Category Archives: CDK4

Schisandrin

Cancer: Leukemia, breast

Action: Anti-metastatic, cardio-protective, MDR, CYP3A, cell-cycle arrest

Leukemia

Schisandrin B (Sch B) has previously been demonstrated to be a novel P-glycoprotein (P-gp) inhibitor. Recent investigation revealed that Sch B was also an effective inhibitor of the multi-drug resistance-associated protein 1 (MRP1). Sch B's ability to reverse MRP1-mediated drug resistance was tested using HL60/ADR and HL60/MRP human promyelocytic leukemia cell lines, with the overexpression of MRP1 but not P-gp. At the equimolar concentration, Sch B demonstrated significantly stronger potency than the drug probenecid, a MRP1 inhibitor (Sun, Xu, Lu, Pan & Hu, 2007).

Up-regulates CYP3A

The ability of Schisandrin B (Sch B) to modulate cytochrome P450 3A activity (CYP3A) and alter the pharmacokinetic profiles of CYP3A substrate (midazolam) was investigated in vivo in treated rats. Rats were routinely administered with physiological saline (negative control group), ketoconazole (75mg/kg, positive control group), or varying doses of Sch B (experimental groups) for 3 consecutive days. Thereafter, changes in hepatic microsomal CYP3A activity and the pharmacokinetic profiles of midazolam and 1′-hydroxy midazolam in plasma were studied to evaluate CYP3A activity.

The results indicated that Sch B had a significant dose-dependent effect on inhibition of rat hepatic microsomal CYP3A activity. These results suggest that a 3-day treatment of Sch B could increase concentration and oral bioavailability of drugs metabolized by CYP3A (Li, Xin, Yu, & Wu, 2013).

Attenuates Metastasis

NADPH oxidase 4 (NOX4) is a potential target for intervention of cancer metastasis, as reactive oxygen species (ROS) generated by this enzyme plays important roles in TGF-β signaling, an important inducer of cancer metastasis. Zhang, Liu & Hu (2013) show that TGF-β induces ROS production in breast cancer 4T1 cells and enhances cell migration; that the effect of TGF- β depends on NOX4 expression; and that knockdown of NOX4 via RNAi significantly decreases the migration ability of 4T1 cells in the presence or absence of TGF-β and significantly attenuates distant metastasis of 4T1 cells to lung and bone.

Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis. Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of the mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion (Liu et al., 2012).

Cardiotoxicity Protective/ Attenuates Metastasis

Sch B is capable of protecting Dox-induced chronic cardiotoxicity and enhancing its anti-cancer activity. To the best of our knowledge, Sch B is the only molecule ever proved to function as a cardio-protective agent as well as a chemotherapeutic sensitizer, which is potentially applicable for cancer treatment.

Pre-treatment with Sch B significantly attenuated Dox-induced loss of cardiac function and damage of cardiomyocytic structure. Sch B substantially enhanced Dox cytotoxicities toward S180 in vitro and in vivo in mice, and increased Dox cytotoxcity against 4T1 in vitro. Although we did not observe this enhancement against the implanted 4T1 primary tumor, the spontaneous metastasis to lung was significantly reduced in combined treatment group compared to Dox alone group (Xu et al., 2011).

Cell-cycle Arrest/Breast Cancer

Schizandrin inhibits cell proliferation through the induction of cell-cycle arrest with modulating cell-cycle-related proteins in human breast cancer cells. Schizandrin exhibited growth-inhibitory activities in cultured human breast cancer cells, and the effect was the more profound in estrogen receptor (ER)-positive T47D cells than in ER-negative MDA-MB-231 cells. When treated with the compound in T47D cells, schizandrin induced the accumulation of a cell population in the G0/G1 phase, which was further demonstrated by the induction of CDK inhibitors p21 and p27 and the inhibition of the expression of cell-cycle checkpoint proteins including cyclin D1, cyclin A, CDK2 and CDK4 (Kim et al., 2010).

References

Kim SJ, Min HY, Lee EJ, et al. (2010). Growth inhibition and cell-cycle arrest in the G0/G1 by schizandrin, a dibenzocyclooctadiene lignan isolated from Schisandra chinensis, on T47D human breast cancer cells. Phytother Res, 24(2):193-7. doi: 10.1002/ptr.2907.


Li WL, Xin HW, Yu AR, Wu XC. (2013). In vivo effect of Schisandrin B on cytochrome P450 enzyme activity. Phytomedicine, 20(8), 760-765


Liu Z, Zhang B, Liu K, Ding Z, Hu X. (2012). Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One, 7(7):e40480. doi: 10.1371/journal.pone.0040480.


Sun M, Xu X, Lu Q, Pan Q, Hu X. (2007). Schisandrin B: A dual inhibitor of P-glycoprotein and Multi-drug resistance-associated protein 1. Cancer Letters, 246(1-2), 300-307.


Xu Y, Liu Z, Sun J, et al. (2011). Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anti-cancer activity in vivo. PLoS One, 6(12):e28335. doi: 10.1371/journal.pone.0028335.


Zhang B, Liu Z, Hu X. (2013). Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol, 86(2):253-66. doi: 10.1016/j.bcp.2013.05.011.

Icaritin

Cancer:
Endometrial., chronic myeloid leukemia, prostate, breast

Action: Radio-sensitizer, cell-cycle arrest, ER modulator

Icaritin is a compound in several species of the genus Epimedium (L.).

Cell-cycle Arrest

Icariin and icaritin with prenyl group have been demonstrated to have selective estrogen receptor modulating activities. Icaritin-induced growth inhibition was associated with G(1) arrest (P<0.05), and G(2)-M arrest depending upon doses. Consistent with G(1) arrest, icaritin increased protein expressions of pRb, p27(Kip1) and p16(Ink4a), while showing decrease in phosphorylated pRb, Cyclin D1 and CDK4.

Comparatively, icariin has much lower effects on PC-3 cells and showed only weak G(1) arrest, suggesting a possible structure-activity relationship. These findings suggested a novel anti-cancer efficacy of icaritin mediated selectively via induction of cell-cycle arrest but not associated with estrogen receptors in PC-3 cells (Huang et al., 2007).

Estrogen Receptor (ER) Modulator; Endometrial Cancer

Icaritin has selective estrogen receptor (ER) modulating activities, and posseses anti-tumor activity. The effect of icaritin on cell growth of human endometrial cancer Hec1A cells was investigated and it was found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin also induced cell apoptosis accompanied by activation of caspases. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression.

These results demonstrate that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rationale for preclinical and clinical evaluation of icaritin for endometrial cancer therapy (Tong et al., 2011).

Breast cancer

In research carried out to probe breast cancer cell growth mechanisms, icaritin has been found to strongly inhibit the growth of breast cancer MDA-MB-453 and MCF7 cells. At concentrations of 2–3 µM, icaritin induced cell-cycle arrest at the G2/M phase accompanied by a down-regulation of the expression levels of the G2/M regulatory proteins such as cyclinB, cdc2 and cdc25C.

Icaritin at concentrations of 4–5 µM, however, induced apoptotic cell death. In addition, icaritin also induced a sustained phosphorylation of extracellular signal-regulated kinase (ERK) in these breast cancer cells.

Icaritin more potently inhibited growth of the breast cancer stem/progenitor cells compared to anti-estrogen tamoxifen. These results indicate that icaritin is a potent growth inhibitor for breast cancer cells and provides a rationale for preclinical and clinical evaluations of icaritin for breast cancer therapy (Guo et al., 2011).

Radio-sensitizer

The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These findings strongly suggest that Icaritin exerted a synergistic killing effect with radiation on the tumor cells. It suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. These results, taken together, indicate Icaritin is a new radio-sensitizer and can enhance anti-cancer effect of IR or other therapies (Hong et al., 2013).

Chronic Myeloid Leukemia (CML)

The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML. Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis, and promoted the erythroid differentiation of K562 cells in a time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis (Zhu et al., 2011).

References

Guo YM, Zhang XT, Meng J, Wang ZY. (2011). An anti-cancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. European Journal of Pharmacology, 658(2–3):114–122. doi:10.1016/j.ejphar.2011.02.005.


Hong J, Zhang Z, Lv W, et al. (2013). Icaritin Synergistically Enhances the Radiosensitivity of 4T1 Breast Cancer Cells. PLoS One, 8(8):e71347. doi: 10.1371/journal.pone.0071347.


Huang X, Zhu D, Lou Y. (2007). A novel anti-cancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol, 564(1-3):26-36.


Tong JS, Zhang QH, Huang X, et al. (2011). Icaritin Causes Sustained ERK1/2 Activation and Induces Apoptosis in Human Endometrial Cancer Cells. PLoS ONE, 6(3): e16781. doi:10.1371/journal.pone.0016781.


Zhu JF, Li ZJ, Zhang GS, et al. (2011). Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One, 6(8):e23720. doi: 10.1371/journal.pone.0023720.

Hedyotis Diffusa Extract

Cancer: Colon

Action: CYP3A4 induction, inhibits angiogenesis

Hedyotis diffusa is a herb native to East Asia, particularly China, Japan, and Nepal.

Inhibition of tumor angiogenesis has become an attractive target of anti-cancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor-associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer.

Inhibits Angiogenesis

The angiogenic effects of the ethanol extract of EEHDW were investigated, in order to find a molecular mechanism for its anti-cancer activity. It was found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, EEHDW dose- and time-dependently inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) by blocking the cell-cycle G1 to S progression.

Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. These findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy (Lin et al., 2011).

Colorectal Cancer

Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). The ethanol extract of Hedyotis diffusa Willd (EEHDW) reduced tumor volume and tumor weight, and suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax (Cai et al., 2012).

EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. Lin et al. (2012) observed that EEHDW treatment blocked the cell-cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21 (Lin et al., 2012).

Recently, Lin et al. (2013) reported that HDW could inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of anti-tumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2 (Lin et al., 2013).

CYP3A4 Induction

Patients are warned against the concomitant use of Oldenlandia diffusa and Rehmannia glutinosa, which could result in induction of CYP3A4, leading to a reduced efficacy of drugs that are CYP3A4 substrates and have a narrow therapeutic window (Lau et al., 2013).

References

Cai Q, Lin J, Wei L, Zhang L, et al. (2012). Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway. Int J Mol Sci, 13(5):6117-28. doi: 10.3390/ijms13056117.


Lau C, Mooiman KD, Maas-Bakker RF, et al. (2013). Effect of Chinese herbs on CYP3A4 activity and expression in vitro. J Ethnopharmacol, 149(2):543-9. doi: 10.1016/j.jep.2013.07.014.


Lin J, Wei L, Xu W, et al. (2011). Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis. Mol Med Report, 4(6):1283-8. doi: 10.3892/mmr.2011.577.


Lin M, Lin J, Wei L, et al. (2012). Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell-cycle arrest. Exp Ther Med, 4(2):307-310.


Lin J, Wei L, Shen A, et al. (2013). Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis. Int J Oncol, 42(2):651-6. doi: 10.3892/ijo.2012.1753.

Geniposide –Penta-acetyl Geniposide (Ac)5GP

Cancers:
Glioma, melanoma, liver, hepatocarcinogenesis, hepatoma, prostate, cervical

Action: Cytostatic, induces apoptosis

Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia fructus , exhibits anti-tumor effect.

Hepatocarcinogenesis, Glioma

It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis, induced by aflatoxin B1 (AFB1), by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells, especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest.

Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. It arrested the cell-cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F.

Data from in vivo experiments indicated that (Ac)5GP is not harmful to the liver, heart and kidney. (Ac)5GP is strongly suggested to be an anti-tumor agent for development in the future (Peng, Huang, & Wang, 2005).

Induces Apoptosis

Previous studies have demonstrated the apoptotic cascades protein kinase C (PKC) delta/c-Jun NH2-terminal kinase (JNK)/Fas/caspases induced by penta-acetyl geniposide [(Ac)5GP]. However, the upstream signals mediating PKCdelta activation have not yet been clarified. Ceramide, mainly generated from the degradation of sphingomyelin, was hypothesized upstream above PKCdelta in (Ac)5GP-transduced apoptosis.

After investigation, (Ac)5GP was shown to activate neutral sphingomyelinase (N-SMase) immediately, with its maximum at 15 min. The NGF and p75 enhanced by (Ac)5GP was inhibited when combined with GW4869, the N-SMase inhibitor, indicating NGF/p75 as the downstream signals of N-SMase/ceramide. To evaluate whether N-SMase is involved in (Ac)5GP-transduced apoptotic pathway, cells were treated with (Ac)5GP, alone or combined with GW4869. It was demonstrated that N-SMase inhibition blocked FasL expression and caspase 3 activation. Similarly, p75 antagonist peptide attenuated the FasL/caspase 3 expression. It indicated that N-SMase activation is pivotal in (Ac)5GP-mediated apoptosis.

SMase and NGF/p75 are suggested to mediate upstream above PKCdelta, thus transducing FasL/caspase cascades in (Ac)5GP-induced apoptosis (Peng, Huang, Hsu, & Wang, 2006).

Glioma

Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepato-protective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. The anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line C6 glioma cells were investigated.

Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun.

Findings suggest (Ac)(5)GP is highly likely to be an inhibiting cancer migration agent to be further developed in the future (Huang et al., 2009).

Melanoma

A new iridoid glycoside, 10-O-(4'-O-methylsuccinoyl) geniposide, and two new pyronane glycosides, jasminosides Q and R, along with nine known iridoid glycosides, and two known pyronane glycosides, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae).

The structures of new compounds were elucidated on the basis of extensive spectroscopic analyzes and comparison with literature. Upon evaluation of these compounds on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 µM, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 µM) (Akisha et al., 2012).

Hepatoma, Prostate Cancer, Cervical Cancer

Genipin is a metabolite of geniposide isolated from an extract of Gardenia fructus. Some observations suggested that genipin could induce cell apoptosis in hepatoma cells and PC3 human prostate cancer cells. Genipin could remarkably induce cytotoxicity in HeLa cells and inhibit its proliferation. Induction of the apoptosis by genipin was confirmed by analysis of DNA fragmentation and induction of sub-G(1) peak through flow cytometry.

The results also showed that genipin-treated HeLa cells cycle was arrested at G(1) phase. Western blot analysis revealed that the phosphorylated c-Jun NH(2)-terminal kinase (JNK) protein, phospho-Jun protein, p53 protein and bax protein significantly increased in a dose-dependent manner after treatment of genipin for 24 hours; the activation of JNK may result in the increase of the p53 protein level; the increase of the p53 protein led to the accumulation of bax protein; and bax protein further induced cell apoptotic death eventually (Cao et al., 2010).

References

Akihisa T, Watanabe K, Yamamoto A, et al. (2012). Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chemistry & Biodiversity, 9(8), 1490-9. doi: 10.1002/cbdv.201200030.


Cao H, Feng Q, Xu W, et al. (2010). Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol Pharm Bull, 33(8):1343-8.


Huang HP, Shih YW, Wu CH, et al. (2009). Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways. Chemico-biological Interactions, 181(1), 8-14. doi: 10.1016/j.cbi.2009.05.009.


Peng CH, Huang CN, Hsu SP, Wang CJ. (2006). Penta-acetyl geniposide induce apoptosis in C6 glioma cells by modulating the activation of neutral sphingomyelinase-induced p75 nerve growth factor receptor and protein kinase Cdelta pathway. Molecular Pharmacology, 70(3), 997-1004.


Peng CH, Huang CN, Wang CJ. (2005). The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Current Cancer Drug Targets, 5(4), 299-305.

Luteolin

Cancer: Colorectal., pancreatic, ovarian, breast

Action: Anti-inflammatory, radio-protective, TAM chemo-sensitizer

Luteolin is a flavonoid found in many plants and foods, including Terminalia chebula (Retz.), Prunella vulgaris (L.) and Perilla frutescens [(L.) Britton].

Luteolin is contained in Ocimum sanctum L. or Ocimum tenuiflorum L, commonly known as Holy Basil in English or Tulsi in various Indian languages; it is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia. Scientific studies have shown it to possess anti-inflammatory, anti-analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. It has been found to prevent chemical-induced skin, liver, oral., and lung cancers and mediates these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

Radio-protective

The aqueous extract of Tulsi has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. The chemo-preventive and radio-protective properties of Tulsi emphasize aspects that warrant future research to establish its activity and utility in cancer prevention and treatment (Baliga et al., 2013).

Anti-inflammatory

Pre-treatment of RAW 264.7 with luteolin, luteolin-7-glucoside, quercetin, and the isoflavonoid genistein inhibited both the LPS-stimulated TNF-αand interleukin-6 release, whereas eriodictyol and hesperetin only inhibited TNF-αrelease. From the compounds tested luteolin and quercetin were the most potent in inhibiting cytokine production with an IC50 of less than 1 and 5 µM for TNF-αrelease, respectively. Pre-treatment of the cells with luteolin attenuated LPS-induced tyrosine phosphorylation of many discrete proteins. Luteolin inhibited LPS-induced phosphorylation of Akt. Treatment of macrophages with LPS resulted in increased IκB-αphosphorylation and reduced the levels of IκB-α. It was concluded that luteolin inhibits protein tyrosine phosphorylation, nuclear factor-κB-mediated gene expression and pro-inflammatory cytokine production in murine macrophages (Xagorari et al., 2001).

Luteolin (Lut) possesses significant anti-inflammatory activity in well established models of acute and chronic inflammation, such as xylene-induced ear edema in mice (ED50= 107 mg/ kg), carrageenin-induced swellingof the ankle, acetic acid-induced pleurisy and croton oil-induced gaseous pouch granuloma in rats. Its combined immunostimulatory and anti-inflammatory activity, and inhibitory effect upon immediate hypersensitive response provide the pharmacologic bases for the beneficial effects of Lut in the treatment of chronic bronchitis (Chen et al., 1986).

Anti-inflammatory; Lung

Luteolin dose-dependently inhibited the expression and production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Luteolin also reduced the DNA binding activity of nuclear factor-kappa B (NF-κB) in LPS-activated macrophages. Moreover, luteolin blocked the degradation of IκB-α and nuclear translocation of NF-κB p65 subunit.

In sum, these data suggest that, by blocking NF-κ>B and AP-1 activation, luteolin acts to suppress the LPS-elicited inflammatory events in mouse alveolar macrophages, and this effect was mediated, at least in part, by inhibiting the generation of reactive oxygen species. These observations suggest a possible therapeutic application of this agent for treating inflammatory disorders in the lung (Chen et al., 2007).

Anti-inflammatory; Neuroinflammation

Pre-treatment of primary murine microglia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. To determine whether luteolin might have similar effects in vivo, mice were provided drinking water supplemented with luteolin for 21 days and then they were injected i.p. with LPS. Luteolin consumption reduced LPS-induced IL-6 in plasma 4 hours after injection. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation (Jang et al., 2008).

Colon Cancer

Activities of CDK4 and CDK2 decreased within 2 hours after luteolin treatment, with a 38% decrease in CDK2 activity (P < 0.05) observed in cells treated with 40 µmol/l luteolin. Luteolin inhibited CDK2 activity in a cell-free system, suggesting that it directly inhibits CDK2.

tLuteolin promoted G2/M arrest at 24 hours post-treatment  by down-regulating cyclin B1 expression and inhibiting cell division cycle (CDC)2 activity. Luteolin promoted apoptosis with increased activation of caspases 3, 7, and 9 and enhanced poly(ADP-ribose) polymerase cleavage and decreased expression of p21CIP1/WAF1, survivin, Mcl-1, Bcl-xL, and Mdm-2. Decreased expression of these key antiapoptotic proteins could contribute to the increase in p53-independent apoptosis that was observed in HT-29 cells. Lim et al., (2007) demonstrated that luteolin promotes both cell-cycle arrest and apoptosis in the HT-29 colon cancer cell line, providing insight about the mechanisms underlying its anti-tumorigenic activities.

Pancreatic Cancer; Chemotherapy

Simultaneous treatment or pre-treatment (0, 6, 24 and 42 hours) of flavonoids and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60h resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) Pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3βand NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Lut effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Ovarian Cancer

Luteolin has been found to repress NF-kappaB (NF-κ>B, a pro-inflammatory transcription factor) and inhibit pro-inflammatory cytokines such as TNF-αand IL-6. Additionally, it has been shown to stabilize p53 protein, sensitize TRAIL (TNF receptor apoptosis-inducing ligand) induced apoptosis, and prevent or delay chemotherapy-resistance.

Recent studies further indicate that luteolin potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Chemo-sensitizer

The sensitization effect of luteolin on cisplatin-induced apoptosis is p53 dependent, as such effect is only found in p53 wild-type cancer cells but not in p53 mutant cancer cells. Moreover, knockdown of p53 by small interfering RNA made p53 wild-type cancer cells resistant to luteolin and cisplatin. Second, Shi et al., (2007) observed a significant increase of p53 protein level in luteolin-treated cancer cells without increase of p53 mRNA level, indicating the possible effect of luteolin on p53 posttranscriptional regulation.

In summary, data from this study reveal a novel molecular mechanism involved in the anti-cancer effect of luteolin and support its potential clinical application as a chemo-sensitizer in cancer therapy.

Breast Cancer; TAM Chemo-sensitizer

This study found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells (4.89-fold, (∗)P=0.005) than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257). Further, relatively high levels of CCNE2 protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells.

These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5µM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.


Chen CY, Peng WH, Tsai KD and Hsu SL. (2007). Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sciences, 81(23-24):1602-1614. doi:10.1016/j.lfs.2007.09.028


Chen MZ, Jin WZ, Dai LM, Xu SY. (1986). Effect of luteolin on inflammation and immune function. Chinese Journal of Pharmacology and Toxicology, 1986-01.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Jang S, Kelley KW, Johnson RW. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. PNAS, 105(21):7534-7539


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, S0278-6915(13)00491-2. doi: 10.1016/j.fct.2013.07.036.


Lim DY, Jeong Y, Tyner Al., Park JHY. (2007). Induction of cell-cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol, 292: G66-G75. doi:10.1152/ajpgi.00248.2006.


Shi R, Huang Q, Zhu X, et al. (2007). Luteolin sensitizes the anti-cancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Molecular Cancer Therapeutics, 6(4):1338-1347. doi: 10.1158/1535-7163.MCT-06-0638.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Xagorari A, Papapetropoulos A, Mauromatis A, et al. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and pro-inflammatory cytokine production in macrophages. JPET, 296(1):181-187.

Baicalin & Baicalein

Cancer:
Myeloma, liver, colorectal., breast, prostate, oral., hepatoma, ovarian

Action: Anti-cancer, cardiovascular disease, cytostatic, cardio-protective against Doxorubicin, anti-inflammatory, angiogenesis

Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants (including Scutellaria radix, Scutellaria rivularis (Benth.); Scutellaria baicalensis (Georgi) and Scutellaria lateriflora (L.)) are thought to have anti-oxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. In particular, Scutellaria baicalensis is one of the most popular and multi-purpose herbs used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections (Ye et al., 2002; Zhang et al., 2011a).

Anti-cancer

Accumulating evidence demonstrates that Scutellaria also possesses potent anti-cancer activities. The bioactive components of Scutellaria have been confirmed to be flavones, wogonin, baicalein and baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The anti-tumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell-cycle, to suppress COX-2 gene expression and to prevent viral infections (Li, 2008).

Multiple Myeloma

In the search for a more effective adjuvant therapy to treat multiple myeloma (MM), Ma et al. (2005) investigated the effects of the traditional Chinese herbal medicines Huang-Lian-Jie-Du-Tang (HLJDT), Gui-Zhi-Fu-Ling-Wan (GZFLW), and Huang-Lian-Tang (HLT) on the proliferation and apoptosis of myeloma cells. HLJDT inhibited the proliferation of myeloma cell lines and the survival of primary myeloma cells, especially MPC-1- immature myeloma cells, and induced apoptosis in myeloma cell lines via a mitochondria-mediated pathway by reducing mitochondrial membrane potential and activating caspase-9 and caspase-3.

Further experiments confirmed that Scutellaria radix was responsible for the suppressive effect of HLJDT on myeloma cell proliferation, and the baicalein in Scutellaria radix showed strong growth inhibition and induction of apoptosis in comparison with baicalin or wogonin. Baicalein as well as baicalin suppressed the survival in vitro of MPC-1- immature myeloma cells rather than MPC-1+ myeloma cells from myeloma patients.

Baicalein inhibited the phosphorylation of IkB-alpha, which was followed by decreased expression of the IL-6 and XIAP genes and activation of caspase-9 and caspase-3. Therefore, HLJDT and Scutellaria radix have an anti-proliferative effect on myeloma cells, especially MPC-1- immature myeloma cells, and baicalein may be responsible for the suppressive effect of Scutellaria radix by blocking IkB-alpha degradation (Ma, 2005).

Hepatoma

The effects of the flavonoids from Scutellaria baicalensis Georgi (baicalein, baicalin and wogonin) in cultured human hepatoma cells (Hep G2, Hep 3B and SK-Hep1) were compared by MTT assay and flow cytometry. All three flavonoids dose-dependently decreased the cell viabilities accompanying the collapse of mitochondrial membrane potential and the depletion of glutathione content. However, the influence of baicalein, baicalin or wogonin on cell-cycle progression was different.

All three flavonoids resulted in prominent increase of G2/M population in Hep G2 cells, whereas an accumulation of sub G1 (hypoploid) peak in Hep 3B cells was observed. In SK-Hep1 cells, baicalein and baicalin resulted in a dramatic boost in hypoploid peak, but wogonin mainly in G1 phase accumulation. These data, together with the previous findings in other hepatoma cell lines, suggest that baicalein, baicalin and wogonin might be effective candidates for inducing apoptosis or inhibiting proliferation in various human hepatoma cell lines (Chang, 2002).

Long dan xie gan tang (pinyin) is one of the most commonly used herbal formulas by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, were investigated, respectively, on human hepatoma Hep3B cells..

Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis. Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Ovarian Cancer

Ovarian cancer is one of the primary causes of death for women all through the Western world. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45-55 µM for baicalin and 25-40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein.

Baicalin decreased expression of VEGF (20 µM), cMyc (80 µM), and NFkB (20 µM); baicalein decreased expression of VEGF (10 µM), HIF-1α (20 µM), cMyc (20 µM), and NFkB (40 µM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB.

Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers (Chen, 2013).

Breast Cancer

Baicalin was found to be a potent inhibitor of mammary cell line MCF-7 and ductal breast epithelial tumor cell line T-47D proliferation, as well as having anti-proliferative effects on other cancer types such as the human head and neck cancer epithelial cell lines CAL-27 and FaDu. Overall, baicalin inhibited the proliferation of human breast cancer cells and CAL-27 and FaDu cells with effective potency (Franek, 2005).

Breast Cancer, Cell Invasion

The effect of Baicalein on cell viability of the human breast cancer MDA-MB-231 cell line was tested by MTT. 50, 100 µmol·L-1 of Baicalein inhibited significantly cell invasion(P0.01) and migration(P0.01) compared with control groups. The inhibitory rates were 50% and 77% in cell migration and 15% and 44% in cell invasion, respectively. 50 µmol·L-1 of Baicalein significantly inhibited the level of MMP 2 expression. 100 µmol·L-1 of Baicalein significantly inhibited the level of MMP 9 and uPA expressions.

Baicalein inhibits invasion and migration of MDA-MB-231 cells. The mechanisms may be involved in the direct inhibition of cell invasion and migration abilities, and the inhibition of MMP 2, MMP 9, and uPA expressions (Wang et al., 2010).

The proliferation of MDA-MB-231 cell line human breast adenocarcinoma was inhibited by baicalin in a dose-and time-dependent manner and the IC50 was 151 µmol/L. The apoptotic rate of the baicalin-treated MDA-MB-231 cells increased significantly at 48 hours. Flow cytometer analysis also revealed that most of the baicalin-treated MDA-MB-231 cells were arrested in the G2/M phase. Typically apoptotic characteristics such as condensed chromatin and apoptotic bodies were observed after being treated with baicalin for 48 hours.

The results of RT-PCR showed that the expression of bax was up-regulated; meanwhile, the expression of bcl-2 was down-regulated. Baicalin could inhibit the proliferation of MDA-MB-231 cells through apoptosis by regulating the expression of bcl-2, bax and intervening in the process of the cell-cycle (Zhu et al., 2008).

Oral Cancer

As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell-cycle, it is suspected that the anti-cancer effect of baicalein is associated with AhR. The molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3 has been investigated, including whether such an effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell-cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased.

When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is mediated by baicalein both through activation of AhR and facilitation of cyclin D1 degradation, which causes cell-cycle arrest at the G1 phase, and results in the inhibition of cell proliferation (Cheng, 2012).

Anti-inflammatory

Baicalin has also been examined for its effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. The results indicated that baicalin inhibited LPS-induced NO production in a concentration-dependent manner without a notable cytotoxic effect on these cells. The decrease in NO production was consistent with the inhibition by baicalin of LPS-induced iNOS gene expression (Chen, 2001)

Angiogenesis Modulation

The modulation of angiogenesis is one possible mechanism by which baicalin may act in the treatment of cardiovascular diseases. This may be elucidated by investigating the effects of baicalin on the expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1alpha (HIF-1alpha).

Their ability to induce VEGF expression was suppressed once ERRalpha expression was knocked down by siRNA, or ERRalpha-binding sites were deleted in the VEGF promoter. It was also found that both agents stimulated cell migration and vessel sprout formation from the aorta. These results therefore implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRalpha pathway (Zhang, 2011b).

Colon Cancer

The compounds of baicalein and wogonin, derived from the Chinese herb Scutellaria baicalensis, were studied for their effect in suppressing the viability of HT-29 human colon cancer cells. Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest at the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner when compared to the control.

The results indicated that baicalein induced apoptosis via Akt activation, in a p53-dependent manner, in HT-29 colon cancer cells. Baicalein may serve as a chemo-preventive, or therapeutic, agent for HT-29 colon cancer (Kim et al., 2012).

Cardio-protective

The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. Baicalein attenuated phosphorylation of JNK induced by doxorubicin. Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 µM; 24 hours) reduced JNK phosphorylation and enhanced cell survival., suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy (Chang et al., 2011).

Prostate Cancer

There are four compounds capable of inhibiting prostate cancer cell proliferation in Scutellaria baicalensis: baicalein, wogonin, neobaicalein, and skullcapflavone. Comparisons of the cellular effects induced by the entire extract versus the four-compound combination produced comparable cell-cycle changes, levels of growth inhibition, and global gene expression profiles (r(2) = 0.79). Individual compounds exhibited anti-androgenic activities with reduced expression of the androgen receptor and androgen-regulated genes. In vivo, baicalein (20 mg/kg/d p.o.) reduced the growth of prostate cancer xenografts in nude mice by 55% at 2 weeks compared with placebo and delayed the average time for tumors to achieve a volume of approximately 1,000 mm(3) from 16 to 47 days (P < 0.001).

Most of the anti-cancer activities of S. baicalensis can be recapitulated with four purified constituents that function in part through inhibition of the androgen receptor signaling pathway (Bonham et al., 2005)

Cancer: Acute lymphocytic leukemia, lymphoma and myeloma

Action: Cell-cycle arrest, induces apoptosis

Scutellaria baicalensis (S.B.) is a widely used Chinese herbal medicine. S.B inhibited the growth of acute lymphocytic leukemia (ALL), lymphoma and myeloma cell lines by inducing apoptosis and cell cycle arrest at clinically achievable concentrations. The anti-proliferative effectwas associated with mitochondrial damage, modulation of the Bcl family of genes, increased level of the CDK inhibitor p27KIP1 and decreased level of c-myc oncogene. HPLC analysis of S.B. showed it contains 21% baicalin and further studies confirmed it was the major anti-cancer component of S.B. Thus, Scutellaria baicalensis should be tested in clinical trials for these hematopoietic malignancies (Kumagai et al., 2007).

References

Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. (2005). Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res, 11(10):3905-14.


Chang WH Chen CH Lu FJ. (2002). Different Effects of Baicalein, Baicalin and Wogonin on Mitochondrial Function, Glutathione Content and cell-cycle Progression in Human Hepatoma Cell Lines. Planta Med, 68(2):128-32. doi: 10.1055/s-2002-20246


Chang WT, Li J, Huang HH, et al. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury .and JNK activation. J Cell Biochem. doi: 10.1002/jcb.23201.


Chen J, Li Z, Chen AY, Ye X, et al. (2013). Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci, 14(3):6012-25. doi: 10.3390/ijms14036012.


Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. (2001). Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol,61(11):1417-27. doi:10.1016/S0006-2952(01)00594-9


Cheng YH, Li LA, Lin P, et al. (2012). Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol, 263(3):360-7. doi: 10.1016/j.taap.2012.07.010.


Chou CC, Pan SL, Teng CM, & Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Franek KJ, Zhou Z, Zhang WD, Chen WY. (2005). In vitro studies of baicalin alone or in combination with Salvia miltiorrhiza extract as a potential anti-cancer agent. Int J Oncol, 26(1):217-24.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Molecular Medicine Reports, 6(6):1443-1449. doi: 10.3892/mmr.2012.1085.


Li-Weber M. (2009). New therapeutic aspects of flavones: The anti-cancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 35(1):57-68. doi: 10.1016/j.ctrv.2008.09.005.


Ma Z, Otsuyama K, Liu S, et al. (2005). Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 105(8):3312-8. doi:10.1182/blood-2004-10-3915.


Wang Xf, Zhou Qm, Su Sb. (2010). Experimental study on Baicalein inhibiting the invasion and migration of human breast cancer cells. Zhong Guo Yao Li Xue Tong Bao, 26(6): 745-750.


Zhang XW, Li WF, Li WW, et al. (2011a). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharm Biol, 49(3): 256–261. doi:10.3109/13880209.2010.501803.


Ye F, Xui L, Yi J, Zhang, W, Zhang DY. (2002). Anti-cancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 8(5):567-72.


Zhang K, Lu J, Mori T, et al. (2011b). Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway.[J]. Cardiovascular Research, 89(2):426-435.


Zhu Gq, Tang Lj, Wang L, Su Jj, et al. (2008). Study on Baicalin Induced Apoptosis of Human Breast Cancer Cell Line MDA-MB-231. An Hui Zhong Yi Xue Yuan Xue Bao, 27(2):20-23

Kumagai T, et al. (2007) Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leukemia Research 31 (2007) 523-530

Luteolin

Cancer: Colorectal., ovarian, pancreatic

Action: Anti-inflammatory, immunomodulatory, radio-sensitizer, chemo-sensitizer

Luteolin is a flavonoid found in many plants and foods, including Terminalia chebula (Retz.), Prunella vulgaris (L.) and Perilla frutescens [(L.) Britton].

Luteolin is contained in Ocimum sanctum L . or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in various Indian languages, which is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. It has been found to prevent chemical-induced skin, liver, oral., and lung cancers and mediates these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

Colon Cancer

Luteolin inhibited cyclin-dependent kinase (CDK)4 and CDK2 activity, resulting in G1 arrest with a concomitant decrease of phosphorylation of retinoblastoma protein. Activities of CDK4 and CDK2 decreased within 2 hours after luteolin treatment, with a 38% decrease in CDK2 activity (P < 0.05) observed in cells treated with 40 µmol/l luteolin. Luteolin also promoted G2/M arrest at 24 hours post-treatment by down-regulating cyclin B1 expression and inhibiting cell division cycle (CDC)2 activity. Luteolin promoted apoptosis with increased activation of caspases 3, 7, and 9 and enhanced poly(ADP-ribose) polymerase cleavage and decreased expression of p21CIP1/WAF1, survivin, Mcl-1, Bcl-xL, and Mdm-2. Lim et al. (2007) demonstrated that luteolin promotes both cell-cycle arrest and apoptosis in the HT-29 colon cancer cell line, providing insight about the mechanisms underlying its anti-tumorigenic activities.

Radio-protective

The aqueous extract of Perilla frutescens has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. The chemo-preventive and radio-protective properties of Perilla emphasize aspects that warrant future research to establish its activity and utility in cancer prevention and treatment (Baliga et al., 2013).

Anti-inflammatory

Pre-treatment of RAW 264.7 macrophages with luteolin, luteolin-7-glucoside, quercetin, and the isoflavonoid genistein inhibited both the LPS-stimulated TNF-α and interleukin-6 release, whereas eriodictyol and hesperetin only inhibited TNF-α release. From the compounds tested, luteolin and quercetin were the most potent in inhibiting cytokine production with an IC50 of less than 1 and 5 µM for TNF-α release, respectively. Moreover, luteolin inhibited LPS-induced phosphorylation of Akt. Treatment of macrophages with LPS resulted in increased IκB-α phosphorylation and reduced the levels of IκB-α. Pre-treatment of cells with luteolin abolished the effects of LPS on IκB-α.

Xagorari et al. (2001) concluded that luteolin inhibits protein tyrosine phosphorylation, nuclear factor-κB-mediated gene expression and pro-inflammatory cytokine production in murine macrophages.

Anti-inflammatory; Neuroinflammation

Pre-treatment of primary murine microglia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation.

Luteolin consumption reduced LPS-induced IL-6 in plasma 4 hours after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in the hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation (Jang et al., 2008).

Immunostimulatory and Anti-inflammatory

Luteolin (Lut) possesses significant anti-inflammatory activity in well-established models of acute and chronic inflammation, such as xylene-induced ear edema in mice (ED50= 107 mg/ kg), carrageenin-induced swellingof the ankle, acetic acid-induced pleurisy and croton oil-induced gaseous pouch granuloma in rats. Lut had a marked inhibitory effect on the inflammatory exudation, but did not affect the number of leucocytes. Its combined immunostimulatory and anti-inflammatory activity, and inhibitory effect upon immediate hypersensitive response, provide the pharmacologic bases for the beneficial effects of Lut in the treatment of chronic bronchitis (Chen et al., 1986).

Anti-inflammatory

Luteolin dose-dependently inhibited the expression and production of those inflammatory genes and mediators in macrophages stimulated with lipopolysaccharide (LPS). Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay further confirmed the suppression of LPS-induced TNF- α, IL-6, iNOS and COX-2 gene expression by luteolin at a transcriptional level. Luteolin also reduced the DNA binding activity of nuclear factor-kappa B (NF-κB) in LPS-activated macrophages.

In addition, luteolin significantly inhibited the LPS-induced DNA binding activity of activating protein-1 (AP-1). It was also found that luteolin attenuated the LPS-mediated protein kinase B (Akt) and IKK phosphorylation, as well as reactive oxygen species (ROS) production. In sum, these data suggest that, by blocking NF-κB and AP-1 activation, luteolin acts to suppress the LPS-elicited inflammatory events in mouse alveolar macrophages, and this effect was mediated, at least in part, by inhibiting the generation of reactive oxygen species. These observations suggest a possible therapeutic application of this agent for treating inflammatory disorders in the lung (Chen et al., 2007).

Pancreatic Cancer; Chemo-enhancing

Simultaneous treatment or pre-treatment (0, 6, 24 and 42h) of flavonoids and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Pre-treatment for 24 hours with 13µM of either Apigenin or Luteolin, followed by Gem for 36 h was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59%–73% growth inhibition when followed by Gem (10µM, 36 hours). Lut (15µM, 24 hours) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Lut effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Ovarian Cancer

Recent studies further indicate that luteolin potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM.

Unlike NSAIDS (non-steroid anti-inflammatory drugs), well-documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Chemo-sensitizer

The sensitization effect of luteolin on cisplatin-induced apoptosis is p53 dependent, as such effect is only found in p53 wild-type cancer cells but not in p53 mutant cancer cells. Moreover, knockdown of p53 by small interfering RNA made p53 wild-type cancer cells resistant to luteolin and cisplatin. The critical role of c-Jun NH(2)-terminal kinase (JNK) was identified in regulation of p53 protein stability: luteolin activates JNK, and JNK then stabilizes p53 via phosphorylation, leading to reduced ubiquitination and proteasomal degradation.

An in vivo nude mice xenograft model confirmed that luteolin enhanced the cancer therapeutic activity of cisplatin via p53 stabilization and accumulation. In summary, data from this study reveal a novel molecular mechanism involved in the anti-cancer effects of luteolin and support its potential clinical application as a chemo-sensitizer in cancer therapy (Shi et al., 2007).

Breast Cancer; Chemo-sensitzer

Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemo-preventive or chemo-sensitizing properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified.

Relatively high levels of cyclin E2 (CCNE2) protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5µM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

Chen CY, Peng WH, Tsai KD and Hsu SL. (2007). Luteolin suppresses inflammation-associated gene expression by blocking NF- κ B and AP-1 activation pathway in mouse alveolar macrophages. Life Sciences, 81(23-24):1602-1614. doi:10.1016/j.lfs.2007.09.028

Chen MZ, Jin WZ, Dai LM, Xu SY. (1986). Effect of luteolin on inflammation and immune function. Chinese Journal of Pharmacology and Toxicology, 1986-01.

Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.

Jang S, Kelley KW, Johnson RW. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. PNAS, 105(21):7534-7539

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, S0278-6915(13)00491-2. doi: 10.1016/j.fct.2013.07.036.

Lim DY, Jeong Y, Tyner Al., Park JHY. (2007). Induction of cell-cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol, 292: G66-G75. doi:10.1152/ajpgi.00248.2006.

Shi R, Huang Q, Zhu X, et al. (2007). Luteolin sensitizes the anti-cancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Molecular Cancer Therapeutics, 6(4):1338-1347. doi: 10.1158/1535-7163.MCT-06-0638.

Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.

Xagorari A, Papapetropoulos A, Mauromatis A, et al. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and pro-inflammatory cytokine production in macrophages. JPET, 296(1):181-187.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.

Spica Prunellae Extract

Cancer: Colorectal

Action: Promotes apoptosis, anti-angiogenic, induces angiogenesis

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, Lin et al., (2013) found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro.

CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.

EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreasedanti-angiogenic cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.

Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Reference

Lin W, Zheng L, Zhuang Q, Zhao J, et al. (2013) Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun 24;13(1):144.