Category Archives: Caesalpinia coriaria

Corilagin

Cancer: Ovarian, hepatocellular carcinoma

Action: Radio-protective

Corilagin is isolated from Phyllanthus niruri (L.), Punica granatum (Linnaeus), Caesalpinia coriaria [(Jacq.) Willd.], Alchornea glandulosa (Poepp. & Endl.).

Ovarian Cancer

Phyllanthus niruri L. is a well-known hepato-protective and anti-viral medicinal herb. Recently, Jia et al. (2013) identified Corilagin as a major active component with anti-tumor activity in this herbal medicine. Corilagin is a member of the tannin family that has been discovered in many medicinal plants and has been used as an anti-inflammatory agent.

The ovarian cancer cell lines SKOv3ip, Hey and HO-8910PM were treated with Corilagin. Corilagin inhibited the growth of the ovarian cancer cell lines SKOv3ip and Hey, with IC50 values of less than 30 muM, while displaying low toxicity against normal ovarian surface epithelium cells, with IC50 values of approximately 160 muM. Corilagin induced cell-cycle arrest at the G2/M stage and enhanced apoptosis in ovarian cancer cells.

In contrast, a reduction of TGF-beta secretion was not observed in cancer cells treated with the cytotoxic drug Paclitaxel, suggesting that Corilagin specifically targets TGF-beta secretion. Corilagin blocked the activation of both the canonical Smad and non-canonical ERK/AKT pathways.

Corilagin extracted from Phyllanthus niruri L. acts as a natural., effective therapeutic agent against the growth of ovarian cancer cells via targeted action against the TGF-beta/AKT/ERK/Smad signaling pathways (Jia et al., 2013).

Hepatocellular Carcinoma

Corilagin is considerably effective to retard the in vivo growth of xenografted Hep3B hepatocellular carcinoma. A significant inhibition of tumor growth was observed when treated mice are compared with control groups. Furthermore, analysis of enzymes markers of liver function, including alanine aminotransferase and asparate aminotransferase, suggested that current therapeutic dosage of corilagin did not exert adverse effect on liver (Hau et al., 2010).

Radio-protective

Corilagin, a member of the tannin family, inhibits NF-kappaB pathway activation. In the present study, Dong et al. (2010) examined the inhibitory effects of corilagin on radiation-induced microglia activation. Their data suggest that corilagin inhibits radiation-induced microglia activation via suppression of the NF-kappaB pathway and the compound is a potential treatment for radiation-induced brain injury (RIBI) (Dong et al., 2010).

References

Dong XR, Luo M, Fan L, et al. (2010). Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med, 25(4):531-6.


Hau DK, Zhu GY, Leung AK, et al. (2010) In vivo anti-tumor activity of corilagin on Hep3B hepatocellular carcinoma. Phytomedicine, 18(1):11-5. doi: 10.1016/j.phymed.2010.09.001.


Jia LQ, Jin HY, Zhou JY, et al. (2013). A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complementary and Alternative Medicine, 13:33. doi:10.1186/1472-6882-13-33