Category Archives: Ovarian cancer cell lines

Ganoderma lucidum (Reishi)

Cancer: Ovarian
Action: Suppresses VEGF expression
Human ovarian cancer cells HO 8910 (HOCC) and human primary ovarian cells (HPOC) were treated with G. lucidum. Effects of G. lucidum treatment on cell proliferation were studied by MTT assay. The expression of vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) were measured by immunohistochemistry and real time polymerase chain reaction. To study the molecular mechanism of CX43 mediated anti-tumor activity, small interference RNA (siRNA) was used to knockdown Cx43 expression in HOCC.
G. lucidum treatment resulted in reduced proliferation of HOCC. Inhibition of proliferation was accompanied by a decrease in VEGF expression and increase in Cx43 expression in the cancer cells. The extent of immune-reactivity of Cx43 or VEGF in cancer cells were correlated with the concentrations of G. lucidum used for treatment.
G. lucidum inhibits ovarian cancer by down-regulating the expression of VEGF and up-regulating the downstream Cx43 expression. G. lucidum may be a promising therapeutic agent for the treatment of ovarian cancer.

Source
Dai S, Liu J, Sun X, Wang N. Ganoderma lucidum inhibits proliferation of human ovarian cancer cells by suppressing VEGF expression and up-regulating the expression of connexin 43. BMC Complement Altern Med. 2014 Nov 5;14:434. doi: 10.1186/1472-6882-14-434.

Corilagin

Cancer: Ovarian, hepatocellular carcinoma

Action: Radio-protective

Corilagin is isolated from Phyllanthus niruri (L.), Punica granatum (Linnaeus), Caesalpinia coriaria [(Jacq.) Willd.], Alchornea glandulosa (Poepp. & Endl.).

Ovarian Cancer

Phyllanthus niruri L. is a well-known hepato-protective and anti-viral medicinal herb. Recently, Jia et al. (2013) identified Corilagin as a major active component with anti-tumor activity in this herbal medicine. Corilagin is a member of the tannin family that has been discovered in many medicinal plants and has been used as an anti-inflammatory agent.

The ovarian cancer cell lines SKOv3ip, Hey and HO-8910PM were treated with Corilagin. Corilagin inhibited the growth of the ovarian cancer cell lines SKOv3ip and Hey, with IC50 values of less than 30 muM, while displaying low toxicity against normal ovarian surface epithelium cells, with IC50 values of approximately 160 muM. Corilagin induced cell-cycle arrest at the G2/M stage and enhanced apoptosis in ovarian cancer cells.

In contrast, a reduction of TGF-beta secretion was not observed in cancer cells treated with the cytotoxic drug Paclitaxel, suggesting that Corilagin specifically targets TGF-beta secretion. Corilagin blocked the activation of both the canonical Smad and non-canonical ERK/AKT pathways.

Corilagin extracted from Phyllanthus niruri L. acts as a natural., effective therapeutic agent against the growth of ovarian cancer cells via targeted action against the TGF-beta/AKT/ERK/Smad signaling pathways (Jia et al., 2013).

Hepatocellular Carcinoma

Corilagin is considerably effective to retard the in vivo growth of xenografted Hep3B hepatocellular carcinoma. A significant inhibition of tumor growth was observed when treated mice are compared with control groups. Furthermore, analysis of enzymes markers of liver function, including alanine aminotransferase and asparate aminotransferase, suggested that current therapeutic dosage of corilagin did not exert adverse effect on liver (Hau et al., 2010).

Radio-protective

Corilagin, a member of the tannin family, inhibits NF-kappaB pathway activation. In the present study, Dong et al. (2010) examined the inhibitory effects of corilagin on radiation-induced microglia activation. Their data suggest that corilagin inhibits radiation-induced microglia activation via suppression of the NF-kappaB pathway and the compound is a potential treatment for radiation-induced brain injury (RIBI) (Dong et al., 2010).

References

Dong XR, Luo M, Fan L, et al. (2010). Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med, 25(4):531-6.


Hau DK, Zhu GY, Leung AK, et al. (2010) In vivo anti-tumor activity of corilagin on Hep3B hepatocellular carcinoma. Phytomedicine, 18(1):11-5. doi: 10.1016/j.phymed.2010.09.001.


Jia LQ, Jin HY, Zhou JY, et al. (2013). A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complementary and Alternative Medicine, 13:33. doi:10.1186/1472-6882-13-33

Baicalin & Baicalein

Cancer:
Myeloma, liver, colorectal., breast, prostate, oral., hepatoma, ovarian

Action: Anti-cancer, cardiovascular disease, cytostatic, cardio-protective against Doxorubicin, anti-inflammatory, angiogenesis

Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants (including Scutellaria radix, Scutellaria rivularis (Benth.); Scutellaria baicalensis (Georgi) and Scutellaria lateriflora (L.)) are thought to have anti-oxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. In particular, Scutellaria baicalensis is one of the most popular and multi-purpose herbs used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections (Ye et al., 2002; Zhang et al., 2011a).

Anti-cancer

Accumulating evidence demonstrates that Scutellaria also possesses potent anti-cancer activities. The bioactive components of Scutellaria have been confirmed to be flavones, wogonin, baicalein and baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The anti-tumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell-cycle, to suppress COX-2 gene expression and to prevent viral infections (Li, 2008).

Multiple Myeloma

In the search for a more effective adjuvant therapy to treat multiple myeloma (MM), Ma et al. (2005) investigated the effects of the traditional Chinese herbal medicines Huang-Lian-Jie-Du-Tang (HLJDT), Gui-Zhi-Fu-Ling-Wan (GZFLW), and Huang-Lian-Tang (HLT) on the proliferation and apoptosis of myeloma cells. HLJDT inhibited the proliferation of myeloma cell lines and the survival of primary myeloma cells, especially MPC-1- immature myeloma cells, and induced apoptosis in myeloma cell lines via a mitochondria-mediated pathway by reducing mitochondrial membrane potential and activating caspase-9 and caspase-3.

Further experiments confirmed that Scutellaria radix was responsible for the suppressive effect of HLJDT on myeloma cell proliferation, and the baicalein in Scutellaria radix showed strong growth inhibition and induction of apoptosis in comparison with baicalin or wogonin. Baicalein as well as baicalin suppressed the survival in vitro of MPC-1- immature myeloma cells rather than MPC-1+ myeloma cells from myeloma patients.

Baicalein inhibited the phosphorylation of IkB-alpha, which was followed by decreased expression of the IL-6 and XIAP genes and activation of caspase-9 and caspase-3. Therefore, HLJDT and Scutellaria radix have an anti-proliferative effect on myeloma cells, especially MPC-1- immature myeloma cells, and baicalein may be responsible for the suppressive effect of Scutellaria radix by blocking IkB-alpha degradation (Ma, 2005).

Hepatoma

The effects of the flavonoids from Scutellaria baicalensis Georgi (baicalein, baicalin and wogonin) in cultured human hepatoma cells (Hep G2, Hep 3B and SK-Hep1) were compared by MTT assay and flow cytometry. All three flavonoids dose-dependently decreased the cell viabilities accompanying the collapse of mitochondrial membrane potential and the depletion of glutathione content. However, the influence of baicalein, baicalin or wogonin on cell-cycle progression was different.

All three flavonoids resulted in prominent increase of G2/M population in Hep G2 cells, whereas an accumulation of sub G1 (hypoploid) peak in Hep 3B cells was observed. In SK-Hep1 cells, baicalein and baicalin resulted in a dramatic boost in hypoploid peak, but wogonin mainly in G1 phase accumulation. These data, together with the previous findings in other hepatoma cell lines, suggest that baicalein, baicalin and wogonin might be effective candidates for inducing apoptosis or inhibiting proliferation in various human hepatoma cell lines (Chang, 2002).

Long dan xie gan tang (pinyin) is one of the most commonly used herbal formulas by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, were investigated, respectively, on human hepatoma Hep3B cells..

Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis. Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Ovarian Cancer

Ovarian cancer is one of the primary causes of death for women all through the Western world. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45-55 µM for baicalin and 25-40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein.

Baicalin decreased expression of VEGF (20 µM), cMyc (80 µM), and NFkB (20 µM); baicalein decreased expression of VEGF (10 µM), HIF-1α (20 µM), cMyc (20 µM), and NFkB (40 µM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB.

Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers (Chen, 2013).

Breast Cancer

Baicalin was found to be a potent inhibitor of mammary cell line MCF-7 and ductal breast epithelial tumor cell line T-47D proliferation, as well as having anti-proliferative effects on other cancer types such as the human head and neck cancer epithelial cell lines CAL-27 and FaDu. Overall, baicalin inhibited the proliferation of human breast cancer cells and CAL-27 and FaDu cells with effective potency (Franek, 2005).

Breast Cancer, Cell Invasion

The effect of Baicalein on cell viability of the human breast cancer MDA-MB-231 cell line was tested by MTT. 50, 100 µmol·L-1 of Baicalein inhibited significantly cell invasion(P0.01) and migration(P0.01) compared with control groups. The inhibitory rates were 50% and 77% in cell migration and 15% and 44% in cell invasion, respectively. 50 µmol·L-1 of Baicalein significantly inhibited the level of MMP 2 expression. 100 µmol·L-1 of Baicalein significantly inhibited the level of MMP 9 and uPA expressions.

Baicalein inhibits invasion and migration of MDA-MB-231 cells. The mechanisms may be involved in the direct inhibition of cell invasion and migration abilities, and the inhibition of MMP 2, MMP 9, and uPA expressions (Wang et al., 2010).

The proliferation of MDA-MB-231 cell line human breast adenocarcinoma was inhibited by baicalin in a dose-and time-dependent manner and the IC50 was 151 µmol/L. The apoptotic rate of the baicalin-treated MDA-MB-231 cells increased significantly at 48 hours. Flow cytometer analysis also revealed that most of the baicalin-treated MDA-MB-231 cells were arrested in the G2/M phase. Typically apoptotic characteristics such as condensed chromatin and apoptotic bodies were observed after being treated with baicalin for 48 hours.

The results of RT-PCR showed that the expression of bax was up-regulated; meanwhile, the expression of bcl-2 was down-regulated. Baicalin could inhibit the proliferation of MDA-MB-231 cells through apoptosis by regulating the expression of bcl-2, bax and intervening in the process of the cell-cycle (Zhu et al., 2008).

Oral Cancer

As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell-cycle, it is suspected that the anti-cancer effect of baicalein is associated with AhR. The molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3 has been investigated, including whether such an effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell-cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased.

When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is mediated by baicalein both through activation of AhR and facilitation of cyclin D1 degradation, which causes cell-cycle arrest at the G1 phase, and results in the inhibition of cell proliferation (Cheng, 2012).

Anti-inflammatory

Baicalin has also been examined for its effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. The results indicated that baicalin inhibited LPS-induced NO production in a concentration-dependent manner without a notable cytotoxic effect on these cells. The decrease in NO production was consistent with the inhibition by baicalin of LPS-induced iNOS gene expression (Chen, 2001)

Angiogenesis Modulation

The modulation of angiogenesis is one possible mechanism by which baicalin may act in the treatment of cardiovascular diseases. This may be elucidated by investigating the effects of baicalin on the expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1alpha (HIF-1alpha).

Their ability to induce VEGF expression was suppressed once ERRalpha expression was knocked down by siRNA, or ERRalpha-binding sites were deleted in the VEGF promoter. It was also found that both agents stimulated cell migration and vessel sprout formation from the aorta. These results therefore implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRalpha pathway (Zhang, 2011b).

Colon Cancer

The compounds of baicalein and wogonin, derived from the Chinese herb Scutellaria baicalensis, were studied for their effect in suppressing the viability of HT-29 human colon cancer cells. Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest at the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner when compared to the control.

The results indicated that baicalein induced apoptosis via Akt activation, in a p53-dependent manner, in HT-29 colon cancer cells. Baicalein may serve as a chemo-preventive, or therapeutic, agent for HT-29 colon cancer (Kim et al., 2012).

Cardio-protective

The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. Baicalein attenuated phosphorylation of JNK induced by doxorubicin. Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 µM; 24 hours) reduced JNK phosphorylation and enhanced cell survival., suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy (Chang et al., 2011).

Prostate Cancer

There are four compounds capable of inhibiting prostate cancer cell proliferation in Scutellaria baicalensis: baicalein, wogonin, neobaicalein, and skullcapflavone. Comparisons of the cellular effects induced by the entire extract versus the four-compound combination produced comparable cell-cycle changes, levels of growth inhibition, and global gene expression profiles (r(2) = 0.79). Individual compounds exhibited anti-androgenic activities with reduced expression of the androgen receptor and androgen-regulated genes. In vivo, baicalein (20 mg/kg/d p.o.) reduced the growth of prostate cancer xenografts in nude mice by 55% at 2 weeks compared with placebo and delayed the average time for tumors to achieve a volume of approximately 1,000 mm(3) from 16 to 47 days (P < 0.001).

Most of the anti-cancer activities of S. baicalensis can be recapitulated with four purified constituents that function in part through inhibition of the androgen receptor signaling pathway (Bonham et al., 2005)

Cancer: Acute lymphocytic leukemia, lymphoma and myeloma

Action: Cell-cycle arrest, induces apoptosis

Scutellaria baicalensis (S.B.) is a widely used Chinese herbal medicine. S.B inhibited the growth of acute lymphocytic leukemia (ALL), lymphoma and myeloma cell lines by inducing apoptosis and cell cycle arrest at clinically achievable concentrations. The anti-proliferative effectwas associated with mitochondrial damage, modulation of the Bcl family of genes, increased level of the CDK inhibitor p27KIP1 and decreased level of c-myc oncogene. HPLC analysis of S.B. showed it contains 21% baicalin and further studies confirmed it was the major anti-cancer component of S.B. Thus, Scutellaria baicalensis should be tested in clinical trials for these hematopoietic malignancies (Kumagai et al., 2007).

References

Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. (2005). Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res, 11(10):3905-14.


Chang WH Chen CH Lu FJ. (2002). Different Effects of Baicalein, Baicalin and Wogonin on Mitochondrial Function, Glutathione Content and cell-cycle Progression in Human Hepatoma Cell Lines. Planta Med, 68(2):128-32. doi: 10.1055/s-2002-20246


Chang WT, Li J, Huang HH, et al. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury .and JNK activation. J Cell Biochem. doi: 10.1002/jcb.23201.


Chen J, Li Z, Chen AY, Ye X, et al. (2013). Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci, 14(3):6012-25. doi: 10.3390/ijms14036012.


Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. (2001). Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol,61(11):1417-27. doi:10.1016/S0006-2952(01)00594-9


Cheng YH, Li LA, Lin P, et al. (2012). Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol, 263(3):360-7. doi: 10.1016/j.taap.2012.07.010.


Chou CC, Pan SL, Teng CM, & Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Franek KJ, Zhou Z, Zhang WD, Chen WY. (2005). In vitro studies of baicalin alone or in combination with Salvia miltiorrhiza extract as a potential anti-cancer agent. Int J Oncol, 26(1):217-24.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Molecular Medicine Reports, 6(6):1443-1449. doi: 10.3892/mmr.2012.1085.


Li-Weber M. (2009). New therapeutic aspects of flavones: The anti-cancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 35(1):57-68. doi: 10.1016/j.ctrv.2008.09.005.


Ma Z, Otsuyama K, Liu S, et al. (2005). Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 105(8):3312-8. doi:10.1182/blood-2004-10-3915.


Wang Xf, Zhou Qm, Su Sb. (2010). Experimental study on Baicalein inhibiting the invasion and migration of human breast cancer cells. Zhong Guo Yao Li Xue Tong Bao, 26(6): 745-750.


Zhang XW, Li WF, Li WW, et al. (2011a). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharm Biol, 49(3): 256–261. doi:10.3109/13880209.2010.501803.


Ye F, Xui L, Yi J, Zhang, W, Zhang DY. (2002). Anti-cancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 8(5):567-72.


Zhang K, Lu J, Mori T, et al. (2011b). Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway.[J]. Cardiovascular Research, 89(2):426-435.


Zhu Gq, Tang Lj, Wang L, Su Jj, et al. (2008). Study on Baicalin Induced Apoptosis of Human Breast Cancer Cell Line MDA-MB-231. An Hui Zhong Yi Xue Yuan Xue Bao, 27(2):20-23

Kumagai T, et al. (2007) Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leukemia Research 31 (2007) 523-530

Oplopanax horridus

Cancer: Ovarian

Action: Chemotherapy sensitising, anti-proliferation, apoptosis inducing

To search for more effective treatment of ovarian cancer, Tai et al., (2010) investigated the in vitro anti-proliferation activities of Oplopanax horridus (Devil’s club/OH) root bark extracts, an important medicinal plant of North America, on cisplatin sensitive and resistant human ovarian cancer cell lines. Their data showed that water, 70% ethanol, 100% ethanol, and ethyl acetate extracts of OH inhibited the proliferation of human ovarian cancer cell lines A2780, A2780CP70, OVCAR3, and OVCAR10 in vitro. The respective 50% inhibition (IC(50)) was estimated at 1/256, 1/74, 1/69, 1/53; 1/4156, 1/1847, 1/1029, 1/4530; 1/25,753, 1/3310, 1/3462, 1/5049; and 1/29,916, 1/2912 1/3828, and 1/4232 dilutions. Some combinations of non-cytotoxic dilutions (<IC(50)) of 70% ethanol OH extract with cisplatin and paclitaxel enhanced its anti-proliferation IC(50) on A2780 and A2780CP70 cells. Cell cycle analysis demonstrated that the effect of OH extract on cell cycle was dependent on the concentration tested, blocking cells in the S and G2/M phases. At low concentrations it induced cell death by apoptosis, while at high concentrations, it kills cells by necrosis. Their data showed that OH extracts exhibited significant anti-proliferation effect against both cisplatin sensitive and resistant human ovarian cell lines. Further research might result in discovery of agent(s) that can potentially be useful as an adjunct therapy for ovarian cancer cells. It is one of the few North American medicinal herbs that have been tested for anti-ovarian cancer activities.

Reference

Tai J, Cheung S, Chan E, Hasman D. (2010) Inhibition of human ovarian cancer cell lines by devil’s club Oplopanax horridus. J Ethnopharmacol. 2010 Feb 3;127(2):478-85. doi: 10.1016/j.jep.2009.10.010.