 macrophages, as well as suppressed the secretion of IL-10, one of the anti-inflammatory cytokines preferentially produced by M2 macrophages, thus suggesting that corosolic acid suppresses M2 polarisation of macrophages.

Furthermore, corosolic acid inhibited the proliferation of glioblastoma cells, U373 and T98G, and the activation of Signal transducer and activator of transcription-3 (STAT3) and Nuclear Factor-kappa B (NF-κB), in both human macrophages and glioblastoma cells. These results indicate that corosolic acid suppresses the M2 polarisation of macrophages and tumor cell proliferation by inhibiting both STAT3 and NF-κB activation. Therefore, corosolic acid may be a new tool for tumor prevention and therapy (Fujiwara et al., 2010).

Gastric Cancer

Corosolic acid (CRA) suppresses HER2 expression, which in turn promotes cell-cycle arrest and apoptotic cell death of gastric cancer cells, providing a rationale for future clinical trials of CRA in the treatment of HER2-positive gastric cancers. CRA combined with adriamycin and 5-fluorouracil enhanced this growth inhibition, but not with docetaxel and paclitaxel (Lee et al., 2010).

Leukemia

Corosolic acid displayed about the same potent cytotoxic activity as ursolic acid against several human cancer cell lines. In addition, the compound displayed antagonistic activity against the phorbol ester-induced morphological modification of K-562 leukemic cells, indicating the suppression of protein kinase C (PKC) activity by the cytotoxic compound (Ahn et al., 1998).

References

Ahn KS, Hahm MS, Park EJ, Lee HK, Kim IH. (1998). Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med, 64(5):468-70.


Fujiwara Y, Komohara Y, Ikeda T, Takeya M. (2010). Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Science. doi: 10.1111/j.1349-7006.2010.01772.x


Horlad H, Fujiwara Y, Takemura K, et al. (2013). Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Molecular Nutrition & Food Research, 57(6):1046-1054. doi: 10.1002/mnfr.201200610


Lee MS, Cha EY, Thuong PT, et al. (2010). Down-regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell-cycle arrest and apoptosis in NCI-N87 human gastric cancer cells. Biol Pharm Bull, 33(6):931-7.


Xu YF, Ge RL, Du J, et al. (2009). Corosolic acid induces apoptosis through mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells. Cancer Letters, 284(2):229-237. doi:10.1016/j.canlet.2009.04.028.

Oxymatrine or Compound Matrine (Ku Shen)

Cancer: Sarcoma, pancreatic, breast, liver, lung, oral., rectal., stomach, leukemia, adenoid cystic carcinoma

Action: Anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, anti-angiogenesis

Ingredients: ku shen (Sophora flavescens), bai tu ling (Heterosmilax chinensis).

TCM functions: Clearing Heat, inducing diuresis, cooling Blood, removing Toxin, dispersing lumps and relieving pain (Drug Information Reference in Chinese: See end, 2000-12).

Indications: Pain and bleeding caused by cancer.

Dosage and usage:

Intramuscular injection: 2-4 ml each time, twice daily; intravenous drip: 12 ml mixed in 200 ml NaCl injection, once daily. The total amount of 200 ml administration makes up a course of treatment. 2-3 consecutive courses can be applied.

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012). The four major alkaloids in compound Ku Shen injection are matrine, sophoridine, oxymatrine and oxysophocarpine (Qi, Zhang, & Zhang, 2013).

Sarcoma

When a high dose was used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

T Cell Leukemia

Matrine, a small molecule derived from the root of Sophora flavescens AIT was demonstrated to be effective in inducing T cell anergy in human T cell leukemia Jurkat cells.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells could influence the ability of T cell anergy induction.

The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Osteosarcoma

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing osteosarcoma MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3 (Ling et al., 2011).

Rectal Carcinoma

Eighty-four patients diagnosed with rectal carcinoma at the People”s Hospital of Yichun city in Jiangxi province from September 2006 to September 2011, were randomly divided into two groups: therapeutic group and control group. The patients in the therapeutic group were treated with compound matrine and intensity modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT.

The clinical effect and survival rate in the therapeutic group were significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress in the therapeutic group.

However, the control group had 12 improvements, 14 stabilized, and 16 disease progress. Quality of life in the therapeutic group was higher than that in the control group by rank sum test. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post therapy, according to the student test. Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

Seventy-six cases of advanced gastric cancer were collected from June 2010 to November 2011, and randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively. The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

Adenoid cystic carcinoma (ACC-2) cells were cultured in vitro. MTT assay was used to measure the cell proliferative effect. Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer; Chemotherapy

A retrospective analysis of oncological data of 70 postoperative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days for a cycle) were compared.

The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An, & Wu, 2012).

Lung cancer; Pleural Effusion

The therapeutic efficiency of Fufang Kushen Injection Liquid (FFKSIL), IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected FFKSIL plus IL-2, FFKSIL plus α-tFN, and IL-2 plus α>-IFN, respectively. The control group was divided into three groups and injected FFKSIL, IL-2 and α>-IFN, respectively. The effective rate of FFKSIL, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. The effect of FFKSIL, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of FFKSIL plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Gastric Cancer

Administration of FFKSIL significantly enhanced serum IgA, IgG, IgM, IL-2, IL-4 and IL-10 levels, decreased serum IL-6 and TNF-αlevels, lowered the levels of lipid peroxides and enhanced GSH levels and activities of GSH-dependent enzymes. Our results suggest that FFKSIL blocks experimental gastric carcinogenesis by protecting against carcinogen-induced oxidative damage and improving immunity activity (Zhou et al., 2012).

Colorectal Cancer; Chemotherapy

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mLád-1 compound Kushen injection, for 10d during chemotherapy. In the control group the numbers of CD3+,CD4+T cells,NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells ,NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

NSCLC; Chemotherapy

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term  efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group. The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05).

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone. Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Liver Cancer

Fifty-seven patients with unresectable primary liver cancer were randomly divided into 2 groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. One, two, and three year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

Chemotherapy

Ten RCTs were included in a meta-analysis, whose results suggest that compared with chemotherapy alone, the combination had a statistically significant benefit in healing efficacy and improving quality of life. As well,  the combination also had a statistically significant benefit in myelosuppression, white blood cell, hematoblast, liver function and in reducing the gastroenteric reaction, decreasing the of CD3, CD4, CD4/CD8, and NK cells (Huang et al., 2011).

Colorectal Cancer, NSCLC, Breast Cancer; Chemotherapy

Fufang kushen Injection might improve the efficacies of chemotherapy in patients with colorectal cancer, NSCLC and breast cancer.

The results of a meta-analysis of 33 studies of randomized controlled trials with a total of 2,897 patients demonstrated that the short-term efficacies in patients with colorectal cancer, NSCLC, and breast cancer receiving Fufangkushen Injection plus chemotherapy were significantly better than for those receiving chemotherapy alone. However the results for patients with gastric cancer on combined chemotherapy were not significantly different from those for patients on chemotherapy alone (Fang, Lin, & Fan, 2011).

References

An, A.J., An, G.W., & Wu, Y.C. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People”s Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen, G., Yu, B., Yuan, S.J., & Yuan, Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013). Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan, C.X., Lin, C.L., Liang, L., Zhao, Y.Y., Liu, J., Cui, J., Yang, Q.M., Wang, Y.L., & Zhang, A.R. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Fang, L., Lin, N.M., Fan, Y. (2011). Short-term  efficacies of Fufangkushen Injection plus chemotherapy in patients with solid tumors: a meta-analysis of randomized trials. Zhonghua Yi Xue Za Zhi, 91(35):2476-81.


Hu, D.J., & Mei, X.D. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Huang S, Fan W, Liu P, Tian J. (2011). Meta-analysis of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer. Zhongguo Zhong Yao Za Zhi, 36(22):3198-202.


Kong, Q-Z., Huang, D-S., Huang, T. et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Qi, L., Zhang, J., Zhang, Z. (2013). Determination of four alkaloids in Compound Kushen Injection by high performance liquid chromatography with ionic liquid as mobile phase additive. Chinese Journal of Chromatography, 31(3): 249-253. doi: 10.3724/SP.J.1123.2012.10039.


Shi, B., & Xu, H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012:373219. doi: 10.1155/2012/373219.


Wang, H.M., & Cheng, X.M. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia, G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin, W.H., Sheng, J.W., Xia, H.M., Chen, J., Wu, Y.W., & Fan, H.Z. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhou, S-K., Zhang, R-L., Xu, Y-F., Bi, T-N. (2012) Anti-oxidant and Immunity Activities of Fufang Kushen Injection Liquid. Molecules 2012, 17(6), 6481-6490; doi:10.3390/molecules17066481


Zhu, M.Y., Jiang, Z.H., Lu, Y.W., Guo, Y., & Gan, J.J. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.