Category Archives: Cip1/p21

Silibinin

Cancer:
Lung, leukemia, colorectal, thyroid, breast, bladder

Action: Anti-angiogenesis, EMT, cell-cycle arrest

Cell-cycle Arrest, Colon Cancer

Silibinin, an active constituent of milk thistle (Silybum marianum [(L.) Gaertn.]), has been reported to inhibit proliferation and induce cell-cycle arrest of human colon cancer cells, Fet, Geo, and HCT116 (Hogan et al., 2007). Silibinin Up-regulates the expression of cyclin-dependent kinase inhibitors and induces cell-cycle arrest and apoptosis in human colon carcinoma HT-29 cells (Agarwal et al., 2003). Also in HT-29 cells, treatment with beta-escin, a principal component of horse chestnut, tinduces growth arrest at the G1-S phase together with an induction of Cip1/p21 and an associated reduction in the phosphorylation of retinoblastoma protein (Patlolla et al., 2006).

Lung Cancer

Silibinin also has anti-angiogenic effects on lung adenocarcinomas in vitro, as it strongly decreased both tumor number and tumor size (an anti-tumor effect that correlates with reduced anti-angiogenic activity) (Tyagi et al., 2009). Further, silibinin inhibits mouse lung tumorigenesis in vivo, in part by targeting tumor microenvironment. Tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) can be pro- or anti-tumorigenic, but in lung cancer cell lines they induce pro-inflammatory enzymes cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS). Accordingly, the mechanism of silibinin action was examined on TNF-α + IFN-γ (hereafter referred as cytokine mixture) elicited signaling in tumor-derived mouse lung epithelial LM2 cells.

Both signal transducers and activators of the transcription (STAT)3 (tyr705 and ser727) and STAT1 (tyr701) were activated within 15 min of cytokine mixture exposure, while STAT1 (ser727) activated after 3 h. Cytokine mixture also activated Erk1/2 and caused an increase in both COX2 and iNOS levels. Pre-treatment of cells with a MEK, NF-κB, and/or epidermal growth factor receptor (EGFR) inhibitor inhibited cytokine mixture-induced activation of Erk1/2, NF-κB, or EGFR, respectively, and strongly decreased phosphorylation of STAT3 and STAT1 and expression of COX2 and iNOS.

Together, the results show that STAT3 and STAT1 could be valuable chemo-preventive and therapeutic targets within the lung tumor microenvironment in addition to being targets within the tumor itself, and that silibinin inhibit their activation as a plausible mechanism of its efficacy against lung cancer (Tyagi et al., 2011).

Leukemia

Silibinin also affects cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system. Treatment of HL-60 cells with silibinin inhibited cellular proliferation and induced cellular differentiation in a dose-dependent manner.

Silibinin enhanced protein kinase C (PKC) activity and increased protein levels of both PKCα and PKCβ in 1,25-(OH)2D3-treated HL-60 cells. PKC and extracellular signal-regulated kinase (ERK) inhibitors significantly inhibited HL-60 cell differentiation induced by silibinin alone or in combination with 1,25-(OH)2D3, indicating that PKC and ERK may be involved in silibinin-induced HL-60 cell differentiation (Kang et al., 2001).

Thyroid Cancer, Breast Cancer

Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. Matrix metalloproteinases (MMPs) play an important role in cancer metastasis, cell migration and invasion. The effects of silibinin were investigated on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. These results revealed that the levels of MMP-9 mRNA and protein expression were significantly increased by TPA but not MMP-2 in TPC-1 and MCF7 cells.

TPA-induced phosphorylation of MEK and ERK was also inhibited by silibinin. Taken together, these results suggest that silibinin suppresses TPA-induced cell migration and MMP-9 expression through the MEK/ERK-dependent pathway in thyroid and breast cancer cells (Oh et al., 2013).

Bladder Cancer

Silibinin induced apoptosis and inhibited proliferation of bladder cancer cells and metastasis. In the present study, Wu et al. (2013) utilized a novel highly metastatic T24-L cell model, and found that silibinin treatment not only resulted in the suppression of cell migration and invasion in vitro, but also decreased bladder cancer lung metastasis and prolonged animal survival in vivo. Inactivation of β-catenin/ZEB1 signaling by silibinin leads to dual-block of EMT and stemness.

Lung Cancer, EMT

Silibinin formulation might facilitate the design of clinical trials to test the administration of silibinin meglumine-containing injections, granules, or beverages in combination with EGFR TKIs in patients with EGFR-mutated NSCLC. Silibinin meglumine notably decreased the overall volumes of NSCLC tumors as efficiently as did the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Concurrent treatment with silibinin meglumine impeded the regrowth of gefitinib-unresponsive tumors, resulting in drastic tumor growth prevention.

Because the epithelial-to-mesenchymal transition (EMT) is required by a multiplicity of mechanisms of resistance to EGFR TKIs, we evaluated the ability of silibinin meglumine to impede the EMT in vitro and in vivo. Silibinin-meglumine efficiently prevented the loss of markers associated with a polarized epithelial phenotype as well as the de novo synthesis of proteins associated with the mesenchymal morphology of transitioning cells (Cuf` et al., 2013).

Breast cancer

Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day.

Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment.

Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs.

References

 

Agarwal C, Singh RP, Dhanalakshmi S, et al. (2003). Silibinin Up-regulates the expression of cyclin-dependent kinase inhibitors and causes cell-cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 22:8271–8282.

 

Cufí S, Bonavia R, Vazquez-Martin A, Corominas-Faja B, et al. (2013). Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. Food Chem Toxicol, 60:360-8. doi: 10.1016/j.fct.2013.07.063.

Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J Surg Res, 143:58–65.

Kang SN, Lee MH, Kim KM, Cho D, Kim TS. (2001). Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochemical Pharmacology, 61(12):1487–1495

Oh SJ, Jung SP, Han J, et al. (2013). Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells. Oncol Rep, 29(4):1343-8. doi: 10.3892/or.2013.2252.

Patlolla JM, Raju J, Swamy MV, Rao CV. (2006). Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the Cell-cycle growth by inducing p21(waf1/cip1) in colon cancer cells. Mol Cancer Ther, 5:1459–1466.

Tyagi A, Singh RP, Ramasamy K, et al. (2009). Growth Inhibition and Regression of Lung Tumors by Silibinin: Modulation of Angiogenesis by Macrophage-Associated Cytokines and Nuclear Factor-κ B and Signal Transducers and Activators of Transcription 3. Cancer Prev Res, 2(1):74-83

Tyagi A, Agarwal C, Dwyer-Nield LD, et al. (2011). Silibinin modulates TNF‐α and IFN ‐γ mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Molecular Carcinogenesis. doi: 10.1002/mc.20851.

Wu K, Ning Z, Zeng J, et al. (2013). Silibinin inhibits β -catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal, 25(12):2625-2633. doi: 10.1016/j.cellsig.2013.08.028.

Forghani P, Khorramizadeh MR & Waller EK. (2014) Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Medicine. Volume 3, Issue 2, pages 215–224, April 2014 DOI: 10.1002/cam4.186

Ellagic Acid

Cancer:
Pancreatic, prostate, ovarian, breast, bladder, lymphoma, oral., melanoma

Action: Anti-cancer, induces apoptosis, promoted ROS and Ca2+ productions

Ellagic acid (EA) is a polyphenol compound widely found in fruits such as berries, walnuts, pecans, pomegranate, cranberries, and longan. It is well known to have a free radical scavenging activity and has been approved in Japan as an 'existing food additive' for anti-oxidative purposes (HHLW, 1996). In vitro evidence revealed that 100µM EA represented little toxic effect on human normal cells (Losso et al., 2004; Larrosa et al., 2006). A subchronic toxicity study further demonstrated that orally feeding EA (9.4, 19.1, 39.1g/kg b.w., resp.) could not induce mortality or treatment-related clinical signs throughout the experimental period on F344 rats (Tasaki et al., 2008), indicating the low toxicity of EA to mammalians. Furthermore, EA exhibits potent anti-cancer and anti-carcinogenesis activities towards breast, colorectal., oral., prostate (Losso et al., 2004; Larrosa et al., 2006; Malik et al., 2011), pancreatic (Edderkaoui et al., 2008), bladder (Li et al., 2005), neuroblastoma (Fjaeraa et al., 2009), melanoma (Kim et al., 2009), and lymphoma cells (Mishra et al., 2011).

Pancreatic Cancer

Edderkaoui et al. (2008) show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kappa B binding activity.

Furthermore, inhibition of NF-kappa B activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.

Pancreatic Cancer (PANC-1) cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with ellagic acid (EA). Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth which was associated with suppression of cell proliferation and caspase-3 activation, and induction of PARP cleavage. EA also reversed epithelial to mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, MMP-2 and MMP-9.

These data suggest that EA can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt, Shh and Notch pathways. In view of the fact that EA could effectively inhibit human pancreatic cancer growth by suppressing Akt, Shh and Notch pathways, our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer (Zhao et al., 2013).

Ovarian Cancer

Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100  µ M) and assessed for viability, cell-cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell-cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax :  Bcl-2 ratio and restored anoikis in both cell lines.

The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma Chung et al., 2013).

Prostate Cancer; AR+

In the present study, Pitchakarn et al. (2013) investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. They found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Breast Cancer

The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as developing strategies for cancer chemoprevention.

In this study Munagala et al. (2013) used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3weeks until tumor time point. The effect of a chemo-preventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis is also established. These observations provide mechanistic insights into the new molecular events behind the chemo-preventive action of ellagic acid and treatment of breast cancer.

Bladder Cancer

To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase-9 and -3.

On the basis of these observations, Ho et al (2013) suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells.

Lymphoma

Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signaling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells.

Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. The role of ellagic acid was tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation.

The anti-carcinogenic action of ellagic acid was also confirmed by up-regulation of TGF-β1 and down-regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down- regulation of PKC signaling pathway leading to cell proliferation (Mishra et al., 2013).

References

Chung YC, Lu LC, Tsai MH, et al. (2013). The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells. Evid Based Complement Alternat Med, 2013(2013):306705. doi: 10.1155/2013/306705.


Edderkaoui M, Odinokova I, Ohno I, et al. (2008). Ellagic acid induces apoptosis through inhibition of nuclear factor κ B in pancreatic cancer cells. World Journal of Gastroenterology, 14(23):3672–3680.


Fjaeraa C, NŒnberg E. (2009). Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomedicine and Pharmacotherapy, 63(4):254–261.


HHLW (Ministry of Health, Labor and Welfare of Japan). (1996). List of Existing Food Additives, Notification No. 120 of the Ministry of Health and Welfare.


Ho CC, Huang AC, Yu CS, Lien JC, et al. (2013). Ellagic acid induces apoptosis in tsgh8301 human bladder cancer cells through the endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Environ Toxicol. doi: 10.1002/tox.21857.


Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y. (2009). Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. Journal of Biomedical Materials Research, 90(1):145–155.


Larrosa M, Tomás-Barberán FA, Espín JC. (2006). The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry, 17(9):611–625.


Li TM, Chen GW, Su CC, et al. (2005). Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anti-cancer Research, 25(2 A):971–979.


Losso JN, Bansode RR, Trappey A, II, Bawadi HA, Truax R. (2004). In vitro anti-proliferative activities of ellagic acid. Journal of Nutritional Biochemistry, 15(11):672–678.


Mishra S, Vinayak M. (2013). Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep, 40(2):1417-28. doi: 10.1007/s11033-012-2185-8.


Malik A, Afaq S, Shahid M, Akhtar K, Assiri A. (2011). Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pacific Journal of Tropical Medicine, 4(7):550–555.


Mishra S, Vinayak M. (2011). Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leukemia and Lymphoma, 52(11):2155–2161.


Munagala R, Aqil F, Vadhanam MV, Gupta RC. (2013). MicroRNA 'signature' during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett, S0304-3835(13)00462-X. doi: 10.1016/j.canlet.2013.06.012.


Pitchakarn P, Chewonarin T, Ogawa K, et al. (2013). Ellagic Acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac J Cancer Prev, 14(5):2859-63.


Tasaki M, Umemura T, Maeda M, et al. (2008). Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food and Chemical Toxicology, 46(3):1119–1124.


Zhao M, Tang SN, Marsh JL, et al. (2013). Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 337(2):210–217