Category Archives: p16

Teng Long Bu Zhong Tang

Cancer: Colon

Action: Induces apoptosis, inhibits angiogenesis

CT26 colon carcinoma was established in BALB/c mice and treated with Teng Long Bu Zhong Tang (TLBZT), 5-Fu, or TLBZT plus 5-Fu. The tumor volumes were observed. TLBZT significantly inhibited CT26 colon carcinoma growth. TLBZT elicited apoptosis in CT26 colon carcinoma, accompanied by Caspase-3, 8, and 9 activation and PARP cleavage, and down-regulation of XIAP and Survivin. TLBZT also induced cell senescence in CT26 colon carcinoma, with concomitant up-regulation of p16 and p21 and down-regulation of RB phosphorylation.

In addition, angiogenesis and VEGF expression in CT26 colon carcinoma was significantly inhibited by TLBZT treatment. TLBZT exhibited significant anti-cancer effect, and enhanced the effects of 5-Fu in CT26 colon carcinoma, which may correlate with induction of apoptosis and cell senescence, and angiogenesis inhibition (Deng et al., 2013).

Reference

Deng S, Hu B, An HM, et al. (2013). Teng-Long-Bu-Zhong-Tang, a Chinese herbal formula, enhances anti-cancer effects of 5 – Fluorouracil in CT26 colon carcinoma. BMC Complement Altern Med, 13:128. doi: 10.1186/1472-6882-13-128.

Saikosaponin

Cancers:
Cervical, colon, liver, lung, ovarian, liver, breast, hepatocellular

Action: Anti-angiogenic, anti-metastatic, chemo-sensitizer, pro-oxidative, cell-cycle arrest

T cell-mediated autoimmune, induces apoptosis, immune regulating, radio-sensitizer

Induces Apoptosis

Long dan xie gan tang, a well known Chinese herbal formulation, is commonly used by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell-cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Breast

Saikosaponin-A treatment of MDA-MB-231 for 3 hours and of MCF-7 cells for 2 hours, respectively, caused an obvious increase in the sub G1 population of cell-cycles.

Apoptosis in MDA-MB-231 cells was independent of the p53/p21 pathway mechanism and was accompanied by an increased ratio of Bax to Bcl-2 and c-myc levels and activation of caspase-3. In contrast, apoptosis of MCF-7 cells may have been initiated by the Bcl-2 family of proteins and involved p53/p21 dependent pathway mechanism, and was accompanied by an increased level of c-myc protein. The apoptosis of both MDA-MB-231 and MCF-7 cells showed a difference worthy of further research (Chen, Chang, Chung, & Chen, 2003).

Hepatocellular Carcinoma

The signaling pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herbal compund Saikosaponin A was investigated.

Expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin A between 30 minutes to 6 hours of treatment. Pre-treatment of 20 microg/ml PD98059, an inhibitor of MEK (the upstream kinase of ERK), prevents the TPA and Saikosaponin A triggered HepG2 growth inhibition by 50% and 30%, respectively. In addition, AP-1 DNA-binding assay, using non-isotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF), demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin A, which can be reduced by PD98059 pre-treatment.

Results suggest that activation of ERK, together with its downstream transcriptional machinery, mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition (Wen-Sheng, 2003).

The effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rats with hepatocellular carcinoma (HCC) was investigated.

The model group had more malignant nodules than the SSd group. Model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01).

The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates.

SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue (Jia et al., 2012).

T Cell-mediated Autoimmune

Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects.

Results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers, such as IL-2 receptor (CD25), were also down-regulated along with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma.

Results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd. Ssd could be a potential candidate for further study in treating T cell-mediated autoimmune conditions (Wong, Zhou, Cheung, Li, & Liu, 2009).

Cervical Cancer

Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of a combination of saikosaponins with chemotherapeutic drugs have never been addressed. Investigated as to whether these two saikosaponins have chemo-sensitization effect on cisplatin-induced cancer cell cytotoxicity was carried out.

Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small-cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation.

Results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy (Wang et al., 2010).

Colon Cancer

Saikosaponin-a (SSa)-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation.

Results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis (Kim & Hong, 2011).

Immune Regulating

Tumor necrosis factor-alpha (TNF- α ) was reported as an anti-cancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF- α on activating NF- κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF- α -mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), exhibited a variety of pharmacological activities such as anti-inflammatory, anti-bacterial, anti-viral and anti-cancer.

Investigation found that Ssd could potentially inhibit activated T lymphocytes via suppression of NF- κ B, NF-AT and AP-1 signaling. Ssd significantly potentiated TNF- α -mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF- α -induced NF- κ B activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency in abolishing TNF- α -induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells.

Collectively, findings indicate that Ssd has significant potential to be developed as a combined adjuvant remedy with TNF- α for cancer patients (Wong et al., 2013).

Radio-sensitizer

Saikosaponin-d (SSd), a monomer terpenoid purified from the Chinese herbal drug Radix bupleuri, has multiple effects, including anti-cancer properties. Treatment with SSd alone and radiation alone inhibited cell growth and increased apoptosis rate at the concentration used. These effects were enhanced when SSd was combined with radiation. Moreover, SSd potentiated the effects of radiation to induce G0/G1 arrest in SMMC-7721 hepatocellular carcinoma cells, and reduced the G2/M-phase population under hypoxia. SSd potentiates the effects of radiation on SMMC-7721 cells; thus, it is a promising radio-sensitizer. The radio-sensitizing effect of SSd may contribute to its effect on the G0/G1 and G2/M checkpoints of the cell-cycle (Wang et al., 2013).

References

Chen JC, Chang NW, Chung JG, Chen KC. (2003). Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. The American Journal of Chinese Medicine, 31(3), 363-77.


Chou CC, Pan SL, Teng CM, Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Jia X, Dang S, Cheng Y, et al. (2012). Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. Journal of Traditional Chinese Medicine, 32(3), 415-22.


Kim BM, Hong SH. (2011). Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 16(2), 184-197. doi: 10.1007/s10495-010-0557-x.


Wang BF, Dai ZJ, Wang XJ, et al. (2013). Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell-cycle. BMC Complementary and Alternative Medicine, 13:263. doi:10.1186/1472-6882-13-263


Wang Q, Zheng XL, Yang L, et al. (2010). Reactive oxygen species-mediated apoptosis contributes to chemo-sensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental & Clinical Cancer Research, 9(29), 159. doi: 10.1186/1756-9966-29-159.


Wen-Sheng, W. (2003). ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin A. Oncogene, 22(7), 955-963.


Wong VK, Zhang MM, Zhou H, et al. (2013). Saikosaponin-d Enhances the Anti-cancer Potency of TNF- α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signaling in Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013(2013), 745295. doi: 10.1155/2013/745295.


Wong VK, Zhou H, Cheung SS, Li T, Liu L. (2009). Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. Journal of Cellular Biochemistry, 107(2), 303-15. doi: 10.1002/jcb.22126.

Icaritin

Cancer:
Endometrial., chronic myeloid leukemia, prostate, breast

Action: Radio-sensitizer, cell-cycle arrest, ER modulator

Icaritin is a compound in several species of the genus Epimedium (L.).

Cell-cycle Arrest

Icariin and icaritin with prenyl group have been demonstrated to have selective estrogen receptor modulating activities. Icaritin-induced growth inhibition was associated with G(1) arrest (P<0.05), and G(2)-M arrest depending upon doses. Consistent with G(1) arrest, icaritin increased protein expressions of pRb, p27(Kip1) and p16(Ink4a), while showing decrease in phosphorylated pRb, Cyclin D1 and CDK4.

Comparatively, icariin has much lower effects on PC-3 cells and showed only weak G(1) arrest, suggesting a possible structure-activity relationship. These findings suggested a novel anti-cancer efficacy of icaritin mediated selectively via induction of cell-cycle arrest but not associated with estrogen receptors in PC-3 cells (Huang et al., 2007).

Estrogen Receptor (ER) Modulator; Endometrial Cancer

Icaritin has selective estrogen receptor (ER) modulating activities, and posseses anti-tumor activity. The effect of icaritin on cell growth of human endometrial cancer Hec1A cells was investigated and it was found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin also induced cell apoptosis accompanied by activation of caspases. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression.

These results demonstrate that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rationale for preclinical and clinical evaluation of icaritin for endometrial cancer therapy (Tong et al., 2011).

Breast cancer

In research carried out to probe breast cancer cell growth mechanisms, icaritin has been found to strongly inhibit the growth of breast cancer MDA-MB-453 and MCF7 cells. At concentrations of 2–3 µM, icaritin induced cell-cycle arrest at the G2/M phase accompanied by a down-regulation of the expression levels of the G2/M regulatory proteins such as cyclinB, cdc2 and cdc25C.

Icaritin at concentrations of 4–5 µM, however, induced apoptotic cell death. In addition, icaritin also induced a sustained phosphorylation of extracellular signal-regulated kinase (ERK) in these breast cancer cells.

Icaritin more potently inhibited growth of the breast cancer stem/progenitor cells compared to anti-estrogen tamoxifen. These results indicate that icaritin is a potent growth inhibitor for breast cancer cells and provides a rationale for preclinical and clinical evaluations of icaritin for breast cancer therapy (Guo et al., 2011).

Radio-sensitizer

The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These findings strongly suggest that Icaritin exerted a synergistic killing effect with radiation on the tumor cells. It suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. These results, taken together, indicate Icaritin is a new radio-sensitizer and can enhance anti-cancer effect of IR or other therapies (Hong et al., 2013).

Chronic Myeloid Leukemia (CML)

The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML. Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis, and promoted the erythroid differentiation of K562 cells in a time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis (Zhu et al., 2011).

References

Guo YM, Zhang XT, Meng J, Wang ZY. (2011). An anti-cancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. European Journal of Pharmacology, 658(2–3):114–122. doi:10.1016/j.ejphar.2011.02.005.


Hong J, Zhang Z, Lv W, et al. (2013). Icaritin Synergistically Enhances the Radiosensitivity of 4T1 Breast Cancer Cells. PLoS One, 8(8):e71347. doi: 10.1371/journal.pone.0071347.


Huang X, Zhu D, Lou Y. (2007). A novel anti-cancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol, 564(1-3):26-36.


Tong JS, Zhang QH, Huang X, et al. (2011). Icaritin Causes Sustained ERK1/2 Activation and Induces Apoptosis in Human Endometrial Cancer Cells. PLoS ONE, 6(3): e16781. doi:10.1371/journal.pone.0016781.


Zhu JF, Li ZJ, Zhang GS, et al. (2011). Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One, 6(8):e23720. doi: 10.1371/journal.pone.0023720.

Tanshinone II A & Tanshinone A (See also Cryptotanshinone)

Cancer:
Leukemia, prostate, breast, gastric, colorectal, nasopharyngeal carcinoma

Action: Chemo-sensitizer, cytostatic, cancer stem cells, anti-cancer, autophagic cell death, cell-cycle arrest

Anti-cancer

Tanshinone IIA and cryptotanshinone could induce CYP3A4 activity (Qiu et al., 2103).

Tanshinone II-A (Tan IIA) is the most abundant diterpene quinone isolated from Danshen (Salvia miltiorrhiza), which has been used in treating cardiovascular diseases for more than 2,000 years in China. Interest in its versatile protective effects in cardiovascular, metabolic, neurodegenerative diseases, and cancers has been growing over the last decade.

Tan IIA is a multi-target drug, whose molecular targets include transcription factors, scavenger receptors, ion channels, kinases, pro- and anti-apoptotic proteins, growth factors, inflammatory mediators, microRNA, and others. More recently, enhanced or synergistic effects can be observed when Tan IIA is used in combination therapy with cardio-protective and anti-cancer drugs (Xu & Liu, 2013).

Leukemia

The in vitro anti-proliferation and apoptosis-inducing effects of Tanshinone IIA on leukemia THP-1 cell lines and its mechanisms of action were investigated. MTT assay was used to detect the cell growth-inhibitory rate; cell apoptotic rate and the mitochondrial membrane potential (Deltapsim) were investigated by flow cytometry (FCM); apoptotic morphology was observed by Hoechst 33258 staining and DNA fragmentation analysis.

It was therefore concluded that Tanshinone IIA has significant growth inhibition effects on THP-1 cells by induction of apoptosis, and that Tanshinone IIA-induced apoptosis on THP-1 cells is mainly related to the disruption of Deltapsim and activation of caspase-3 as well as down-regulation of anti-apoptotic protein Bcl-2, survivin and up-regulation of pro-apoptotic protein Bax. The results indicate that Tanshinone IIA may serve as a potential anti-leukemia agent (Liu et al., 2009).

Prostate Cancer

Chiu et al. (2013) explored the mechanisms of cell death induced by Tan-IIA treatment in prostate cancer cells in vitro and in vivo. Results showed that Tan-IIA caused prostate cancer cell death in a dose-dependent manner, and cell-cycle arrest at G0/G1 phase was noted, in LNCaP cells. The G0/G1 phase arrest correlated with increased levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. Tan-IIA also induced ER stress in prostate cancer cells: activation and nuclear translocation of GADD153/CCAAT/enhancer-binding protein-homologous protein (CHOP) were identified, and increased expression of the downstream molecules GRP78/BiP, inositol-requiring protein-1α and GADD153/CHOP were evidenced. Blockage of GADD153/CHOP expression by siRNA reduced Tan-IIA-induced cell death in LNCaP cells.

Gastric Cancer

Tan IIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Tan IIA (1, 5, 10 µg/ml) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that Tan IIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. Tan IIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that Tan IIA markedly decreased migratory and invasive abilities of SGC7901 cells (Xu et al., 2013).

Cell-cycle Arrest

MTT and SRB assays were applied to measure the effects of tanshinone A on cell viability. Cell-cycle distribution and apoptosis were assessed via flow cytometry using PI staining and the Annexin V/PI double staining method respectively. Changes to mitochondrial membrane potential was also detected by flow cytometry. The spectrophotometric method was utilized to detect changes of caspase-3 activity. Western blotting assay was used to evaluate the expression of Bcl-2, Bax and c-Myc proteins.

Results indicated that Tan-IIA displayed significant inhibitory effect on the growth of K562 cells in a dose- and time- dependent manner, and displayed only minimal damage to hepatic LO2 cells.

Tan-IIA could arrest K562 cells in the G0/G1 phase and induce apoptosis, decrease mitochondrial transmembrane potential, and the expressions of Bcl-2 and c-Myc proteins, increase the expression of Bax protein and activity of caspase-3. Accordingly, it was presumed that the induction of apoptosis may be through the endogenous pathway. Subsequently, tanshinone A could be a promising candidate in the development of a novel anti-tumor agent (Zhen et al., 2011).

Prostate Cancer, Chemo-sensitizer

Treatment with a combination of Chinese herbs and cytotoxic chemotherapies has shown a higher survival rate in clinical trials.

Tan-IIA displayed synergistic anti-tumor effects on human prostate cancer PC3 cells and LNCaP cells, when combined with cisplatin in vitro. Anti-proliferative effects were detected via MTT assay. Cell-cycle distribution and apoptosis were detected by flow cytometer. Protein expression was detected by Western blotting. The intracellular concentration of cisplatin was detected by high performance liquid chromatography (HPLC).

Results demonstrated that tanshinone II A significantly enhanced the anti-proliferative effects of cisplatin on human prostate cancer PC3 cells and LNCaP cells with an increase in the intracellular concentration of cisplatin. These effects were correlated with cell-cycle arrest at the S phase and induction of cell apoptosis. Apoptosis could potentially be achieved through the death receptor and mitochondrial pathways, decreased expression of Bcl-2.

Collectively, results indicated that the combination of tanshinone II A and cisplatin had a better treatment effect, in vitro, not only on androgen-dependent LNCaP cells but also on androgen-independent PC3 cells (Hou, Xu, Hu, & Xie, 2013).

Autophagic Cell Death, CSCs

Tan IIA significantly increased the expression of microtubule-associated protein light chain 3 (LC3) II as a hallmark of autophagy in Western blotting and immunofluorescence staining. Tan IIA augmented the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and attenuated the phosphorylation of mammalian target of rapamycin (mTOR) and p70 S6K in a dose-dependent manner.Tan IIA dramatically activated the extracellular signal regulated kinase (ERK) signaling pathway including Raf, ERK and p90 RSK in a dose-dependent and time-dependent manner. Consistently, ERK inhibitor PD184352 suppressed LC3-II activation induced by Tan IIA, whereas PD184352 and PD98059 did not affect poly (ADP-ribose) polymerase cleavage and sub-G1 accumulation induced by Tan IIA in KBM-5 leukemia cells.

Tan IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 cells as a potent natural compound for leukemia treatment (Yun et al., 2013).

Cancer stem cells (CSCs) are maintained by inflammatory cytokines and signaling pathways. Tanshinone IIA (Tan-IIA) possesses anti-cancer and anti-inflammatory activities. The purpose of this study is to confirm the growth inhibition effect of Tan-IIA on human breast CSCs growth in vitro and in vivo and to explore the possible mechanism of its activity. After Tan-IIA treatment, cell proliferation and mammosphere formation of CSCs were decreased significantly; the expression levels of IL-6, STAT3, phospho-STAT3 (Tyr705), NF-κBp65 in nucleus and cyclin D1 proteins were decreased significantly; the tumor growth and mean tumor weight were reduced significantly.

Tan-IIA has the potential to target and kill CSCs, and can inhibit human breast CSCs growth both in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways (Lin et al., 2013).

Colorectal Cancer

Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF. Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis (Zhou et al., 2012). The results showed that Tan IIA inhibited the proliferation of inflammation-related colon cancer cells HCT116 and HT-29 by decreasing the production of inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which are generated by macrophage RAW264.7 cell line.

Treatment with TanshinoneIIA prevented increased PU.1, a transcriptional activator of miR-155, and hence increased miR-155, whereas aspirin could not. These findings support that the interruption of signal conduction between activated macrophages and colon cancer cells could be considered as a new therapeutic strategy and miR-155 could be a potential target for the prevention of inflammation-related cancer (Tu et al., 2012).

Breast Cancer

The proliferation rate of T47D and MDA-MB-231 cells influenced by 1×10-6 mol·L-1 and 1×10-7 mol·L-1 Tanshinone IIA was analyzed by MTT assay. Estrogen receptor antagonist ICI182, 780 was employed as a tool. Level of ERα and ERβ mRNA in T47D cells was quantified by Real-time RT-PCR assay. Expression of ERα and ERβ protein was measured by flow cytometry. The proliferation rates of T47D cells treated with Tanshinone IIA decreased significantly. Such effects could be partly blocked by ICI182, 780.

Meanwhile, the proliferation rates of MDA-MB-231 cells treated with Tanshinone IIA decreased much more dramatically. Real-time RT-PCR and flow cytometry results showed that Tanshinone IIA could induce elevation of ERα and ERβ, especially ERα mRNA, and protein expression level in T47D cells. Tanshinone IIA shows inhibitory effects on proliferation of breast cancer cell lines (Zhao et al., 2010).

The role of cell adhesion molecules in the process of inflammation has been studied extensively, and these molecules are critical components of carcinogenesis and cancer metastasis. This study investigated the effect of tanshinone I on cancer growth, invasion and angiogenesis on human breast cancer cells MDA-MB-231, both in vitro and in vivo. Tanshinone I dose-dependently inhibited ICAM-1 and VCAM-1 expressions in human umbilical vein endothelial cells (HUVECs) that were stimulated with TNF-α for 6 h.

Additionally, reduction of tumor mass volume and decrease of metastasis incidents by tanshinone I were observed in vivo. In conclusion, this study provides a potential mechanism for the anti-cancer effect of tanshinone I on breast cancer cells, suggesting that tanshinone I may serve as an effective drug for the treatment of breast cancer (Nizamutdinova et al., 2008).

Nasopharyngeal Carcinoma

To investigate anti-cancer effect and potential mechanism of tanshinone II(A) (Tan II(A)) on human nasopharyngeal carcinoma cell line CNE cells, the anti-proliferative effect of Tan II(A) on CNE cells was evaluated by morphological examination, cell growth curves, colonial assay and MTT assay. Tan II(A) could inhibit CNE cell proliferation in dose- and time-dependent manner. After treatment with Tan II(A), intracellular Ca2+ concentration of CNE cells was increased, mitochondria membrane potential of the cells was decreased, relative mRNA level of Bad and MT-1A was up-regulated. Tan II(A) had an anti-cancer effect on CNE cells through apoptosis via a calcineurin-dependent pathway and MT-1A down-regulation, and may be the next generation of chemotherapy (Dai et al., 2011).

References

Chiu SC, Huang SY, Chen SP, et al. (2013). Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis. doi: 10.1038/pcan.2013.38.


Dai Z, Huang D, Shi J, Yu L, Wu Q, Xu Q. (2011). Apoptosis inducing effect of tanshinone II(A) on human nasopharyngeal carcinoma CNE cells. Zhongguo Zhong Yao Za Zhi, 36(15):2129-33.


Hou LL, Xu QJ, Hu GQ, Xie SQ. (2013). Synergistic anti-tumor effects of tanshinone II A in combination with cisplatin via apoptosis in the prostate cancer cells. Acta Pharmaceutica Sinica, 48(5), 675-679.


Lin C, Wang L, Wang H, et al. (2013). Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem, 114(9):2061-70. doi: 10.1002/jcb.24553.


Liu JJ, Zhang Y, Lin DJ, Xiao RZ. (2009). Tanshinone IIA inhibits leukemia THP-1 cell growth by induction of apoptosis. Oncol Rep, 21(4):1075-81.


Nizamutdinova IT, Lee GW, Lee JS, et al. (2008). Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 29(10):1885-1892. doi:10.1093/carcin/bgn151


Qiu F, Jiang J, Ma Ym, et al. (2013). Opposite Effects of Single-Dose and Multidose Administration of the Ethanol Extract of Danshen on CYP3A in Healthy Volunteers. Evidence-Based Complementary and Alternative Medicine, 2013(2013) http://dx.doi.org/10.1155/2013/730734


Tu J, Xing Y, Guo Y, et al. (2012). TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int Immunopharmacol, 14(4):353-61. doi: 10.1016/j.intimp.2012.08.015.


Xu M, Cao FL, Li NY, et al. (2013). Tanshinone IIA reverses the malignant phenotype of SGC7901 gastric cancer cells. Asian Pac J Cancer Prev, 14(1):173-7.


Xu S, Liu P. (2013). Tanshinone II-A: new perspectives for old remedies. Expert Opin Ther Pat, 23(2):149-53. doi: 10.1517/13543776.2013.743995.


Yun SM, Jung JH, Jeong SJ, et al. (2013). Tanshinone IIA Induces Autophagic Cell Death via Activation of AMPK and ERK and Inhibition of mTOR and p70 S6K in KBM-5 Leukemia Cells. Phytother Res. doi: 10.1002/ptr.5015.


Zhen X, Cen J, Li YM, Yan F, Guan T, Tang, XZ. (2011). Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. European Journal of Pharmacology, 667(1-3), 129-135. doi: 10.1016/j.ejphar.2011.06.004.


Zhao PW, Niu JZ, Wang JF, Hao QX, Yu J, et al. (2010). Research on the inhibitory effect of Tanshinone IIA on breast cancer cell proliferation. Zhong Guo Yao Li Xue Tong Bao, 26(7):903-906.


Zhou LH, Hu Q, Sui H, et al. (2012). Tanshinone II–a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer. Asian Pac J Cancer Prev, 13(9):4453-8.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.

Methanol Extract of Angelica sinensis

Cancer: Glioblastoma

Action: Cell-cycle arrest

Glioblastoma multiforme (GBM), the most common malignant tumor of the central nervous system, is a highly vascularized and invasive neoplasm. The annual incidence of GBM was approximately 5–7 per 100,000 people per year in the USA between 1995 and 2008. Because of its malignant properties, rapid growth, diffuse invasion, and resistance to current therapies, the median survival of GBM patients is approximately 50 weeks. Current treatments combine surgery, radiation, and chemoradiotherapy, providing an increase in the median overall survival from 12 to 15 months.

The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis.

AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival.

In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

The different extracts of A. sinensis, such as water, chloroform, and acetone extracts, have demonstrated antitumor biofunctions (Cheng et al., 2004; Tsai et al., 2005). In this study, AS-M has demonstrated to be a potential antitumor extract isolated from A. sinensis that efficiently inhibits GBM tumor growth. In an in vitro cytotoxic assay, brain tumor cells were sensitive to AS-M and normal fibroblast cells were unsusceptible to AS-M. AS-M dramatically inhibited 90% of the subcutaneous tumor growth and prolonged survival in vivo. AS-M efficiently suppressed tumor growth by inducing cell cycle arrest at the G0-G1 phase and promoting apoptosis. The AS-M mechanism was found to involve the cyclin/CDK/CKI cell cycle regulatory system and the upregulation of p16 and p53 expression.

Source:

Lin Y-L, Lai W-L, Harn H-j, et al (2013) The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors. Evidence-Based Complementary and Alternative Medicine. Volume 2013 (2013), http://dx.doi.org/10.1155/2013/394636

Reference

Cheng, Y.L., et al., (2004) Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis. Life Sciences, vol. 75, no. 13, pp. 1579–1594, 2004

Tsai, N.M., et al., (2005) The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clinical Cancer Research, vol. 11, no. 9, pp. 3475–3484, 2005.