Category Archives: Chemoprevention

Wedelia Chinensis Extract: indole-3-carboxylaldehyde, wedelolactone, luteolin, apigenin

Cancer: Prostate

Action: Anti-inflammatory

Wedelia chinensis [(Osbeck) Merr.], also known as Chinese Wedelia, is widespread throughout China, India, Indochina, Indonesia, Philippines, Japan and Malaysia.

Prostate Cancer; AR Negative

The in vivo efficacy and mechanisms of action of oral administration of a standardized extract of W. chinensis were analyzed in animals bearing a subcutaneous or orthotopic prostate cancer xenograft. Exposure of prostate cancer cells to W. chinensis extract induced apoptosis selectively in androgen receptor (AR)-positive prostate cancer cells and shifted the proportion in each phase of cell-cycle toward G(2)-M phase in AR-negative prostate cancer cells. Oral herbal extract (4 or 40 mg/kg/d for 24–28 days) attenuated the growth of prostate tumors in nude mice implanted at both subcutaneous (31% and 44%, respectively) and orthotopic (49% and 49%, respectively) sites. The tumor suppression effects were associated with increased apoptosis and lower proliferation in tumor cells as well as reduced tumor angiogenesis. The anti-tumor effect of W. chinensis extract was correlated with accumulation of the principal active compounds, wedelolactone, luteolin, and apigenin, in vivo.

Anti-cancer action of W. chinensis extract was due to three active compounds that inhibit the AR signaling pathway. Oral administration of W. chinensis extract impeded prostate cancer tumorigenesis. Future studies of W. chinensis for chemoprevention or complementary medicine against prostate cancer in humans are thus warranted (Tsai et al., 2009).

Prostate Cancer; AR Positive

Reduction of inflammation is an important anti-cancer therapeutic opportunity, and chronic inflammation can augment tumor development in various types of cancers, including prostate cancer (PCa). Four anti-proliferative phytocompounds in Wedelia chinensis have been identified through their ability to modulate the androgen receptor (AR) activation of transcription from prostate-specific antigen promoter in PCa cells. The 50% inhibition concentration values of indole-3-carboxylaldehyde, wedelolactone, luteolin and apigenin, were 34.9, 0.2, 2.4 and 9.8 muM, respectively.

A formula that combined the phytocompounds in the same proportions as in the herbal extract decreased the dosage of each compound required to achieve maximal AR inhibition. In correlation with the AR suppression effect, these active compounds specifically inhibited the growth of AR-dependent PCa cells and as a combination formula they also synergistically suppressed growth in AR-dependent PCa cells. Our study has identified synergistic effects of active compounds in W. chinensis and demonstrated their potential in PCa prevention and therapy (Lin et al., 2007).

References

Lin FM, Chen LR, Lin EH, et al. (2007). Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis, 28(12):2521-9.


Tsai CH, Lin FM, Yang YC, et al. (2009). Herbal extract of Wedelia chinensis attenuates androgen receptor activity and orthotopic growth of prostate cancer in nude mice. Clin Cancer Res, 15(17):5435-44.

Ursolic acid

Cancer:
Glioblastoma, Lung, breast, colorectal, gastric, esophageal squamous carcinoma, prostate

Action:

Mitochondrial function, reactive oxygen species (ROS) generation.

Cytostatic, anti-inflammatory, chemo-prevention, COX-2 inhibitor, suppresses NF- κ B, induces IL-1 β , induces apoptosis

Ursolic acid, a pentacyclic triterpene acid found ubiquitously in the plant kingdom, including Rosmarinus officinalis (L.), Salvia officinalis (L.), Prunella vulgaris (L.), Psychotria serpens (L.) and Hyptis capitata (Jacq.). It has been shown to suppress the expression of several genes associated with tumorigenesis resulting in anti-inflammatory, anti-tumorigenic and chemo-sensitizing effects (Liu, 1995).

Glioblastoma Cancer

Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human GBM DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate.

Ursolic acid effectively reversed TMZ resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptotic and autophagic-related signaling networks. The necrotic death was characterized by annexin V/PI double-positive detection and release of HMGB1 and LDH. These ursolic acid-elicited responses were accompanied by ROS generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. MPT is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by CypD, and ATP decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and -involved key regulators.

The study by Lu et al., (2014) is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.

Gastric Cancer

Ursolic acid (UA) inhibits growth of BGC-803 cells in vitro in dose-dependent and time-dependent manner. Treated with UA in vivo, tumor cells can be arrested to G0/G1 stage. The apoptotic rate was significantly increased in tumor cells treated with UA both in vitro and in vivo. These results indicated that UA inhibits growth of tumor cells both in vitro and in vivo by decreasing proliferation of cells and inducing apoptosis (Wang et al., 2011).

Esophageal Squamous Carcinoma

The anti-neoplastic effects of combinations of anti-cancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy- 4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2 cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell-cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells.

These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer (Yamai et al., 2009).

COX-2 Inhibitor

Subbaramaiah et al. (2000) studied the effects of ursolic acid, a chemo-preventive agent, on the expression of cyclooxygenase-2 (COX-2). Treatment with ursolic acid suppressed phorbol 12-myristate 13-acetate (PMA)-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Ursolic acid also suppressed the induction of COX-2 mRNA by PMA. Increased activator protein-1 activity and the binding of c-Jun to the cyclic AMP response element of the COX-2 promoter, effects were blocked by ursolic acid (Subbaramaiah et al., 2000).

Lung Cancer, Suppresses NF- κB

In terms of general anti-cancer mechanism, ursolic acid has also been found to suppress NF-κB activation induced by various carcinogens through the inhibition of the DNA binding of NF-κB. Ursolic acid also inhibits IκBα kinase and p65 phosphorylation (Shishodia et al., 2003). In particular, ursolic acid has been found to block cell-cycle progression and trigger apoptosis in lung cancer and may hence act as a chemoprevention agent for lung cancer (Hsu et al., 2004).

Breast Cancer

Ursolic acid is a potent inhibitor of MCF-7 cell proliferation. This triterpene exhibits both cytostatic and cytotoxic activity. It exerts an early cytostatic effect at G1 followed by cell death. Results suggest that alterations in cell-cycle phase redistribution of MCF-7 human breast cancer, by ursolic acid, may significantly influence MTT (colorimetric assays) reduction to formazan (Es-Saady et al., 1996).

Induces IL-1 β

Interleukin (IL)-1beta is a pro-inflammatory cytokine responsible for the onset of a broad range of diseases, such as inflammatory bowel disease and rheumatoid arthritis. It has recently been found that aggregated ursolic acid (UA), a triterpene carboxylic acid, is recognized by CD36 for generating reactive oxygen species (ROS) via NADPH oxidase (NOX) activation, thereby releasing IL-1beta protein from murine peritoneal macrophages (pMphi) in female ICR mice. In the present study, Ikeda et al. (2008) investigated the ability of UA to induce IL-1beta production in pMphi from 4 different strains of female mice as well as an established macrophage line. In addition, the different susceptibilities to UA-induced IL-1beta release were suggested to be correlated with the amount of superoxide anion (O2-) generated from the 5 different types of Mphi.

Notably, intracellular, but not extracellular, O2- generation was indicated to play a major role in UA-induced IL-1beta release. Together, these results indicate that the UA-induced IL-1beta release was strain-dependent, and the expression status of CD36 and gp91phox is strongly associated with inducibility.

Induces Apoptosis: Breast Cancer, Prostate Cancer

Ursolic acid (UA) induced apoptosis and modulated glucocorticoid receptor (GR) and Activator Protein-1 (AP-1) in MCF-7 breast cancer cells. UA is a GR modulator and may be considered as a potential anti-cancer agent in breast cancer (Kassi et al., 2009).

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells (Kwon et al., 2010). In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition (Zhang et al., 2010). A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression (Yeh et al., 2010).

Ursolic acid additionally stimulates the release of cytochrome C in HL-60 cells and breast cancer MCF-7 cells. The activation of caspase-3 in a cytochrome C-dependent manner induces apoptosis via the mitochondrial pathway (Qian et al., 2011).

Colorectal Cancer

Ursolic acid (UA) has strong anti-proliferative and apoptotic effects on human colon cancer HT-29 cells. UA dose-dependently decreased cell proliferation and induced apoptosis, accompanied by activation of caspase 3, 8 and 9. The effects may be mediated by alkaline sphingomyelinase activation (Andersson et al., 2003).

Ursolic acid (UA), using the colorectal cancer (CRC) mouse xenograft model and the HT-29 human colon carcinoma cell line, was evaluated for its efficacy against tumor growth in vivo and in vitro, and its molecular mechanisms were investigated. It was found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation.

These data demonstrate that UA possesses a broad range of anti-cancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment (Lin et al., 2013).

Action: Anti-tumor, inhibits tumor cell migration and invasion

Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars’ attention. This review explained anti-tumor actions of UA, including (1) the protection of cells’ DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells.

Inhibition of Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Pathway
Activation of mitogen-activated protein kinase (MAPK) allows cell excessive proliferation involved in the carcinogenic process (Park et al., 1999). Subfamilies of MAPK, metastasis.(24) Otherwise, UA suppresses the activation of NF-κB and down-regulation of the MMP-9 protein, which in turn contributes to its inhibitory effects on IL-1β or tumor necrosis factor α (TNF-α)-induced C6 glioma cell invasion (Huang et al., 2009).

U A suppresses inter cellular adhesion molecules-1 (ICAM-1) expression of non-small cell lung cancer (NSCLC) H3255, A549, Calu-6 cells, and significantly inhibits fibronectin expression in a concentration-dependent way. UA significantly suppresses the expression of MMP-9 and MMP-2 and inhibits protein kinase C activity in test cell lines, at the same time, UA reduces cell invasion in a concentration-dependent manner (Huang et al., 2011).

Cancer: Multiple myeloma

Action: Anti-inflammatory, down-regulates STAT3

When dealing with the multiple myeloma, by the way of activating the proto-oncogene-mediated c-Src, JAK1, JAK2, and ERKs, ursolic acid (UA) can not only inhibit the expression of IL-6-induced STAT3 but also downregulates the STAT3 by regulating gene products, such as cyclin D1, Bcl-2, Bcl-xL, surviving, Mcl-1 and VEGF. Above all, UA can inhibit the proliferation of multiple myeloma cells and induce apoptosis, to arrest cells at G1 phase and G0 phase of cell cycle (Pathak et al., 2007).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Cancer: Colorectal

Wong et al., have previously reported Signal Transducer and Activator of Transcription 3 (STAT3) to be constitutively activated in aldehyde dehydrogenase (ALDH)(+)/cluster of differentiation-133 (CD133)(+) colon cancer-initiating cells. In the present study they tested the efficacy of inhibiting STAT3 signaling in human colon cancer-initiating cells by ursolic acid (UA), which exists widely in fruits and herbs.

ALDH(+)/CD133(+) colon cancer-initiating cells. UA also reduced cell viability and inhibited tumor sphere formation of colon cancer-initiating cells, more potently than two other natural compounds, resveratrol and capsaicin. UA also inhibited the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells. Furthermore, daily administration of UA suppressed HCT116 tumor growth in mice in vivo.

Their results suggest STAT3 to be a target for colon cancer prevention. UA, a dietary agent, might offer an effective approach for colorectal carcinoma prevention by inhibiting persistently activated STAT3 in cancer stem cells.

References

 

Andersson D, Liu JJ, Nilsson A, Duan RD. (2003). Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anti-cancer Research, 23(4):3317-22.

 

Es-Saady D, Simon A, Jayat-Vignoles C, Chulia AJ, Delage C. (1996). MCF-7 cell-cycle arrested at G1 through ursolic acid, and increased reduction of tetrazolium salts. Anti-cancer Research, 16(1):481-6.

 

Hsu YL, Kuo PL, Lin CC. (2004). Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small-cell lung cancer A549 cells. Life Sciences, 75(19), 2303-2316.

 

Ikeda Y, Murakami A, Ohigashi H. (2008). Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci, 83(1-2):43-9. doi: 10.1016/j.lfs.2008.05.001.

 

Kassi E, Sourlingas TG, Spiliotaki M, et al. (2009). Ursolic Acid Triggers Apoptosis and Bcl-2 Down-regulation in MCF-7 Breast Cancer Cells. Cancer Investigation, 27(7):723-733. doi:10.1080/07357900802672712.

 

Kwon SH, Park HY, Kim JY, et al. (2010). Apoptotic action of ursolic acid isolated from Corni fructus in RC-58T/h/SA#4 primary human prostate cancer cells. Bioorg Med Chem Lett, 20:6435–6438. doi: 10.1016/j.bmcl.2010.09.073.

 

Lin J, Chen Y, Wei L, et al. (2013). Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. Int J Oncol, (4):1235-43. doi: 10.3892/ijo.2013.2040.

 

Liu J. (1995). Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57-68.

 

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. (2003). Ursolic Acid Inhibits Nuclear Factor-OE ∫ B Activation Induced by Carcinogenic Agents through Suppression of IOE ∫ BOE± Kinase and p65 Phosphorylation. Cancer Research, 63(15), 4375-4383.

 

Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. (2000). Ursolic Acid Inhibits Cyclooxygenase-2 Transcription in Human Mammary Epithelial Cells. Cancer Res, 60:2399

 

Qian J, Li X, Guo GY, et al. (2011). Potent anti-tumor activity of emodin on CNE cells in vitro through apoptosis. J Zhejiang Sci-Tech Univ (Chin), 42:756-759

 

Wang X, Zhang F, Yang L, et al. (2011). Ursolic Acid Inhibits Proliferation and Induces Apoptosis of Cancer Cells In Vitro and In Vivo. J Biomed Biotechnol, 2011:419343. doi: 10.1155/2011/419343.

 

Yamai H, et al. (2009). Triterpenes augment the inhibitory effects of anti-cancer drugs on growth of human esophageal carcinoma cells in vitro and suppress experimental metastasis in vivo. Int J Cancer, 125(4):952-60. doi: 10.1002/ijc.24433.

 

Yeh CT, Wu CH, Yen GC. (2010). Ursolic acid, a naturally occurring triterpenoid, suppresses migration and invasion of human breast cancer cells by modulating c-Jun N-terminal kinase, Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res, 54:1285–1295. doi: 10.1002/mnfr.200900414.

 

Zhang Y, Kong C, Zeng Y, et al. (2010). Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog, 49:374–385.

 

Zhang LL, Wu BN, Lin Y et al. (2014) Research Progress of Ursolic Acid’s Anti-Tumor Actions. Chin J Integr Med 2014 Jan;20(1):72-79

 

Reference

 

Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009;48:517-531

 

Huang CY, Lin CY, Tsai CW, Yin MC. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol In Vitro 2011;25:1274-1280.

 

Park KS, Kim NG, Kim JJ, Kim H, Ahn YH, Choi KY. Differential regulation of MAP kinase cascade in human colorectal tumorigenesis. Br J Cancer 1999;81:1116-1121.

 

 

Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 2007;5:943-595

 

 

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

 

 

Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. (2013) Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84.

 
Lu C-C, Huang B-R, Liao P-J, Yen G-C. Ursolic acid triggers a non-programmed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Molecular Nutrition & Food Research. 2014 DOI: 10.1002/mnfr.201400051

 

 

 

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Glyceolins

Cancer: Prostate, breast, ovarian

Action: Anti-estrogenic

Glyceollins are soy-derived phytoalexins isolated from activated soy ( Glycine max [(L.) Merr.] that have been proposed to be candidates for cancer-preventive compounds.

Prostate cancer

It has been found that the glyceollins inhibited prostate cancer cell LNCaP growth similar to that of the soy isoflavone genistein. The growth-inhibitory effects of the glyceollins appeared to be due to an inhibition of G1/S progression and correlated with an up-regulation of cyclin-dependent kinase inhibitor 1 A and B mRNA and protein levels. By contrast, genistein only up-regulates cyclin-dependent kinase inhibitor 1A.

In addition, glyceollin treatments led to down-regulated mRNA levels for androgen responsive genes. In contrast to genistein, this effect of glyceollins on androgen responsive genes appeared to be mediated through modulation of an estrogen- but not androgen-mediated pathway.

Hence, the glyceollins exerted multiple effects on LNCaP cells that may be considered cancer-preventive and the mechanisms of action appeared to be different from other soy-derived phytochemicals (Payton-Stewart et al., 2009).

Anti-estrogenic Effects; Breast Cancer, Ovarian Cancer

The phytoalexin compounds glyceollins I, II, and III have been identified to exhibit marked anti-estrogenic effects on estrogen receptor function and estrogen-dependent tumor growth in vivo. The interactions among the induced soy phytoalexins glyceollins I, II, and III on the growth of estrogen-dependent MCF-7 breast cancer and BG-1 ovarian cancer cells were studied. Four treatment groups for each cell line were used: vehicle control, 20 mg/kg/mouse/d glyceollin mixture injection, 0.72 mg estradiol (E2) implant, and E2 implant + 20 mg/kg/mouse/d glyceollin injection.

Treatment with glyceollin suppressed E2-stimulated tumor growth of MCF-7 cells (-53.4%) and BG-1 cells (-73.1%) in ovariectomized athymic mice. These tumor-inhibiting effects corresponded with significantly lower E2-induced progesterone receptor expression in the tumors. In contrast to tamoxifen, the glyceollins had no estrogen-agonist effects on uterine morphology and partially antagonized the uterotropic effects of estrogen. These findings identify glyceollins as anti-estrogenic agents that may be useful in the prevention or treatment of breast and ovarian carcinoma (Salvo et al., 2006).

Anti-estrogenic Effects

The soybean plant under stress produces a mixture of glyceollins I, II, and III that bind to the estrogen receptor (ER) and inhibit estrogen-induced tumor progression. In further in vitro studies, the glyceollin mixture exhibits potential anti-estrogenic, therapeutic activity preventing estrogen-stimulated tumorigenesis and displaying a differential pattern of gene expression from tamoxifen.

Glyceollin I was identified as the active anti-estrogenic component of the mixture. Ligand-receptor modeling (docking) of the isomers within the ERα ligand binding cavity demonstrated a unique type II anti-estrogenic confirmation adopted by glyceollin I, but not isomers II and III. Glyceollin I treatment in 17β- estradiol-stimulated MCF-7 breast cancer cells and BG-1 ovarian cancer cells resulted in a novel inhibition of ER-mediated gene expression and cell proliferation/ survival.

Glyceollin I may represent an important component of a phytoalexin-enriched food (activated) diet in terms of chemoprevention as well as a novel therapeutic (Tilghman et al., 2010).

References

Payton-Stewart F, Schoene NW, Kim YS, et al. (2009). Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Molecular Carcinogenesis, 48(9):862–71. doi: 10.1002/mc.20532.


Salvo VA, BouŽ SM, Fonseca JP, et al. (2006). Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res, 12(23):7159-64. doi: 10.1158/1078-0432.CCR-06-1426.


Tilghman SL, BouŽ SM, Burow ME. (2010). Glyceollins, a novel class of antiestrogenic phytoalexins. Molecular and Cellular Pharmacology, 2(4):155-60. doi: 10.4255/mcpharmacol.10.21

Geniposide –Penta-acetyl Geniposide (Ac)5GP

Cancers:
Glioma, melanoma, liver, hepatocarcinogenesis, hepatoma, prostate, cervical

Action: Cytostatic, induces apoptosis

Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia fructus , exhibits anti-tumor effect.

Hepatocarcinogenesis, Glioma

It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis, induced by aflatoxin B1 (AFB1), by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells, especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest.

Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. It arrested the cell-cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F.

Data from in vivo experiments indicated that (Ac)5GP is not harmful to the liver, heart and kidney. (Ac)5GP is strongly suggested to be an anti-tumor agent for development in the future (Peng, Huang, & Wang, 2005).

Induces Apoptosis

Previous studies have demonstrated the apoptotic cascades protein kinase C (PKC) delta/c-Jun NH2-terminal kinase (JNK)/Fas/caspases induced by penta-acetyl geniposide [(Ac)5GP]. However, the upstream signals mediating PKCdelta activation have not yet been clarified. Ceramide, mainly generated from the degradation of sphingomyelin, was hypothesized upstream above PKCdelta in (Ac)5GP-transduced apoptosis.

After investigation, (Ac)5GP was shown to activate neutral sphingomyelinase (N-SMase) immediately, with its maximum at 15 min. The NGF and p75 enhanced by (Ac)5GP was inhibited when combined with GW4869, the N-SMase inhibitor, indicating NGF/p75 as the downstream signals of N-SMase/ceramide. To evaluate whether N-SMase is involved in (Ac)5GP-transduced apoptotic pathway, cells were treated with (Ac)5GP, alone or combined with GW4869. It was demonstrated that N-SMase inhibition blocked FasL expression and caspase 3 activation. Similarly, p75 antagonist peptide attenuated the FasL/caspase 3 expression. It indicated that N-SMase activation is pivotal in (Ac)5GP-mediated apoptosis.

SMase and NGF/p75 are suggested to mediate upstream above PKCdelta, thus transducing FasL/caspase cascades in (Ac)5GP-induced apoptosis (Peng, Huang, Hsu, & Wang, 2006).

Glioma

Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepato-protective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. The anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line C6 glioma cells were investigated.

Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun.

Findings suggest (Ac)(5)GP is highly likely to be an inhibiting cancer migration agent to be further developed in the future (Huang et al., 2009).

Melanoma

A new iridoid glycoside, 10-O-(4'-O-methylsuccinoyl) geniposide, and two new pyronane glycosides, jasminosides Q and R, along with nine known iridoid glycosides, and two known pyronane glycosides, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae).

The structures of new compounds were elucidated on the basis of extensive spectroscopic analyzes and comparison with literature. Upon evaluation of these compounds on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 µM, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 µM) (Akisha et al., 2012).

Hepatoma, Prostate Cancer, Cervical Cancer

Genipin is a metabolite of geniposide isolated from an extract of Gardenia fructus. Some observations suggested that genipin could induce cell apoptosis in hepatoma cells and PC3 human prostate cancer cells. Genipin could remarkably induce cytotoxicity in HeLa cells and inhibit its proliferation. Induction of the apoptosis by genipin was confirmed by analysis of DNA fragmentation and induction of sub-G(1) peak through flow cytometry.

The results also showed that genipin-treated HeLa cells cycle was arrested at G(1) phase. Western blot analysis revealed that the phosphorylated c-Jun NH(2)-terminal kinase (JNK) protein, phospho-Jun protein, p53 protein and bax protein significantly increased in a dose-dependent manner after treatment of genipin for 24 hours; the activation of JNK may result in the increase of the p53 protein level; the increase of the p53 protein led to the accumulation of bax protein; and bax protein further induced cell apoptotic death eventually (Cao et al., 2010).

References

Akihisa T, Watanabe K, Yamamoto A, et al. (2012). Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chemistry & Biodiversity, 9(8), 1490-9. doi: 10.1002/cbdv.201200030.


Cao H, Feng Q, Xu W, et al. (2010). Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol Pharm Bull, 33(8):1343-8.


Huang HP, Shih YW, Wu CH, et al. (2009). Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways. Chemico-biological Interactions, 181(1), 8-14. doi: 10.1016/j.cbi.2009.05.009.


Peng CH, Huang CN, Hsu SP, Wang CJ. (2006). Penta-acetyl geniposide induce apoptosis in C6 glioma cells by modulating the activation of neutral sphingomyelinase-induced p75 nerve growth factor receptor and protein kinase Cdelta pathway. Molecular Pharmacology, 70(3), 997-1004.


Peng CH, Huang CN, Wang CJ. (2005). The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Current Cancer Drug Targets, 5(4), 299-305.

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Chrysin

Cancer:
Lung cancer, breast cancer, leukemia, gastric, colon

Action: Anti-inflammatory, induces apoptosis, inhibits HIF-1 α, immunomodulatory

Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants (including Scutellaria baicalensis (Georgi), Passiflora caerulea (L.), Passiflora incarnate (L.))., honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbs cell-cycle progression. Chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21 (Waf1/Cip1) expression (Weng et al., 2005).

MDR; NSCLC

Chrysin is a major flavonoid in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. Novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in human non-small lung cancer have been demonstrated, and the protein kinase C pathway may play an important role in this process. It is thought that chrysin may act as a potential adjuvant therapy for drug-resistant non-small lung cancer, especially for those with AKR1C1/1C2 overexpression (Wang et al., 2007).

Gastric Cancer, Colon Cancer

Additionally, derivatives of chrysin have been shown to have strong activities against SGC-7901 human gastric cell line and HT-29 human colon cancer cell lines (Zheng et al., 2003).

Breast Cancer

While Chrysin is a potent breast cancer resistance protein inhibitor, it was found to have no significant effect on toptecan pharmacokinetics in rats (Zhang et al., 2005).

VEGF, HIF-1

Chrysin was found to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through AKT signaling. Inhibition of HIF-1α by chrysin resulted in abrogation of vascular endothelial growth factor expression (Fu et al., 2007).

Leukemia

Chrysin has been shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells (Khoo et al., 2010).

Immune

The chemo-preventive action of chrysin has been found to specifically inhibit the enzymatic activity of IDO-1 but not mRNA expression in human neuronal stem cells (hNSC), confirmed by cell-based assay and qRT-PCR. These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

References

Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Fu B, Xue J, Li Z, et al. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1 α through reducing hypoxia-inducible factor-1 α stability and inhibiting its protein synthesis. Mol Cancer Ther, 6:220. doi: 10.1158/1535-7163.MCT-06-0526


Khoo BY, Chua SL, Balaram P. (2010). Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci, 11(5), 2188-2199. doi:10.3390/ijms11052188


Wang HW, Lin CP, Chiu JH, et al. (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. International Journal of Cancer, 120(9), 2019-2027.


Weng MS, Ho YS, Lin JK. (2005). Chrysin induces G1 phase cell-cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol, 69(12):1815-27.


Zhang S, Wang X, Sagawa K, Morris ME. (2005). Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (,äì/,äì) mice. Drug Metabolism and Disposition, 33(3), 341-348.


Zheng X, Meng WD, Xu YY, Cao JG, & Qing FL. (2003). Synthesis and anti-cancer effect of chrysin derivatives. Bioorganic & Medicinal Chemistry Letters, 13(5), 881-884.

Berberine

Cancer:
Liver,leukemia, breast, prostate, epidermoid (squamous-cell carcinoma), cervical.,testicular, melanoma, lymphoma, hepatoma

Action: Radio-sensitizer, anti-inflammatory, cell-cycle arrest, angiogenesis, chemo-enhancing, anti-metastatic, anti-oxidative

Berberine is a major phytochemical component of the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. It has been implicated in the cytotoxic effects on multiple cancer cell lines.

Anti-inflammatory

Berberine is an isoquinoline alkaloid widely distributed in natural herbs, including Rhizoma Coptidis chinensis and Epimedium sagittatum (Sieb. et Zucc.), a widely prescribed Chinese herb (Chen et al., 2008). It has a broad range of bioactivities, such as anti-inflammatory, anti-bacterial., anti-diabetes, anti-ulcer, sedation, protection of myocardial ischemia-reperfusion injury, expansion of blood vessels, inhibition of platelet aggregation, hepato-protective, and neuroprotective effects (Lau et al., 2001; Yu et al., 2005; Kulkarni & Dhir, 2010; Han et al., 2011; Ji, 2011). Berberine has been used in the treatment of diarrhea, neurasthenia, arrhythmia, diabetes, and so forth (Ji, 2011).

Angiogenesis, Chemo-enhancing

Inhibition of tumor invasion and metastasis is an important aspect of berberine's anti-cancer activities (Tang et al., 2009; Ho et al., 2009). A few studies have reported berberine's inhibition of tumor angiogenesis (Jie et al., 2011; Hamsa & Kuttan, 2012). In addition, its combination with chemotherapeutic drugs or irradiation could enhance the therapeutic effects (Youn et al., 2008; Hur et al., 2009).

Cell-cycle Arrest

The potential molecular targets and mechanisms of berberine are rather complicated. Berberine interacts with DNA or RNA to form a berberine-DNA or a berberine-RNA complex, respectively (Islam & Kumar. 2009; Li et al., 2012). Berberine is also identified as an inhibitor of several enzymes, such as N-acetyltransferase (NAT), cyclooxygenase-2 (COX-2), and telomerase (Sun et al., 2009).

Other mechanisms of berberine are mainly related to its effect on cell-cycle arrest and apoptosis, including regulation of cyclin-dependent kinase (CDK) family of proteins (Sun et al., 2009; Mantena, Sharma, & Katiyar, 2006) and expression regulation of B-cell lymphoma 2 (Bcl-2) family of proteins (such as Bax, Bcl-2, and Bcl-xL) (Sun et al., 2009), and caspases (Eom et al., 2010; Mantena, Sharma, & Katiyar, 2006). Furthermore, berberine inhibits the activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and induces the formation of intracellular reactive oxygen species (ROS) in cancer cells (Sun et al., 2009; Eom et al., 2010). Interestingly, these effects might be specific for cancer cells (Sun et al., 2009).

Several studies have shown that berberine has anti-cancer potential by interfering with the multiple aspects of tumorigenesis and tumor progression in both in vitro and in vivo experiments. These observations have been well summarized in recent reports (Sun et al., 2009; Tan et al., 2011). Berberine inhibits the proliferation of multiple cancer cell lines by inducing cell-cycle arrest at the G1 or G 2 / M phases and by apoptosis (Sun et al., 2009; Eom et al., 2010; Burgeiro et al., 2011). In addition, berberine induces endoplasmic reticulum stress (Chang et al., 1990; Eom et al., 2010) and autophagy (Wang et al., 2010) in cancer cells.

However, compared with clinically prescribed anti-cancer drugs, the cytotoxic potency of berberine is much lower, with an IC50 generally at 10 µM to 100 µM depending on the cell type and treatment duration in vitro (Sun et al., 2009). Besides, berberine also induces morphologic differentiation in human teratocarcinoma (testes) cells (Chang et al., 1990).

Anti-metastatic

The effect of berberine on invasion, migration, metastasis, and angiogenesis is mediated through the inhibition of focal adhesion kinase (FAK), NF-κB, urokinase-type plasminogen-activator (u-PA), matrix metalloproteinase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) (Ho et al., 2009; Hamsa & Kuttan. (2011); reduction of Rho kinase-mediated Ezrin phosphorylation (Tang et al., 2009); reduction of the expression of COX-2, prostaglandin E, and prostaglandin E receptors (Singh et al., 2011); down-regulation of hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), pro-inflammatory mediators (Jie et al., 2011; Hamsa & Kuttan, 2012).

Hepatoma, Leukaemia

The cytotoxic effects of Coptis chinensis extracts and their major constituents on hepatoma and leukaemia cells in vitro have been investigated. Four human liver cancer cell lines, namely HepG2, Hep3B, SK-Hep1 and PLC/PRF/5, and four leukaemia cell lines, namely K562, U937, P3H1 and Raji, were investigated. C. chinensis exhibited strong activity against SK-Hep1 (IC50 = 7 microg/mL) and Raji (IC50 = 4 microg/mL) cell lines. Interestingly, the two major compounds of C. chinensis, berberine and coptisine, showed a strong inhibition on the proliferation of both hepatoma and leukaemia cell lines. These results suggest that the C. chinensis extract and its major constituents berberine and coptisine possess active anti-hepatoma and anti-leukaemia activities (Lin, 2004).

Leukemia

The steady-state level of nucleophosmin/B23 mRNA decreased during berberine-induced (25 g/ml, 24 to 96 hours) apoptosis of human leukemia HL-60 cells. A decline in telomerase activity was also observed in HL-60 cells treated with berberine. A stable clone of nucleophosmin/B23 over-expressed in HL-60 cells was selected and found to be less responsive to berberine-induced apoptosis. About 35% to 63% of control vector–transfected cells (pCR3) exhibited morphological characteristics of apoptosis, while about 8% to 45% of nucleophosmin/B23-over-expressed cells (pCR3-B23) became apoptotic after incubation with 15 g/ml berberine for 48 to 96 hours.

These results indicate that berberine-induced apoptosis is associated with the down-regulation of nucleophosmin/B23 and telomerase activity. Nucleophosmin/B23 may play an important role in the control of the cellular response to apoptosis induction (Hsing, 1999).

Prostate Cancer

In vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24–72 hours) manner. Berberine significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential., and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase.

The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy (Mantena, 2006).

In another study, the treatment of human prostate cancer cells (PC-3) with berberine-induced dose-dependent apoptosis; however, this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential., release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins.

Berberine-induced apoptosis was blocked in the presence of the anti-oxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. Taken together, these results suggest that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer (Meeran, 2008).

Breast Cancer

DNA microarray technology has been used to understand the molecular mechanism underlying the anti-cancer effect of berberine carcinogenesis in two human breast cancer cell lines, the ER-positive MCF-7 and ER-negative MDA-MB-231 cells; specifically, whether it affects the expression of cancer-related genes. Treatment of the cancer cells with berberine markedly inhibited their proliferation in a dose- and time-dependent manner. The growth-inhibitory effect was much more profound in MCF-7 cell line than that in MDA-MB-231 cells.

IFN-β is among the most important anti-cancer cytokines, and the up-regulation of this gene by berberine is, at least in part, responsible for its anti-proliferative effect. The results of this study implicate berberine as a promising extract for chemoprevention and chemotherapy of certain cancers (Kang, 2005).

Breast Cancer Metastasis

Berberine also inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance.

The anoikis-resistant cells have a reduced growth rate and are more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell-cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells was compared to untreated control cells. These results reveal that berberine can efficiently inhibit growth by inducing cell-cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis (Kim, 2010).

Melanoma

Berberine inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. The effects and associated molecular mechanism of berberine on human melanoma cancer cell migration using melanoma cell lines A375 and Hs294 were probed in an in vitro cell migration assay, indicating that over- expression of cyclo-oxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells.

Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-kB), an up- stream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-kB, inhibited cell migration. Together, these results indicate that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors (Sing, 2011).

Cell-cycle Arrest, Squamous-cell Carcinoma

The in vitro treatment of human epidermoid carcinoma A431 cells with berberine decreases cell viability and induces cell death in a dose (5-75 microM)- and time (12–72 hours)-dependent manner, which was associated with an increase in G(1) arrest. G(0)/G(1) phase of the cell-cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin kinase inhibitors (Cdki) and cyclins.

Pre-treatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway.

Together, these results indicate berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 (squamous-cell) cells in vitro; further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers (Mantena, 2006).

Cervical Cancer, Radio-sensitizer

Cervical cancer remains one of the major killers amongst women worldwide. In India, a cisplatin based chemo/radiotherapy regimen is used for the treatment of advanced cervical cancer. Evidence shows that most of the chemotherapeutic drugs used in current clinical practice are radio-sensitizers. Natural products open a new avenue for treatment of cancer, as they are generally tolerated at high doses. Animal studies have confirmed the anti-tumorigenic activity of natural products, such as curcumin and berberine.

Berberine is a natural chemo-preventive agent, extracted from Berberis aristata, which has been shown to suppress and retard carcinogenesis by inhibiting inflammation.

The combined therapy of cisplatin/berberine and radiotherapy produced up-regulation of pro-apoptotic proteins Bax and p73, while causing down regulation of the anti-apoptotic proteins Bcl-xL, COX-2, cyclin D1. This additionally was accompanied by increased activity of caspase-9 and caspase-3, and reduction in telomerase activity. Results demonstrated that the treatment combination of berberine/cisplatin had increased induction of apoptosis relative to cisplatin alone (Komal., Singh, & Deshwal., 2013).

Anti-oxidative; Breast, Liver and Colon Cancer

The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation (lipid peroxidation), diphenyle–alpha-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and alpha-gulcosidase activities were spectrophotometrically determined.

Barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent anti-oxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that is associated with GPx and SOD hyperactivation. Both berberine chloride and barberry ethanolic extract were shown to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hours up to 72 hours and the inhibitory effect increased with time in a dose-dependent manner.

This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, for suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. As well, berberis vulgaris ethanolic extract is a safe non-toxic extract as it does not inhibit the growth of PBMC that can induce cancer cell death (Abeer et al., 2013).

Source:

Alkaloids Isolated from Natural Herbs as the Anti-cancer Agents. Evidence-Based Complementary and Alternative Medicine. Volume 2012 (2012) http://dx.doi.org/10.1155/2012/485042

References

Burgeiro A, Gajate C, Dakir EH, et al. (2011). Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 22(6):507–518.


Chang KSS, Gao C, Wang LC. (1990). Berberine-induced morphologic differentiation and down-regulation of c-Ki-ras2 protooncogene expression in human teratocarcinoma cells. Cancer Letters, 55(2):103–108.


Chen J, ZHao H, Wang X, et al. (2008). Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 29(10):2135–2147.


Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.


El-Wahab AEA, Ghareeb DA, et al. (2013). In vitro biological assessment of berberis vulgaris and its active constituent, berberine: anti-oxidants, anti-acetylcholinesterase, anti-diabetic and anti-cancer effects. BMC Complementary and Alternative Medicine, 13:218 doi:10.1186/1472-6882-13-218


Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.


Hamsa TP & Kuttan G. (2012). Anti-angiogenic activity of berberine is mediated through the down-regulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. Drug and Chemical Toxicology, 35(1):57–70.


Han J, Lin H, Huang W. (2011). Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 17(7):RA164–RA167.


Ho YT, Yang JS, Li TC, et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Letters, 279(2):155–162.


Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. (2009). The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. Journal of Cellular Biochemistry, 107(5):955–964.


Islam MM & Kumar GS. (2009). RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA and Cell Biology, 28(12):637–650.


Ji JB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Cp., LTD.


Jie S, Li H, Tian Y, et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1):179–185.


Kang JX, Liu J, Wang J, He C, Li FP. (2005). The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by up-regulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 26(11):1934-1939. doi:10.1093/carcin/bgi154


Kim JB, Yu JH, Ko E, et al. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Phytomedicine, 17(6):436-40. doi: 10.1016/j.phymed.2009.08.012.


Komal Singh M, & Deshwal VK. (2013). Natural plant product berberine/cisplatin based radiotherapy for cervical cancer: The new and effective method to treat cervical cancer. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 2(5), 278-291.


Kulkarni SK & Dhir A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3):317–324.


Lau CW, X. Q. Yao XQ, et al. (2001). Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3):234–244.


Li, XL Hu XJ, Wang H, et al. (2012). Molecular spectroscopy evidence for berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3):873–880.


Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol, 31(1-2):65-9.


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine, a natural product, induces G1-phase cell-cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27(10):2018-27. doi: 10.1093/carcin/bgl043


Meeran SM, Katiyar S & Katiyar SK. (2008). Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 229(1):33-43. doi:10.1016/j.taap.2007.12.027


Singh T, Vaid M, Katiyar N, et al. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1):86–92.


Sun Y, Xun K, Wang Y, Chen X. (2009). A systematic review of the anti-cancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9):757–769.


Tan W, Lu J, Huang M, et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6(1):27.


Tang F, Wang D, Duan C, et al. (2009) Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567. Journal of Biological Chemistry, 284(40):27456–27466.


Wang N, Feng Y, Zhu M et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of Cellular Biochemistry, 111(6):1426–1436.


Wu HL, Hsu CY, Liu WH, Yung BYM. (1999). Berberine‐induced apoptosis of human leukemia HL‐60 cells is associated with down‐regulation of nucleophosmin/B23 and telomerase activity. International Journal of Cancer, 81(6):923–929.


Youn MJ, So HS, Cho HJ, et al. (2008). Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells. Biological and Pharmaceutical Bulletin, 31(5):789–795.


Yu HH, Kim KJ, Cha JD, et al. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Journal of Medicinal Food, 8(4):454–461.

Artemisinin

Cancer: Breast, leukemia, gastric

Action: Anti-cancer

Artemisinin is isolated from Artemisia annua (L.).

Anti-cancer

Artemisinin and related compounds (artemisinins) is a frontline treatment for malaria. According to experimental evidence from more than 400 literature studies, 558 key proteins were derived and the artemisinins-rewired protein interaction network was constructed. Topological properties were analyzed to show that the protein network was a scale-free biological system. Five key pathways including PI3K-Akt, T cell receptor, Toll-like receptor, TGF-beta and insulin signaling pathways were involved in artemisinins-mediated anti-cancer effects (Huang et al., 2013).

Breast Cancer

Artemisinin has previously been shown to have selective toxicity towards cancer cells in vitro. The potential of artemisinin to prevent breast cancer development has been investigated in rats treated with a single oral dose (50 mg/kg) of 7,12-dimethylbenz[a]anthracene (DMBA), known to induce multiple breast tumors. Starting from the day immediately after DMBA treatment, one group of rats was provided with a powdered rat-chow containing 0.02% artemisinin, whereas a control group was provided with plain powdered food. For 40 weeks, both groups of rats were monitored for breast tumors.

Oral artemisinin significantly delayed (P<.002) and in some animals prevented (57% of artemisinin-fed versus 96% of the controls developed tumors, P<.01) breast cancer development in the monitoring period. In addition, breast tumors in artemisinin-fed rats were significantly fewer (P<.002) and smaller in size (P<.05) when compared with controls. Since artemisinin is a relatively safe compound that causes no known side-effects even at high oral doses, the present data indicate that artemisinin may be a potent chemoprevention agent (Lai, 2006).

Leukemia

Artemisinin is also a well-known anti-leukemic agent. The effect of artemisinin on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system has been investigated. Artemisinin markedly increased the degree of HL-60 leukemia cell differentiation when simultaneously combined with low doses of 1α,25-dihydoxyvitamin D3 [1,25-(OH)2D3] or all-trans retinoic acid (all-trans RA).

Extracellular-regulated kinase (ERK) inhibitors markedly inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)2D3 or all-trans RA, whereas phosphatidylinositol 3-kinase (PI3-K) inhibitors did not. Particularly, protein kinase C (PKC) inhibitors inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)2D3 but not with all-trans RA. Artemisinin enhanced PKC activity and protein level of PKCβI isoform in only 1,25-(OH)2D3-treated HL-60 cells.

Taken together, these results indicate that artemisinin strongly enhances the action of low doses of 1α,25-dihydoxyvitamin D3 [1,25-(OH)2D3] and all-trans retinoic acid in leukemia cell differentiation (Kim, 2003).

Gastric Cancer

Zhang et al. (2013) found that artemisinin inhibited growth and modulated expression of cell-cycle regulators in gastric cancer cells (AGS and MKN74 cells). Treatment with artemisinin was also associated with induction of p27kip1 and p21kip1, two negative cell-cycle regulators. Furthermore, we revealed that artemisinin treatment led to an increased expression of p53.

The side-effects from the artemisinin class of medications are similar to the symptoms of malaria: nausea, vomiting, anorexia, and dizziness. Mild blood abnormalities have also been noted. A rare but serious adverse effect is allergic reaction (Leonardi et al., 2001).

References

Huang C, Ba Q, Yue Q, et al. (2013). Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction. Mol Biosyst. Kim SH, Kim HJ, Kim TS. (2003). Differential involvement of protein kinase C in human promyelocytic leukemia cell differentiation enhanced by artemisinin. European Journal of Pharmacology, 482(1–3):67–76. doi:10.1016/j.ejphar.2003.09.057.


Lai H, Singh NP. (2006). Oral artemisinin prevents and delays the development of 7, 12-dimethylbenz [a] anthracene (DMBA)-induced breast cancer in the rat. Cancer Letters, 231(1):43–48. doi: 10.1016/j.canlet.2005.01.019.


Leonardi E, Gilvary G, White NJ, Nosten F. (2001). Severe allergic reactions to oral artesunate: a report of two cases'. Trans. R. Soc. Trop. Med. Hyg, 95(2):182–3. doi:10.1016/S0035-9203(01)90157-9.


Sun H, Meng X, Han J, et al. (2013) Anti-cancer activity of DHA on gastric cancer-an in vitro and in vivo study. Tumor Biol.


Zhang HT, Wang YL, Zhang J, Zhang QX. (2013). Artemisinin inhibits gastric cancer cell proliferation through up-regulation of p53. Tumor Biol.

Decursin

Cancer: Prostate, breast, fibrosarcoma, sarcoma

Action: MDR, inflammation, anti-cancer, angiogenesis

Decursin is isolated from Angelica gigas (Nakai).

Angelica gigas NAKAI is used to treat dysmenorrhea, amenorrhea, menopause, abdominal pain, injuries, migraine, and arthritis. The physicochemical and toxicological characterization of compounds in A. gigas NAKAI, decursin, decursinol angelate, diketone decursin, ether decursin, epoxide decursin and oxim decursin, have been extensively studied (Mahat et al., 2012).

Sarcoma; Anti-cancer

The in vivo anti-tumor activities of decursinol angelate (1) and decursin (2) isolated from the roots of Angelica gigas were investigated. These two compounds, when administered consecutively for 9 days at 50 and 100 mg/kg i.p. in mice, caused a significant increase in the life span and a significant decrease in the tumor weight and volume of mice inoculated with Sarcoma-180 tumor cells. These results suggest that decursinol angelate (1) and decursin (2) from A. gigas have anti-tumor activities (Lee et al., 2003).

Fibrosarcoma

Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumor necrosis factor α) in the presence or absence of CSL-32. Treatment of HT1080 cells with a derivative of decursin (CSL-32) inhibited their proliferation, without affecting cell viability, and TNF α-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8) (Lee et al., 2012).

Prostate Cancer

Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to patients. As current chemotherapy is largely ineffective for PCa and has serious toxic side-effects, a collaborative effort has been initiated to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. The discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent has been highlighted and the mechanisms to account for the specific anti-AR actions have been identified: rapid block of AR nuclear translocation, inhibition of binding of 5-dihydrotestesterone to AR, and increased proteasomal degradation of AR protein. Structure-activity analyzes reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell-cycle arrest and pro-apoptotic activities.

This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/AR agents from complex herbal mixtures (Lu et al., 2007).

MDR

Combination cancer therapy is one of the attractive approaches to overcome drug resistance of cancer cells. In the present study, Jang et al (2013) investigated the synergistic effect of decursin from Angelica gigas and doxorubicin on the induction of apoptosis in three human multiple myeloma cells. The combined treatment reduced mitochondrial membrane potential., suppressed the phosphorylation of JAK2, STAT3, and Src, activated SHP-2, and attenuated the expression of cyclind-D1 and survivin in U266 cells.

Overall, the combination treatment of decursin and doxorubicin can enhance apoptotic activity via mTOR and/or STAT3 signaling pathway in multiple myeloma cells.

Breast Cancer

Decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Kim et al (2013) found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between peptidyl-prolyl cis/trans isomerase Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, the study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1.

References

Jang J, Jeong SJ, Kwon HY, Jung JH, et al. (2013). Decursin and Doxorubicin Are in Synergy for the Induction of Apoptosis via STAT3 and/or mTOR Pathways in Human Multiple Myeloma Cells. Evid Based Complement Alternat Med. 2013:506324. doi: 10.1155/2013/506324.

Kim JH, Jung JH, Kim SH, Jeong SJ. (2013). Decursin Exerts Anti-cancer Activity in MDA-MB-231 Breast Cancer Cells Via Inhibition of the Pin1 Activity and Enhancement of the Pin1/p53 Association.Phytother Res. doi: 10.1002/ptr.4986.

Lee S, Lee YS, Jung SH, et al. (2003). Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res, 26(9):727-30.

Lee SH, Lee JH, Kim EJ, et al. (2012). A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF- κB activities in HT1080 cells. Cell Biol Int, 36(7):683-8. doi: 10.1042/CBI20110257.

Lu JX, Kim SH, Jiang C, Lee JJ, Guo JM. (2007). Oriental herbs as a source of novel anti-androgen and prostate cancer chemo-preventive agents. Acta Pharmacologica Sinica, 28, 1365–1372. doi:10.1111/j.1745-7254.2007.00683.x

Mahat B, Chae JW, Baek IH, et al. (2012). Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas. Biol Pharm Bull, 35(7):1084-90.

Carnosol

Cancer: Breast, prostate, skin, colon, leukemia, stomach

Action: Anti-inflammatrory, anti-angiogenic

Carnosol is found in certain Mediterranean meats, fruits, vegetables, and olive oil. In particular, it is sourced from rosemary (Rosmarinus officinalis (L.)) and desert sage (Salvia pachyphylla (Epling ex Munz)).

Prostate Cancer, Breast Cancer, Skin Cancer, Colon Cancer, Leukemia

One agent, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals.

This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent (Johnson, 2011).

Literature evidence from animal and cell culture studies demonstrates the anti-cancer potential of rosemary extract, carnosol, carnosic acid, ursolic acid, and rosmarinic acid to suppress the development of tumors in several organs including the colon, breast, liver, stomach, as well as melanoma and leukemia cells (Ngo et al., 2011).

Anti-inflammatory

Treatment with retinoic acid (RA) or carnosol, two structurally unrelated compounds with anti-cancer properties, inhibited phorbol ester (PMA)-mediated induction of activator protein-1 (AP-1) activity and cyclooxygenase-2 (COX-2) expression in human mammary epithelial cells. Treatment with carnosol but not RA blocked increased binding of AP-1 to the COX-2 promoter. Carnosol but not RA inhibited the activation of PKC, ERK1/2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinase. Overexpressing c-Jun but not CBP/p300 reversed the suppressive effect of carnosol on PMA-mediated stimulation of COX-2 promoter activity.

Carnosol inhibited the induction of COX-2 by blocking PKC signaling and thereby the binding of AP-1 to the CRE of the COX-2 promoter. Taken together, these results show that small molecules can block the activation of COX-2 transcription by distinct mechanisms (Subbaramaiah, 2002).

Breast Cancer

Two rosemary components, carnosol and ursolic acid, appear to be partly responsible for the anti-tumorigenic activity of rosemary. Supplementation of diets for 2 weeks with rosemary extract (0.5% by wt) but not carnosol (1.0%) or ursolic acid (0.5%) resulted in a significant decrease in the in vivo formation of rat mammary DMBA-DNA adducts, compared to controls. When injected intraperitoneally (i.p.) for 5 days at 200 mg/kg body wt, rosemary and carnosol, but not ursolic acid, significantly inhibited mammary adduct formation by 44% and 40%, respectively, compared to controls. Injection of this dose of rosemary and carnosol was associated with a significant 74% and 65% decrease, respectively, in the number of DMBA-induced mammary adenocarcinomas per rat, compared to controls. Ursolic acid injection had no effect on mammary tumorigenesis.

Therefore, carnosol is one rosemary constituent that can prevent DMBA-induced DNA damage and tumor formation in the rat mammary gland, and, thus, has potential for use as a breast cancer chemopreventative agent (Singletary et al., 1996).

Anti-angiogenic

The anti-angiogenic activity of carnosol and carnosic acid could contribute to the chemo-preventive, anti-tumoral and anti-metastatic activities of rosemary extracts and suggests that there is potential in the treatment of other angiogenesis-related malignancies (L-pez-JimŽnez et al., 2013).

References:

Johnson JJ. (2011). Carnosol: A promising anti-cancer and anti-inflammatory agent. Cancer Letters, 305(1):1-7. doi:10.1016/j.canlet.2011.02.005.


L-pez-JimŽnez A, Garc'a-Caballero M, Medina Mç, Quesada AR. (2013). Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutr, 52(1):85-95. doi: 10.1007/s00394-011-0289-x.


Ngo SN, Williams DB, Head RJ. (2011). Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr, 51(10):946-54. doi: 10.1080/10408398.2010.490883.


Singletary K, MacDonald C & Wallig M. (1996). Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Letters, 104(1):43-8. doi: 10.1016/0304-3835(96)04227-9


Subbaramaiah K, Cole PA, Dannenberg AJ. (2002). Retinoids and Carnosol Suppress Cyclooxygenase-2 Transcription by CREB-binding Protein/p300-dependent and -independent Mechanisms. Cancer Res, 62:2522

Baicalin & Baicalein

Cancer:
Myeloma, liver, colorectal., breast, prostate, oral., hepatoma, ovarian

Action: Anti-cancer, cardiovascular disease, cytostatic, cardio-protective against Doxorubicin, anti-inflammatory, angiogenesis

Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants (including Scutellaria radix, Scutellaria rivularis (Benth.); Scutellaria baicalensis (Georgi) and Scutellaria lateriflora (L.)) are thought to have anti-oxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. In particular, Scutellaria baicalensis is one of the most popular and multi-purpose herbs used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections (Ye et al., 2002; Zhang et al., 2011a).

Anti-cancer

Accumulating evidence demonstrates that Scutellaria also possesses potent anti-cancer activities. The bioactive components of Scutellaria have been confirmed to be flavones, wogonin, baicalein and baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The anti-tumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell-cycle, to suppress COX-2 gene expression and to prevent viral infections (Li, 2008).

Multiple Myeloma

In the search for a more effective adjuvant therapy to treat multiple myeloma (MM), Ma et al. (2005) investigated the effects of the traditional Chinese herbal medicines Huang-Lian-Jie-Du-Tang (HLJDT), Gui-Zhi-Fu-Ling-Wan (GZFLW), and Huang-Lian-Tang (HLT) on the proliferation and apoptosis of myeloma cells. HLJDT inhibited the proliferation of myeloma cell lines and the survival of primary myeloma cells, especially MPC-1- immature myeloma cells, and induced apoptosis in myeloma cell lines via a mitochondria-mediated pathway by reducing mitochondrial membrane potential and activating caspase-9 and caspase-3.

Further experiments confirmed that Scutellaria radix was responsible for the suppressive effect of HLJDT on myeloma cell proliferation, and the baicalein in Scutellaria radix showed strong growth inhibition and induction of apoptosis in comparison with baicalin or wogonin. Baicalein as well as baicalin suppressed the survival in vitro of MPC-1- immature myeloma cells rather than MPC-1+ myeloma cells from myeloma patients.

Baicalein inhibited the phosphorylation of IkB-alpha, which was followed by decreased expression of the IL-6 and XIAP genes and activation of caspase-9 and caspase-3. Therefore, HLJDT and Scutellaria radix have an anti-proliferative effect on myeloma cells, especially MPC-1- immature myeloma cells, and baicalein may be responsible for the suppressive effect of Scutellaria radix by blocking IkB-alpha degradation (Ma, 2005).

Hepatoma

The effects of the flavonoids from Scutellaria baicalensis Georgi (baicalein, baicalin and wogonin) in cultured human hepatoma cells (Hep G2, Hep 3B and SK-Hep1) were compared by MTT assay and flow cytometry. All three flavonoids dose-dependently decreased the cell viabilities accompanying the collapse of mitochondrial membrane potential and the depletion of glutathione content. However, the influence of baicalein, baicalin or wogonin on cell-cycle progression was different.

All three flavonoids resulted in prominent increase of G2/M population in Hep G2 cells, whereas an accumulation of sub G1 (hypoploid) peak in Hep 3B cells was observed. In SK-Hep1 cells, baicalein and baicalin resulted in a dramatic boost in hypoploid peak, but wogonin mainly in G1 phase accumulation. These data, together with the previous findings in other hepatoma cell lines, suggest that baicalein, baicalin and wogonin might be effective candidates for inducing apoptosis or inhibiting proliferation in various human hepatoma cell lines (Chang, 2002).

Long dan xie gan tang (pinyin) is one of the most commonly used herbal formulas by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, were investigated, respectively, on human hepatoma Hep3B cells..

Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis. Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Ovarian Cancer

Ovarian cancer is one of the primary causes of death for women all through the Western world. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45-55 µM for baicalin and 25-40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein.

Baicalin decreased expression of VEGF (20 µM), cMyc (80 µM), and NFkB (20 µM); baicalein decreased expression of VEGF (10 µM), HIF-1α (20 µM), cMyc (20 µM), and NFkB (40 µM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB.

Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers (Chen, 2013).

Breast Cancer

Baicalin was found to be a potent inhibitor of mammary cell line MCF-7 and ductal breast epithelial tumor cell line T-47D proliferation, as well as having anti-proliferative effects on other cancer types such as the human head and neck cancer epithelial cell lines CAL-27 and FaDu. Overall, baicalin inhibited the proliferation of human breast cancer cells and CAL-27 and FaDu cells with effective potency (Franek, 2005).

Breast Cancer, Cell Invasion

The effect of Baicalein on cell viability of the human breast cancer MDA-MB-231 cell line was tested by MTT. 50, 100 µmol·L-1 of Baicalein inhibited significantly cell invasion(P0.01) and migration(P0.01) compared with control groups. The inhibitory rates were 50% and 77% in cell migration and 15% and 44% in cell invasion, respectively. 50 µmol·L-1 of Baicalein significantly inhibited the level of MMP 2 expression. 100 µmol·L-1 of Baicalein significantly inhibited the level of MMP 9 and uPA expressions.

Baicalein inhibits invasion and migration of MDA-MB-231 cells. The mechanisms may be involved in the direct inhibition of cell invasion and migration abilities, and the inhibition of MMP 2, MMP 9, and uPA expressions (Wang et al., 2010).

The proliferation of MDA-MB-231 cell line human breast adenocarcinoma was inhibited by baicalin in a dose-and time-dependent manner and the IC50 was 151 µmol/L. The apoptotic rate of the baicalin-treated MDA-MB-231 cells increased significantly at 48 hours. Flow cytometer analysis also revealed that most of the baicalin-treated MDA-MB-231 cells were arrested in the G2/M phase. Typically apoptotic characteristics such as condensed chromatin and apoptotic bodies were observed after being treated with baicalin for 48 hours.

The results of RT-PCR showed that the expression of bax was up-regulated; meanwhile, the expression of bcl-2 was down-regulated. Baicalin could inhibit the proliferation of MDA-MB-231 cells through apoptosis by regulating the expression of bcl-2, bax and intervening in the process of the cell-cycle (Zhu et al., 2008).

Oral Cancer

As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell-cycle, it is suspected that the anti-cancer effect of baicalein is associated with AhR. The molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3 has been investigated, including whether such an effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell-cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased.

When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is mediated by baicalein both through activation of AhR and facilitation of cyclin D1 degradation, which causes cell-cycle arrest at the G1 phase, and results in the inhibition of cell proliferation (Cheng, 2012).

Anti-inflammatory

Baicalin has also been examined for its effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. The results indicated that baicalin inhibited LPS-induced NO production in a concentration-dependent manner without a notable cytotoxic effect on these cells. The decrease in NO production was consistent with the inhibition by baicalin of LPS-induced iNOS gene expression (Chen, 2001)

Angiogenesis Modulation

The modulation of angiogenesis is one possible mechanism by which baicalin may act in the treatment of cardiovascular diseases. This may be elucidated by investigating the effects of baicalin on the expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1alpha (HIF-1alpha).

Their ability to induce VEGF expression was suppressed once ERRalpha expression was knocked down by siRNA, or ERRalpha-binding sites were deleted in the VEGF promoter. It was also found that both agents stimulated cell migration and vessel sprout formation from the aorta. These results therefore implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRalpha pathway (Zhang, 2011b).

Colon Cancer

The compounds of baicalein and wogonin, derived from the Chinese herb Scutellaria baicalensis, were studied for their effect in suppressing the viability of HT-29 human colon cancer cells. Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest at the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner when compared to the control.

The results indicated that baicalein induced apoptosis via Akt activation, in a p53-dependent manner, in HT-29 colon cancer cells. Baicalein may serve as a chemo-preventive, or therapeutic, agent for HT-29 colon cancer (Kim et al., 2012).

Cardio-protective

The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. Baicalein attenuated phosphorylation of JNK induced by doxorubicin. Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 µM; 24 hours) reduced JNK phosphorylation and enhanced cell survival., suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy (Chang et al., 2011).

Prostate Cancer

There are four compounds capable of inhibiting prostate cancer cell proliferation in Scutellaria baicalensis: baicalein, wogonin, neobaicalein, and skullcapflavone. Comparisons of the cellular effects induced by the entire extract versus the four-compound combination produced comparable cell-cycle changes, levels of growth inhibition, and global gene expression profiles (r(2) = 0.79). Individual compounds exhibited anti-androgenic activities with reduced expression of the androgen receptor and androgen-regulated genes. In vivo, baicalein (20 mg/kg/d p.o.) reduced the growth of prostate cancer xenografts in nude mice by 55% at 2 weeks compared with placebo and delayed the average time for tumors to achieve a volume of approximately 1,000 mm(3) from 16 to 47 days (P < 0.001).

Most of the anti-cancer activities of S. baicalensis can be recapitulated with four purified constituents that function in part through inhibition of the androgen receptor signaling pathway (Bonham et al., 2005)

Cancer: Acute lymphocytic leukemia, lymphoma and myeloma

Action: Cell-cycle arrest, induces apoptosis

Scutellaria baicalensis (S.B.) is a widely used Chinese herbal medicine. S.B inhibited the growth of acute lymphocytic leukemia (ALL), lymphoma and myeloma cell lines by inducing apoptosis and cell cycle arrest at clinically achievable concentrations. The anti-proliferative effectwas associated with mitochondrial damage, modulation of the Bcl family of genes, increased level of the CDK inhibitor p27KIP1 and decreased level of c-myc oncogene. HPLC analysis of S.B. showed it contains 21% baicalin and further studies confirmed it was the major anti-cancer component of S.B. Thus, Scutellaria baicalensis should be tested in clinical trials for these hematopoietic malignancies (Kumagai et al., 2007).

References

Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. (2005). Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res, 11(10):3905-14.


Chang WH Chen CH Lu FJ. (2002). Different Effects of Baicalein, Baicalin and Wogonin on Mitochondrial Function, Glutathione Content and cell-cycle Progression in Human Hepatoma Cell Lines. Planta Med, 68(2):128-32. doi: 10.1055/s-2002-20246


Chang WT, Li J, Huang HH, et al. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury .and JNK activation. J Cell Biochem. doi: 10.1002/jcb.23201.


Chen J, Li Z, Chen AY, Ye X, et al. (2013). Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci, 14(3):6012-25. doi: 10.3390/ijms14036012.


Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. (2001). Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol,61(11):1417-27. doi:10.1016/S0006-2952(01)00594-9


Cheng YH, Li LA, Lin P, et al. (2012). Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol, 263(3):360-7. doi: 10.1016/j.taap.2012.07.010.


Chou CC, Pan SL, Teng CM, & Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Franek KJ, Zhou Z, Zhang WD, Chen WY. (2005). In vitro studies of baicalin alone or in combination with Salvia miltiorrhiza extract as a potential anti-cancer agent. Int J Oncol, 26(1):217-24.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Molecular Medicine Reports, 6(6):1443-1449. doi: 10.3892/mmr.2012.1085.


Li-Weber M. (2009). New therapeutic aspects of flavones: The anti-cancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 35(1):57-68. doi: 10.1016/j.ctrv.2008.09.005.


Ma Z, Otsuyama K, Liu S, et al. (2005). Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 105(8):3312-8. doi:10.1182/blood-2004-10-3915.


Wang Xf, Zhou Qm, Su Sb. (2010). Experimental study on Baicalein inhibiting the invasion and migration of human breast cancer cells. Zhong Guo Yao Li Xue Tong Bao, 26(6): 745-750.


Zhang XW, Li WF, Li WW, et al. (2011a). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharm Biol, 49(3): 256–261. doi:10.3109/13880209.2010.501803.


Ye F, Xui L, Yi J, Zhang, W, Zhang DY. (2002). Anti-cancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 8(5):567-72.


Zhang K, Lu J, Mori T, et al. (2011b). Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway.[J]. Cardiovascular Research, 89(2):426-435.


Zhu Gq, Tang Lj, Wang L, Su Jj, et al. (2008). Study on Baicalin Induced Apoptosis of Human Breast Cancer Cell Line MDA-MB-231. An Hui Zhong Yi Xue Yuan Xue Bao, 27(2):20-23

Kumagai T, et al. (2007) Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leukemia Research 31 (2007) 523-530

Chelerythrine, Chelidonine and Sanguinarine

Cancer:
Leukemia, oral squamous cell carcinoma, melanoma

Action: Cytotoxic, MDR, apoptosis-triggering, inhibits proliferation

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy. This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

MDR

Cancer cells often develop multi-drug resistance (MDR) which is a multidimensional problem involving several mechanisms and targets. This study demonstrates that chelidonine, an alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids, has the ability to overcome MDR of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects.

Chelidonine and the alkaloid extract inhibited P-gp/MDR1 activity in a concentration-dependent manner in Caco-2 and CEM/ADR5000 and reversed their doxorubicin resistance. In addition, chelidonine and the alkaloid extract inhibited the activity of the drug, modifying enzymes CYP3A4 and GST in a dose-dependent manner. The expression analysis identified a common set of regulated genes related to apoptosis, cell-cycle, and drug metabolism.

Results suggest that chelidonine is a promising compound for overcoming MDR and enhancing cytotoxicity of chemotherapeutics, especially against leukemia cells. Its efficacy needs to be confirmed in animal models (El-Readi, Eid, Ashour, Tahrani & Wink, 2013).

Induces Apoptosis, Leukemia

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), howerver chelidonine did not affect mitochondrial integrity. Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h.

Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy, & Stoika, 2008).

Induces Apoptosis

Chelerythrine, formerly identified as a protein kinase C inhibitor, has also been shown to inhibit the anti-apoptotic Bcl-2 family proteins. Chelerythrine initiates the rapid mitochondrial apoptotic death of H9c2 cardiomyoblastoma cells in a manner that is likely independent of the generation of ROS from mitochondria (Funakoshi et al., 2011).

Oral Cancer, Inhibits cell proliferation

The effects of benzo[c] phenanthridine alkaloids (QBA), known mainly as sanguinarine and chelerythrine, on the inhibition of some kinds of cancer cell proliferation have been established. Sanguinarine is a potential inhibitor of tumorigenesis which suggests that it may be valuable in the development of new anti-cancer drugs for the treatment of oral squamous cell carcinoma (OSCC) (Tsukamoto et al., 2011).

Apoptotic Effects; Melanoma

Mixtures of isoquinoline alkaloids containing protopine, chelidonine, sanguinarine, allocryptopine, and stylopine were applied to murine fibroblast NIH/3T3, mouse melanoma B16F10, and human breast cancer MCF7 cell cultures for 20 and 40 min, and the content of alkaloids in the cell media was measured by capillary electrophoresis (CE). CE separation of isoquinoline alkaloids was performed in 30 mM phosphate buffer (pH 2.5). As these alkaloids have native fluorescence, they were directly detected using the commercially available UV light-emitting diode without fluorescent derivatization. The results showed a differential ability of celandine alkaloids to penetrate into the normal and cancer cell interior, which was inversely proportional to their cytotoxic activity.

While the most effective transport of celandine alkaloids from the cell medium to the cell interior was observed for normal murine fibroblast NIH/3T3 cells (about 55% of total content), cytotoxicity tests demonstrated selective and profound apoptotic effects of a five-alkaloid combination in the mouse melanoma B16F10 cell line (Kulp & Bragina, 2013).

Leukemia

The methanol extract isolated from the greater celandine Chelidonium majus L. (CME) has a strong anti-oxidant potential and exerted the anti-proliferative activity via apoptosis on leukemia cells. CME, due to the presence of the isoquinoline alkaloids and the flavonoid components may play an important role in both cancer chemoprevention through its anti-oxidant activity and modern cancer chemotherapy as a cytotoxic and apoptosis-inducing agent (Nadova et al., 2008).

Apoptosis-inducing Activity

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus L. (Papaveraceae), were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukaemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells was accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells. CHE, in contrast to SAN, does not interact directly with DNA.

This fact is in line with DNA-damaging effects of the alkaloids detected in the COMET assay. Nevertheless, apoptosis-inducing activity of CHE even slightly exceeded that of SAN (Philchenkov et al., 2008).

Chelidonium majus L. alkaloids chelidonine, sanguinarine, chelerythrine, protopine and allocryptopine were identified as major components of Ukrain. Apart from sanguinarine and chelerythrine, chelidonine turned out to be a potent inducer of apoptosis, triggering cell death at concentrations of 0.001 mM, while protopine and allocryptopine were less effective. Similar to Ukrain, apoptosis signaling of chelidonine involved Bcl-2 controlled mitochondrial alterations and caspase-activation (Habermehl et al., 2006).

References

El-Readi MZ, Eid S, Ashour ML, Tahrani A, & Wink M. (2013). Modulation of Multi-drug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine, 20(3-4), 282-94. doi: 10.1016/j.phymed.2012.11.005.


Funakoshi T, Aki T, Nakayama H, et al. (2011). Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicol In Vitro, 25(8):1581-7. doi: 10.1016/j.tiv.2011.05.028.


Habermehl D, Kammerer B, Handrick R, et al. (2006). Pro-apoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer, 6:14.


Kaminskyy V, Lin KW, Filyak Y, & Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International., 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O,Stoika R. (2008). A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Kulp M, Bragina O. (2013). Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Analytical and Bioanalytical Chemistry, 405(10), 3391-7. doi: 10.1007/s00216-013-6755-y.


Nadova S, Miadokova E, Alfoldiova L, et al. (2008). Potential anti-oxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinol Lett, 29(5):649-52.


Philchenkov A., Kaminskyy V., Zavelevich M., Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.


Tsukamoto H, Kondo S, Mukudai Y, et al., (2011). Evaluation of anti-cancer activities of benzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cell line. Anti-cancer Res, 31(9):2841-6.


Zhe C, Li-Juan W, Ming Hui W, et al. (2011). Mechanism governing reversal of Multi-drug resistance in human breast carcinoma cells by chelerythrine. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 33(1):45-50. doi: 10.3881/j.issn.1000-503X.2011.01.010.

Costunolide and Dehydrocostus Lactone

Cancers:
Breast, cervical., lung, ovarian, bladder, leukemia, prostate, gastric

Action: Anti-inflammatory, pro-oxidative, MDR, lymphangiogenesis inhibitor, anti-metastasis, mediates apoptosis, anti-metastatic

Components of Saussurea lappa Clarke, Vladimiria souliei (Franchet) Lingelsheim (Compositae)

Breast cancer; Anti-metastatic

It was found that costunolide inhibited the growth and telomerase activity of MCF-7 and MDA-MB-231 cells in a concentration- and time-dependent manner. The expression of hTERT mRNA was also inhibited but hTR mRNA was not. In addition, the bindings of transcription factors in hTERT promoters were significantly decreased in both cells by the treatment of costunolide. These results suggest that costunolide inhibited the growth of both MCF-7 and MDA-MB-231 cells and this effect was mediated at least in part by a significant reduction in telomerase activity (Choi et al., 2005).

Breast Cancer

Costunolide has been demonstrated to suppress tumor growth and metastases of MDA-MB-231 highly metastatic human breast cancer cells via inhibiting TNF-α induced NF-kB activation. Costunolide also inhibited MDA-MB-231 tumor growth and metastases without affecting body weights in the in vivo mouse orthotopic tumor growth assays.

In addition, costunolide inhibited in vitro TNF-α induced invasion and migration of MDA-MB-231 cells. Costunolide further suppressed TNF-α induced NF-kB signaling activation, resulting in a reduced expression of MMP-9, a well-known NF-kB-dependent gene to mediate breast cancer cell growth and metastases. Taken together, these results suggest that SLC and its derivative costunolide suppress breast cancer growth and metastases by inhibiting TNF-α induced NF-k B activation, suggesting that costunolide as well as SLC may be promising anti-cancer drugs, especially for metastatic breast cancer (Choi et al., 2013).

Several Chinese herbs, namely, Herba Taraxaci Mongolici (Pu Gong Ying), Radix Glycyrrhizae Uralensis (Gan Cao), Radix Bupleuri (Chai Hu), Radix Aucklandiae Lappae/ Radix Aucklandiae Lappae (Mu Xiang), Fructus Trichosanthis (Gua Lou) and Rhizoma Dioscoreae Bulbiferae (Huang Yao Zi) are frequently used in complex traditional Chinese medicine formulas for breast hyperplasia and breast tumor therapy.

The pharmacological effects of these Chinese herbs are all described as 'clearing heat-toxin and resolving masses' in traditional use. A bioactivity-oriented screening platform, which was based on a human breast cancer MCF-7 cellular model was developed to rapidly screen the 6 Chinese herbs. Two potential anti-breast cancer compounds, which were costunolide (Cos) and dehydrocostus lactone (Dehy), were identified in Radix Aucklandiae Lappae.

Combination of the two compounds showed a synergism on inhibiting the proliferation of MCF-7 cells in vitro, which exhibits a potential application prospect for breast cancer therapy. This bioactivity-oriented screening strategy is rapid, economical., reliable and specific for screening potential anti-breast cancer compounds in traditional Chinese medicines (Peng et al., 2013).

Dehydrocostuslactone (DHE) suppresses the expression of cyclin D, cyclin A, cyclin-dependent kinase 2, and cdc25A and increases the amount of p53 and p21, resulting in G(0)/G(1)-S phase arrest in MCF-7 cells. In contrast, DHE caused S-G(2)/M arrest by increasing p21 expression and chk1 activation and inhibiting cyclin A, cyclin B, cdc25A, and cdc25C expression in MDA-MB-231 cells. Reduction of SOCS-1 and SOCS-3 expression by small interfering RNA inhibits DHE-mediated signal transducer and activator of transcription-3 inhibition, p21 up-regulation, and cyclin-dependent kinase 2 blockade, supporting the hypothesis that DHE inhibits cell-cycle progression and cell death through SOCS-1 and SOCS-3.

Significantly, animal studies have revealed a 50% reduction in tumor volume after a 45-day treatment period. Taken together, this study provides new insights into the molecular mechanism of the DHE action that may contribute to the chemoprevention of breast cancer (Kuo et al., 2009).

ER- Breast Cancer

Costunolide induced apoptosis through the extrinsic pathway, including the activation of Fas, caspase-8, caspase-3, and degradation of PARP. However, it did not have the same effect on the intrinsic pathway as revealed by analysis of mitochondrial membrane potential (Δψ m) with JC-1 dye and expression of Bcl2 and Bax proteins level.

Furthermore, costunolide induced cell-cycle arrest in the G2/M phase via decrease in Cdc2, cyclin B1 and increase in p21WAF1 expression, independent of p53 pathway in p53-mutant MDA-MB-231 cells, and increases Cdc2-p21WAF1 binding/

Through this study it was confirmed that costunolide induces G2/M cell-cycle arrest and apoptotic cell death via extrinsic pathway in MDA-MB-231 cells, suggesting that it could be a promising anti-cancer drug especially for ER negative breast cancer (Choi et al., 2012).

Bladder Cancer

Costunolide, a member of sesquiterpene lactone family, possesses potent anti-cancer properties. The effects of costunolide were investigated on the cell viability and apoptosis in human bladder cancer T24 cells. Treatment of T24 cells with costunolide resulted in a dose-dependent inhibition of cell viability and induction of apoptosis, which was associated with the generation of ROS and disruption of mitochondrial membrane potential (Δψm).

These effects were significantly blocked when the cells were pre-treated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Exposure of T24 cells to costunolide was also associated with increased expression of Bax, down-regulation of Bcl-2, and of   survivin and significant activation of caspase-3, and its downstream target PARP. These findings provide the rationale for further in vivo and clinical investigation of costunolide against human bladder cancer (Rasul et al., 2013).

Sarcomas; MDR

Human soft tissue sarcomas represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment.

The effects on cell proliferation, cell-cycle distribution, apoptosis induction, and ABC transporter expression were analyzed. Cells treated with costunolide showed no changes in cell-cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 hours. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase. Moreover, it led to enhanced caspase 3/7 activity, cleaved caspase-3, and cleaved PARP indicating apoptosis induction.

These data demonstrate that dehydrocostus lactone affects cell viability, cell-cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumors (Kretschmer et al., 2013).

Leukemia, Lung Cancer

Costunolide, an active compound isolated from the stem bark of Magnolia sieboldii, has been found to induce apoptosis via reactive oxygen species (ROS) and Bcl-2-dependent mitochondrial permeability transition in human leukemia cells. Mitogen-activated protein kinases (MAPKs) were investigated for their involvement in the costunolide-induced apoptosis in human promonocytic leukemia U937 cells.

Treatment with costunolide resulted in the significant activation of c-Jun N-terminal kinase (JNK), but not of extracellular-signal-related kinase (ERK1/2) or p38. In vitro kinase assays showed that JNK activity was low in untreated cells but increased dramatically after 30 minutes of costunolide treatment. U937 cells co-treated with costunolide and sorbitol, a JNK activator, exhibited higher levels of cell death. In addition, inhibition of the JNK pathway using a dominant-negative mutation of c-jun and JNK inhibitor SP600125, significantly prevented costunolide-induced apoptosis.

Furthermore, pre-treatment with the anti-oxidant NAC (N-acetyl-L-cysteine) blocked the costunolide-stimulated activation of JNK while the overexpression of Bcl-2 failed to reverse JNK activation. These results indicate that costunolide-induced JNK activation acts downstream of ROS but upstream of Bcl-2, and suggest that ROS-mediated JNK activation plays a key role in costunolide-induced apoptosis. Moreover, the administration of costunolide (intraperitoneally once a day for 7 days) significantly suppressed tumor growth and increased survival in 3LL Lewis lung carcinoma-bearing model (Choi et al., 2009).

Prostate Cancer

Several pharmacological and biochemical assays were used to characterize the apoptotic-signaling pathways of costunolide in prostate cancer cells. Costunolide showed effective anti-proliferative activity against hormone dependent (LNCaP) and independent (PC-3 and DU-145) prostate cancer cells (ATCC¨) by sulforhodamine B assay, clonogenic test and flow cytometric analysis of carboxyfluorescein succinimidyl ester labeling. In PC-3 cells data showed that costunolide induced a rapid overload of nuclear Ca(2+), DNA damage response and ATR phosphorylation.

This indicated the crucial role of intracellular Ca(2+) mobilization and thiol depletion but not of reactive oxygen species production in apoptotic signaling. Data suggest that costunolide induces the depletion of intracellular thiols and overload of nuclear Ca(2+) that cause DNA damage and p21 up-regulation. The association of p21 with the cyclin dependent kinase 2/cyclin E complex blocks cyclin dependent kinase 2 activity and inhibits Rb phosphorylation, leading to G1 arrest of the cell-cycle and subsequent apoptotic cell death in human prostate cancer cells (Hsu et al., 2011).

Gastric Cancer, Prostate Cancer

Radix Aucklandiae Lappae/Saussurea lappa has been used in Chinese traditional medicine for the treatment of abdominal pain, tenesmus, nausea, and cancer; previous studies have shown that S. lappa also induces G(2) growth arrest and apoptosis in gastric cancer cells. The effects of hexane extracts of S. lappa (HESLs) on the migration of DU145 and TRAMP-C2 prostate cancer cells were investigated.

The active compound, dehydrocostus lactone (DHCL), in fraction 7 dose-dependently inhibited the basal and EGF-induced migration of prostate cancer cells. HESL and DHCL reduced matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 secretion but increased TIMP-2 levels in both the absence and presence of EGF. These results demonstrate that the inhibition of MMP-9 secretion and the stimulation of TIMP-2 secretion contribute to reduced migration of DU145 cells treated with HESL and DHCL.

This indicates that HESL containing its active principle, DHCL, has potential as an anti-metastatic agent for the treatment of prostate cancer (Kim et al., 2012).

Anti-metastatic

Lymphangiogenesis inhibitors from crude drugs used in Japan and Korea were investigated for their impact on metastasis. The three crude drugs Saussureae Radix, Psoraleae Semen and Aurantti Fructus Immaturus significantly inhibited the proliferation of temperature-sensitive rat lymphatic endothelial (TR-LE) cells in vitro.

Among isolated compounds, several compounds; costunolide, dehydrocostus lactone, psoracorylifol D, bavachinin, bakuchiol, showed an inhibitory effect on the proliferation and the capillary-like tube formation of TR-LE cells. In addition, all compounds showed selective inhibition of the proliferation of TR-LE cells compared to Hela and Lewis lung carcinoma (LLC) cells.

These compounds might offer clinical benefits as lymphangiogenesis inhibitors and may be good candidates for novel anti-cancer and anti-metastatic agents (Jeong et al., 2013).

Ovarian Cancer, MDR

The apoptosis-inducing effect of costunolide, a natural sesquiterpene lactone, was studied in platinum-resistant human ovarian cancer cells relative to cisplatin.

The MTT assay for cell viability, PI staining for cell-cycle profiling, and annexin V assay for apoptosis analysis were performed. Costunolide induced apoptosis of platinum-resistant cells in a time and dose-dependent manner and suppressed tumor growth in the SKOV3 (PT)-bearing mouse model. In addition, costunolide triggered the activation of caspase-3, caspase-8, and caspase-9. Pre-treatment with caspase inhibitors neutralized the pro-apoptotic activity of costunolide. We further demonstrated that costunolide induced a significant increase in intracellular reactive oxygen species (ROS). Moreover, costunolide synergized with cisplatin to induce cell death in platinum-resistant ovarian cancer cells.

Data suggests that costunolide, alone or in combination with cisplatin, may be of therapeutic potential in platinum-resistant ovarian cancers (Yang, Kim, Lee, & Choi, 2011).

Anti-inflammatory, Anti-oxidant, Mediates Apoptosis

Cheon et al. (2013) found that costunolide significantly inhibited RANKL-induced BMM differentiation into osteoclasts in a dose-dependent manner without causing cytotoxicity. Costunolide did not regulate the early signaling pathways of RANKL, including the mitogen-activated protein kinase and NF-κB pathways.

However, costunolide suppressed nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) expression via inhibition of c-Fos transcriptional activity without affecting RANKL-induced c-Fos expression. The inhibitory effects of costunolide were rescued by overexpression of constitutively active (CA)-NFATc1. Taken together, these results suggest that costunolide inhibited RANKL-induced osteoclast differentiation by suppressing RANKL-mediated c-Fos transcriptional activity.

References

Cheon YH, Song MJ, Kim JY, Kwak SC, Park JH, Lee CH, Kim JJ, Kim JY, Choi MK, Oh J, Kim YC, Yoon KH., Kwak HB, Lee MS. (2013). Costunolide inhibits osteoclast differentiation by suppressing c-Fos transcriptional activity. Phytotherapy, July, (6). doi: 10.1002/ptr.5034.

Choi SH, Im E, Kang HK, et al. (2005). Inhibitory effects of costunolide on the telomerase activity in human breast carcinoma cells. Cancer Lett, 227(2):153-62.


Choi JH, Lee KT. (2009). Costunolide-induced apoptosis in human leukemia cells: involvement of c-jun N-terminal kinase activation. Biol Pharm Bull, 32(10):1803-8.


Choi YK, Seo HS, Choi HS, et al. (2012). Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell-cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231. Mol Cell Biochem, 363(1-2):119-28. doi: 10.1007/s11010-011-1164-z.


Choi YK, Cho S-G, Woo S-M, et al. (2013). Saussurea lappa Clarke-Derived Costunolide Prevents TNF α-Induced Breast Cancer Cell Migration and Invasion by Inhibiting NF-κ B Activity. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2013/936257.


Hsu JL, Pan SL, Ho YF, Het al. (2011). Costunolide induces apoptosis through nuclear calcium2+ overload and DNA damage response in human prostate cancer. The Journal of Urology, 185(5):1967-74. doi: 10.1016/j.juro.2010.12.091.


Jeong D, Watari K, Shirouzu T, et al. (2013). Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biol Pharm Bull, 36(1):152-7.


Kim EJ, Hong JE, Lim SS, et al. (2012). The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. J Med Food, 15(1):24-32. doi: 10.1089/jmf.2011.1735.


Kretschmer N, Rinner B, Stuendl N, et al. (2012). Effect of costunolide and dehydrocostus lactone on cell-cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells. Planta Med, 78(16):1749-56. doi: 10.1055/s-0032-1315385.


Kuo PL, Ni WC, Tsai EM, Hsu YL. (2009). Dehydrocostuslactone disrupts signal transducers and activators of transcription 3 through up-regulation of suppressor of cytokine signaling in breast cancer cells. Mol Cancer Ther, 8(5):1328-39. doi: 10.1158/1535-7163.MCT-08-0914.


Peng ZX, Wang Y, Gu X, Wen YY, Yan C. (2013). A platform for fast screening potential anti-breast cancer compounds in traditional Chinese medicines. Biomed Chromatogr. doi: 10.1002/bmc.2990.


Rasul A, Bao R, Malhi M, et al. (2013). Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules, 18(2):1418-33. doi: 10.3390/molecules18021418.


Yang YI, Kim JH, Lee KT, & Choi JH. (2011). Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species. Gynecologic Oncology, 123(3), 588-96. doi: 10.1016/j.ygyno.2011.08.031.

Ellagic Acid

Cancer:
Pancreatic, prostate, ovarian, breast, bladder, lymphoma, oral., melanoma

Action: Anti-cancer, induces apoptosis, promoted ROS and Ca2+ productions

Ellagic acid (EA) is a polyphenol compound widely found in fruits such as berries, walnuts, pecans, pomegranate, cranberries, and longan. It is well known to have a free radical scavenging activity and has been approved in Japan as an 'existing food additive' for anti-oxidative purposes (HHLW, 1996). In vitro evidence revealed that 100µM EA represented little toxic effect on human normal cells (Losso et al., 2004; Larrosa et al., 2006). A subchronic toxicity study further demonstrated that orally feeding EA (9.4, 19.1, 39.1g/kg b.w., resp.) could not induce mortality or treatment-related clinical signs throughout the experimental period on F344 rats (Tasaki et al., 2008), indicating the low toxicity of EA to mammalians. Furthermore, EA exhibits potent anti-cancer and anti-carcinogenesis activities towards breast, colorectal., oral., prostate (Losso et al., 2004; Larrosa et al., 2006; Malik et al., 2011), pancreatic (Edderkaoui et al., 2008), bladder (Li et al., 2005), neuroblastoma (Fjaeraa et al., 2009), melanoma (Kim et al., 2009), and lymphoma cells (Mishra et al., 2011).

Pancreatic Cancer

Edderkaoui et al. (2008) show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kappa B binding activity.

Furthermore, inhibition of NF-kappa B activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.

Pancreatic Cancer (PANC-1) cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with ellagic acid (EA). Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth which was associated with suppression of cell proliferation and caspase-3 activation, and induction of PARP cleavage. EA also reversed epithelial to mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, MMP-2 and MMP-9.

These data suggest that EA can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt, Shh and Notch pathways. In view of the fact that EA could effectively inhibit human pancreatic cancer growth by suppressing Akt, Shh and Notch pathways, our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer (Zhao et al., 2013).

Ovarian Cancer

Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100  µ M) and assessed for viability, cell-cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell-cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax :  Bcl-2 ratio and restored anoikis in both cell lines.

The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma Chung et al., 2013).

Prostate Cancer; AR+

In the present study, Pitchakarn et al. (2013) investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. They found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Breast Cancer

The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as developing strategies for cancer chemoprevention.

In this study Munagala et al. (2013) used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3weeks until tumor time point. The effect of a chemo-preventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis is also established. These observations provide mechanistic insights into the new molecular events behind the chemo-preventive action of ellagic acid and treatment of breast cancer.

Bladder Cancer

To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase-9 and -3.

On the basis of these observations, Ho et al (2013) suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells.

Lymphoma

Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signaling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells.

Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. The role of ellagic acid was tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation.

The anti-carcinogenic action of ellagic acid was also confirmed by up-regulation of TGF-β1 and down-regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down- regulation of PKC signaling pathway leading to cell proliferation (Mishra et al., 2013).

References

Chung YC, Lu LC, Tsai MH, et al. (2013). The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells. Evid Based Complement Alternat Med, 2013(2013):306705. doi: 10.1155/2013/306705.


Edderkaoui M, Odinokova I, Ohno I, et al. (2008). Ellagic acid induces apoptosis through inhibition of nuclear factor κ B in pancreatic cancer cells. World Journal of Gastroenterology, 14(23):3672–3680.


Fjaeraa C, NŒnberg E. (2009). Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomedicine and Pharmacotherapy, 63(4):254–261.


HHLW (Ministry of Health, Labor and Welfare of Japan). (1996). List of Existing Food Additives, Notification No. 120 of the Ministry of Health and Welfare.


Ho CC, Huang AC, Yu CS, Lien JC, et al. (2013). Ellagic acid induces apoptosis in tsgh8301 human bladder cancer cells through the endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Environ Toxicol. doi: 10.1002/tox.21857.


Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y. (2009). Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. Journal of Biomedical Materials Research, 90(1):145–155.


Larrosa M, Tomás-Barberán FA, Espín JC. (2006). The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry, 17(9):611–625.


Li TM, Chen GW, Su CC, et al. (2005). Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anti-cancer Research, 25(2 A):971–979.


Losso JN, Bansode RR, Trappey A, II, Bawadi HA, Truax R. (2004). In vitro anti-proliferative activities of ellagic acid. Journal of Nutritional Biochemistry, 15(11):672–678.


Mishra S, Vinayak M. (2013). Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep, 40(2):1417-28. doi: 10.1007/s11033-012-2185-8.


Malik A, Afaq S, Shahid M, Akhtar K, Assiri A. (2011). Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pacific Journal of Tropical Medicine, 4(7):550–555.


Mishra S, Vinayak M. (2011). Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leukemia and Lymphoma, 52(11):2155–2161.


Munagala R, Aqil F, Vadhanam MV, Gupta RC. (2013). MicroRNA 'signature' during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett, S0304-3835(13)00462-X. doi: 10.1016/j.canlet.2013.06.012.


Pitchakarn P, Chewonarin T, Ogawa K, et al. (2013). Ellagic Acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac J Cancer Prev, 14(5):2859-63.


Tasaki M, Umemura T, Maeda M, et al. (2008). Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food and Chemical Toxicology, 46(3):1119–1124.


Zhao M, Tang SN, Marsh JL, et al. (2013). Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 337(2):210–217

Fucoidan

Cancer:
Lymphoma, prostate, hepatocellular carcinoma, breast, colorectal

Action: Chemotherapy protective

Fucoidan is a ulphated polysaccharide found in brown seaweed, including Sargassum thunbergii [(Mertens ex Roth) Kuntze] and Fucus vesiculosus (L.).

Lymphoma

Fucoidan, a sulfated polysaccharide in brown seaweed, was found to inhibit proliferation and induce apoptosis in human lymphoma HS-Sultan cell lines. Fucoidan-induced apoptosis was accompanied by the activation of caspase-3 and was partially prevented by pre-treatment with a pan-caspase inhibitor, z-VAD-FMK. The neutralizing antibody, Dreg56, against human l-selectin, did not prevent the inhibitory effect of fucoidan on the proliferation of IM9 and MOLT4 cells, both of which express l-selectin; thus it is possible fucoidan induced apoptosis through different receptors. These results demonstrate that fucoidan has direct anti-cancer effects on human HS-Sultan cells through caspase and ERK pathways (Aisa et al., 2005).

Colorectal Cancer; Chemotherapy

A total of 20 patients with unresectable advanced or recurrent colorectal cancer scheduled to undergo treatment with FOLFOX or FOLFIRI were randomly allocated into a fucoidan treatment group (n=10) and a control group without fucoidan treatment (n=10). Results showed that fucoidan regulated the occurrence of fatigue during chemotherapy. Chemotherapy with fucoidan was continued for a longer period than chemotherapy without fucoidan. Additionally, the survival of patients with fucoidan treatment was longer than that of patients without fucoidan, although the difference was not significant.

Thus, fucoidan may enable the continuous administration of chemotherapeutic drugs for patients with unresectable advanced or recurrent colorectal cancer, and as a result, the prognosis of such patients is prolonged (Ikeguchi et al., 2011).

Prostate Cancer

Fucoidan obtained from Undaria pinnatifida induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. The data support that fucoidan might have potential for the treatment of prostate cancer (Boo et al., 2013).

Hepatocellular Carcinoma

Fucoidan isolated from U. pinnatifida induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, and a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation (Yang et al., 2013).

Breast Cancer

Fucoidan exerts its anti-cancer activity through down-regulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer. Fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell- cycle arrest in breast cancer 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan down-regulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin (Xue et al., 2013).

References

Aisa Y, Miyakawa Y, Nakazato T, Shibata H, et al. (2005). Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK Pathways. Am. J. Hematol, 78:7–14. doi: 10.1002/ajh.20182.


Boo HJ, Hong JY, Kim SC, et al. (2013). The anti-cancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs, 11(8):2982-99. doi: 10.3390/md11082982.


Ikeguchi M, Yamamoto M, Arai Y, et al. (2011). Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncology Letters, 2(2). doi: 10.3892/ol.2011.254.


Xue M, Ge Y, Zhang J, et al. (2013). Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via down-regulation of Wnt/β -catenin signaling. Nutr Cancer, 65(3):460-8. doi: 10.1080/01635581.2013.757628.


Yang L, Wang P, Wang H, et al. (2013). Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs, 11(6):1961-76. doi: 10.3390/md11061961.

Curcumin

Cancer: Colorectal., prostate, pancreatic

Action: MDR, chemo-preventive activity, anti-inflammatory, attenuation of immune suppression

Chemo-preventive Activity

Curcumin is a naturally occurring, dietary polyphenolic phytochemical that is under preclinical trial evaluation for cancer-preventive drug development. It is derived from the rhizome of Curcuma longa L. and has both anti-oxidant and anti-inflammatory properties; it inhibits chemically-induced carcinogenesis in the skin, forestomach, and colon when it is administered during initiation and/or postinitiation stages. Chemo-preventive activity of curcumin is observed when it is administered prior to, during, and after carcinogen treatment as well as when it is given only during the promotion/progression phase (starting late in premalignant stage) of colon carcinogenesis (Kawamori et al., 1999)

Anti-inflammatory

With respect to inflammation, in vitro, it inhibits the activation of free radical-activated transcription factors, such as nuclear factor κB (NFκB) and AP-1, and reduces the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and interleukin-8 (Chan et al., 1998)

Prostate Cancer

In addition, NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin may abrogate their survival mechanisms (Mukhopadhyay et al., 2001).

Pancreatic Cancer

In patients suffering from pancreatic cancer, orally-administered curcumin was found to be well-tolerated and despite limited absorption, had a reasonable impact on biological activity in some patients. This was attributed to its potent nuclear factor-kappaB (NF-kappaB) and tumor-inhibitory properties, against advanced pancreatic cancer (Dhillon et al., 2008)

MDR

Curcumin, the major component in Curcuma longa (Jianghuang), inhibited the transport activity of all three major ABC transporters, i.e. Pgp, MRP1 and ABCG2 (Ganta et al., 2009).

Curcumin reversed MDR of doxorubicin or daunorubicin in K562/DOX cell line and decreased Pgp expression in a time-dependent manner (Chang et al., 2006). Curcumin enhanced the sensitivity to vincristine by the inhibition of Pgp in SGC7901/VCR cell line (Tang et al., 2005). Moreover, curcumin was useful in reversing MDR associated with a decrease in bcl-2 and survivin expression but an increase in caspase-3 expression in COC1/DDP cell line (Ying et al., 2007).

The cytotoxicity of vincristine and paclitaxel were also partially restored by curcumin in resistant KBV20C cell line. Curcumin derivatives reversed MDR by inhibiting Pgp efflux (Um et al., 2008). A chlorine substituent at the meta-or para-position on benzamide improved MDR reversal [72]. Bisdemethoxycurcumin modified from curcumin resulted in greater inhibition of Pgp expression (Limtrakul et al., 2004).

Attenuation of Immune Suppression

Curcumin (a chalcone) exhibited toxicity to human neural stem cells (hNSCs). Although oridonin (a diterpene) showed a null toxicity toward hNSCs, it repressed the enzymatic function only marginally in contrast to its potent cytotoxicity in various cancer cell lines. While the mode of action of the enzyme-polyphenol complex awaits to be investigated, the sensitivity of enzyme inhibition was compared to the anti-proliferative activities toward three cancer cell lines.

The IC50s obtained from both sets of the experiments indicate that they are in the vicinity of micromolar concentration with the enzyme inhibition slightly more active.

These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

Cancer Stem Cells

In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size.

Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in 'complete' or 'partial' responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples (Reddy et al., 2011).

Multiple Cancer Effects; Cell-signaling

Curcumin has been shown to interfere with multiple cell signaling pathways, including cell-cycle (cyclin D1 and cyclin E), apoptosis (activation of caspases and down-regulation of anti-apoptotic gene products), proliferation (HER-2, EGFR, and AP-1), survival (PI3K/AKT pathway), invasion (MMP-9 and adhesion molecules), angiogenesis (VEGF), metastasis (CXCR-4) and inflammation (NF- κB, TNF, IL-6, IL-1, COX-2, and 5-LOX).

The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets (Anand et al., 2008).

Anti-inflammatory; Cell-signaling

Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anti-cancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene.

Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies (Cretu et al., 2012). Curcumin also sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5) (Jung et al., 2005).

Curcumin and bioavailability

Curcumin, a major constituent of the spice turmeric, suppresses expression of the enzyme cyclooxygenase 2 (Cox-2) and has cancer chemo-preventive properties in rodents. It possesses poor systemic availability. Marczylo et al. (2007) explored whether formulation with phosphatidylcholine increases the oral bioavailability or affects the metabolite profile of curcumin. Their results suggest that curcumin formulated with phosphatidylcholine furnishes higher systemic levels of parent agent than unformulated curcumin.

Curcuminoids are poorly water-soluble compounds and to overcome some of the drawbacks of curcuminoids, Aditya et al. (2012) explored the potential of liposomes for the intravenous delivery of curcuminoids. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC). Curcumin/curcuminoids were encapsulated in phosphatidylcholine vesicles with high yields. Vesicles in the size range around 200 nm were selected for stability and cell experiments. Liposomal curcumin were found to be twofold to sixfold more potent than corresponding curcuminoids. Moreover, the mixture of curcuminoids was found to be more potent than pure curcumin in regard to the anti-oxidant and anti-inflammatory activities (Basnet et al., 2012). Results suggest that the curcumin-phosphatidylcholine complex improves the survival rate by increasing the anti-oxidant activity (Inokuma et al., 2012). Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases (Wang et al., 2012). Data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response (Patzk- et al., 2012).

References

Aditya NP, Chimote G, Gunalan K, et al. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol, 131(3):292-9. doi: 10.1016/j.exppara.2012.04.010.


Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. (2008). Curcumin and cancer: An 'old-age' disease with an 'age-old' solution. Cancer Letters, 267(1):133–164. doi: 10.1016/j.canlet.2008.03.025.


Basnet P, Hussain H, Tho I, Skalko-Basnet N. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci, 101(2):598-609. doi: 10.1002/jps.22785.


Chan MY, Huang HI, Fenton MR, Fong D. (1998). In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer-preventive Natural Product with Anti-Inflammatory Properties. Biochemical Pharmacology, 55(12), 1955-1962.


Chang HY, Pan KL, Ma FC, et al. (2006). The study on reversing mechanism of Multi-drug resistance of K562/DOX cell line by curcumin and erythromycin. Chin J Hem, 27(4):254-258.


Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Cre ţ u E, Trifan A, Vasincu A, Miron A. (2012). Plant-derived anti-cancer agents – curcumin in cancer prevention and treatment. Rev Med Chir Soc Med Nat Iasi, 116(4):1223-9.


Dhillon N, Aggarwal BB, Newman RA, et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res,14(14):4491-9. doi: 10.1158/1078-0432.CCR-08-0024.


Ganta S, Amiji M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations To overcome Multi-drug resistance in tumor cells. Mol Pharm, 6(3):928-939. doi: 10.1021/mp800240j.


Inokuma T, Yamanouchi K, Tomonaga T, et al. (2012). Curcumin improves the survival rate after a massive hepatectomy in rats. Hepatogastroenterology, 59(119):2243-7. doi: 10.5754/hge10650.


Jung EM, Lim JH, Lee TJ, et al. (2005). Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5). Carcinogenesis, 26(11):1905-1913.


Kawamori T, Lubet R, Steele V E, et al. (1999). Chemo-preventive Effect of Curcumin, a Naturally Occurring Anti-Inflammatory Agent, during the Promotion/Progression Stages of Colon Cancer. Cancer Research, 59(3), 597-601.


Limtrakul P, Anuchapreeda S, Buddhasukh D. (2004). Modulation of human Multi-drug resistance MDR-1 gene by natural curcuminoids. BMC Cancer, 4:13.


Marczylo TH, Verschoyle RD, Cooke DN, et al. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol, 60(2):171-7.


Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, & Aggarwal., B. B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609.


Patzk- A, Bai Y, Saporta MA, et al. (2012). Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain, 135(Pt 12):3551-66. doi: 10.1093/brain/aws299.


Reddy RM, Kakarala M, Wicha MS. (2011). Clinical trial design for testing the stem cell model for the prevention and treatment of cancer. Cancers (Basel), 3(2):2696-708. doi: 10.3390/cancers3022696.


Tang XQ, Bi H, Feng JQ, Cao JG. (2005). Effect of curcumin on Multi-drug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin, 26(8):1009-1016.


Um Y, Cho S, Woo HB, et al. (2008). Synthesis of curcumin mimics with Multi-drug resistance reversal activities. Bioorg Med Chem,16(7):3608-3615.


Wang LL, Sun Y, Huang K, Zheng L. (2012). Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res, 57(9):1557-68. doi: 10.1002/mnfr.201200718.


Ying HC, Zhang SL, Lv J. (2007). Drug-resistant reversing effect of curcumin on COC1/DDP and its mechanism. J Mod Oncol, 15(5):604-607.

Longan Seed Extract

Cancer: Colorectal

Action: Cell-cycle arrest

Polyphenols of longan seeds (LSP) were extracted and measured by colorimetry. Four CRC cell lines (Colo 320DM, SW480, HT-29 and LoVo) were treated with LSP and assessed for viability by trypan blue exclusion, for cell cycle distribution by flow cytometry, for apoptosis by annexin V labelling and for changes in the levels of proteins involved in cell cycle control or apoptosis by immunoblotting. Total phenol content of LSP was 695 mg g(-1) and total flavonoids were 150 mg g(-1). LSP inhibited the proliferation (25 microg mL(-1)-200 microg mL(-1)) of Colo 320DM, SW480 and HT-29, but not LoVo.

LSP inhibited the proliferation by blocking cell cycle progression during the DNA synthesis phase and inducing apoptotic death. Western blotting indicated that LSP blocks the S phase, reducing the expression of cyclin A and cyclin D1. Colo 320DM and SW480 treated with LSP also showed the activation of caspase 3 and increased Bax : Bcl-2 ratio. LSP induces S phase arrest of the cell cycle and apoptotic death in three CRC cell lines. The results indicate that LSP is a potential novel chemoprevention and treatment agent for colorectal cancer (Chung et al., 2010).

Reference

Chung YC, Lin CC, Chou CC, Hsu CP. (2010) Eur J Clin Invest. 2010 Aug;40(8):713-21. doi: 10.1111/j.1365-2362.2010.02322.x.

Curcumin and CSCs

Action: Anti-cancer

The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, Sonic Hedgehog) and specific microRNAs involved in acquisition of epithelial–mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments (Li & Zhang, 2014).

Reference

Li Y, Zhang T. (2014) Targeting Cancer Stem Cells by Curcumin and Clinical Applications. Cancer Letters. 23 January 2014

Cancer stem cell (CSC)

microRNA

Action: Anti-cancer

The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, Sonic Hedgehog) and specific microRNAs involved in acquisition of epithelial-mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments (Li & Zhang, 2014).

Reference

Li Y, Zhang T. (2014) Targeting Cancer Stem Cells by Curcumin and Clinical Applications. Cancer Letters. 23 January 2014