Category Archives: BCRP/ABCG2

Berberine

Cancer:
Liver,leukemia, breast, prostate, epidermoid (squamous-cell carcinoma), cervical.,testicular, melanoma, lymphoma, hepatoma

Action: Radio-sensitizer, anti-inflammatory, cell-cycle arrest, angiogenesis, chemo-enhancing, anti-metastatic, anti-oxidative

Berberine is a major phytochemical component of the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. It has been implicated in the cytotoxic effects on multiple cancer cell lines.

Anti-inflammatory

Berberine is an isoquinoline alkaloid widely distributed in natural herbs, including Rhizoma Coptidis chinensis and Epimedium sagittatum (Sieb. et Zucc.), a widely prescribed Chinese herb (Chen et al., 2008). It has a broad range of bioactivities, such as anti-inflammatory, anti-bacterial., anti-diabetes, anti-ulcer, sedation, protection of myocardial ischemia-reperfusion injury, expansion of blood vessels, inhibition of platelet aggregation, hepato-protective, and neuroprotective effects (Lau et al., 2001; Yu et al., 2005; Kulkarni & Dhir, 2010; Han et al., 2011; Ji, 2011). Berberine has been used in the treatment of diarrhea, neurasthenia, arrhythmia, diabetes, and so forth (Ji, 2011).

Angiogenesis, Chemo-enhancing

Inhibition of tumor invasion and metastasis is an important aspect of berberine's anti-cancer activities (Tang et al., 2009; Ho et al., 2009). A few studies have reported berberine's inhibition of tumor angiogenesis (Jie et al., 2011; Hamsa & Kuttan, 2012). In addition, its combination with chemotherapeutic drugs or irradiation could enhance the therapeutic effects (Youn et al., 2008; Hur et al., 2009).

Cell-cycle Arrest

The potential molecular targets and mechanisms of berberine are rather complicated. Berberine interacts with DNA or RNA to form a berberine-DNA or a berberine-RNA complex, respectively (Islam & Kumar. 2009; Li et al., 2012). Berberine is also identified as an inhibitor of several enzymes, such as N-acetyltransferase (NAT), cyclooxygenase-2 (COX-2), and telomerase (Sun et al., 2009).

Other mechanisms of berberine are mainly related to its effect on cell-cycle arrest and apoptosis, including regulation of cyclin-dependent kinase (CDK) family of proteins (Sun et al., 2009; Mantena, Sharma, & Katiyar, 2006) and expression regulation of B-cell lymphoma 2 (Bcl-2) family of proteins (such as Bax, Bcl-2, and Bcl-xL) (Sun et al., 2009), and caspases (Eom et al., 2010; Mantena, Sharma, & Katiyar, 2006). Furthermore, berberine inhibits the activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and induces the formation of intracellular reactive oxygen species (ROS) in cancer cells (Sun et al., 2009; Eom et al., 2010). Interestingly, these effects might be specific for cancer cells (Sun et al., 2009).

Several studies have shown that berberine has anti-cancer potential by interfering with the multiple aspects of tumorigenesis and tumor progression in both in vitro and in vivo experiments. These observations have been well summarized in recent reports (Sun et al., 2009; Tan et al., 2011). Berberine inhibits the proliferation of multiple cancer cell lines by inducing cell-cycle arrest at the G1 or G 2 / M phases and by apoptosis (Sun et al., 2009; Eom et al., 2010; Burgeiro et al., 2011). In addition, berberine induces endoplasmic reticulum stress (Chang et al., 1990; Eom et al., 2010) and autophagy (Wang et al., 2010) in cancer cells.

However, compared with clinically prescribed anti-cancer drugs, the cytotoxic potency of berberine is much lower, with an IC50 generally at 10 µM to 100 µM depending on the cell type and treatment duration in vitro (Sun et al., 2009). Besides, berberine also induces morphologic differentiation in human teratocarcinoma (testes) cells (Chang et al., 1990).

Anti-metastatic

The effect of berberine on invasion, migration, metastasis, and angiogenesis is mediated through the inhibition of focal adhesion kinase (FAK), NF-κB, urokinase-type plasminogen-activator (u-PA), matrix metalloproteinase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) (Ho et al., 2009; Hamsa & Kuttan. (2011); reduction of Rho kinase-mediated Ezrin phosphorylation (Tang et al., 2009); reduction of the expression of COX-2, prostaglandin E, and prostaglandin E receptors (Singh et al., 2011); down-regulation of hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), pro-inflammatory mediators (Jie et al., 2011; Hamsa & Kuttan, 2012).

Hepatoma, Leukaemia

The cytotoxic effects of Coptis chinensis extracts and their major constituents on hepatoma and leukaemia cells in vitro have been investigated. Four human liver cancer cell lines, namely HepG2, Hep3B, SK-Hep1 and PLC/PRF/5, and four leukaemia cell lines, namely K562, U937, P3H1 and Raji, were investigated. C. chinensis exhibited strong activity against SK-Hep1 (IC50 = 7 microg/mL) and Raji (IC50 = 4 microg/mL) cell lines. Interestingly, the two major compounds of C. chinensis, berberine and coptisine, showed a strong inhibition on the proliferation of both hepatoma and leukaemia cell lines. These results suggest that the C. chinensis extract and its major constituents berberine and coptisine possess active anti-hepatoma and anti-leukaemia activities (Lin, 2004).

Leukemia

The steady-state level of nucleophosmin/B23 mRNA decreased during berberine-induced (25 g/ml, 24 to 96 hours) apoptosis of human leukemia HL-60 cells. A decline in telomerase activity was also observed in HL-60 cells treated with berberine. A stable clone of nucleophosmin/B23 over-expressed in HL-60 cells was selected and found to be less responsive to berberine-induced apoptosis. About 35% to 63% of control vector–transfected cells (pCR3) exhibited morphological characteristics of apoptosis, while about 8% to 45% of nucleophosmin/B23-over-expressed cells (pCR3-B23) became apoptotic after incubation with 15 g/ml berberine for 48 to 96 hours.

These results indicate that berberine-induced apoptosis is associated with the down-regulation of nucleophosmin/B23 and telomerase activity. Nucleophosmin/B23 may play an important role in the control of the cellular response to apoptosis induction (Hsing, 1999).

Prostate Cancer

In vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24–72 hours) manner. Berberine significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential., and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase.

The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy (Mantena, 2006).

In another study, the treatment of human prostate cancer cells (PC-3) with berberine-induced dose-dependent apoptosis; however, this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential., release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins.

Berberine-induced apoptosis was blocked in the presence of the anti-oxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. Taken together, these results suggest that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer (Meeran, 2008).

Breast Cancer

DNA microarray technology has been used to understand the molecular mechanism underlying the anti-cancer effect of berberine carcinogenesis in two human breast cancer cell lines, the ER-positive MCF-7 and ER-negative MDA-MB-231 cells; specifically, whether it affects the expression of cancer-related genes. Treatment of the cancer cells with berberine markedly inhibited their proliferation in a dose- and time-dependent manner. The growth-inhibitory effect was much more profound in MCF-7 cell line than that in MDA-MB-231 cells.

IFN-β is among the most important anti-cancer cytokines, and the up-regulation of this gene by berberine is, at least in part, responsible for its anti-proliferative effect. The results of this study implicate berberine as a promising extract for chemoprevention and chemotherapy of certain cancers (Kang, 2005).

Breast Cancer Metastasis

Berberine also inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance.

The anoikis-resistant cells have a reduced growth rate and are more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell-cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells was compared to untreated control cells. These results reveal that berberine can efficiently inhibit growth by inducing cell-cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis (Kim, 2010).

Melanoma

Berberine inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. The effects and associated molecular mechanism of berberine on human melanoma cancer cell migration using melanoma cell lines A375 and Hs294 were probed in an in vitro cell migration assay, indicating that over- expression of cyclo-oxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells.

Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-kB), an up- stream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-kB, inhibited cell migration. Together, these results indicate that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors (Sing, 2011).

Cell-cycle Arrest, Squamous-cell Carcinoma

The in vitro treatment of human epidermoid carcinoma A431 cells with berberine decreases cell viability and induces cell death in a dose (5-75 microM)- and time (12–72 hours)-dependent manner, which was associated with an increase in G(1) arrest. G(0)/G(1) phase of the cell-cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin kinase inhibitors (Cdki) and cyclins.

Pre-treatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway.

Together, these results indicate berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 (squamous-cell) cells in vitro; further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers (Mantena, 2006).

Cervical Cancer, Radio-sensitizer

Cervical cancer remains one of the major killers amongst women worldwide. In India, a cisplatin based chemo/radiotherapy regimen is used for the treatment of advanced cervical cancer. Evidence shows that most of the chemotherapeutic drugs used in current clinical practice are radio-sensitizers. Natural products open a new avenue for treatment of cancer, as they are generally tolerated at high doses. Animal studies have confirmed the anti-tumorigenic activity of natural products, such as curcumin and berberine.

Berberine is a natural chemo-preventive agent, extracted from Berberis aristata, which has been shown to suppress and retard carcinogenesis by inhibiting inflammation.

The combined therapy of cisplatin/berberine and radiotherapy produced up-regulation of pro-apoptotic proteins Bax and p73, while causing down regulation of the anti-apoptotic proteins Bcl-xL, COX-2, cyclin D1. This additionally was accompanied by increased activity of caspase-9 and caspase-3, and reduction in telomerase activity. Results demonstrated that the treatment combination of berberine/cisplatin had increased induction of apoptosis relative to cisplatin alone (Komal., Singh, & Deshwal., 2013).

Anti-oxidative; Breast, Liver and Colon Cancer

The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation (lipid peroxidation), diphenyle–alpha-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and alpha-gulcosidase activities were spectrophotometrically determined.

Barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent anti-oxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that is associated with GPx and SOD hyperactivation. Both berberine chloride and barberry ethanolic extract were shown to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hours up to 72 hours and the inhibitory effect increased with time in a dose-dependent manner.

This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, for suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. As well, berberis vulgaris ethanolic extract is a safe non-toxic extract as it does not inhibit the growth of PBMC that can induce cancer cell death (Abeer et al., 2013).

Source:

Alkaloids Isolated from Natural Herbs as the Anti-cancer Agents. Evidence-Based Complementary and Alternative Medicine. Volume 2012 (2012) http://dx.doi.org/10.1155/2012/485042

References

Burgeiro A, Gajate C, Dakir EH, et al. (2011). Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 22(6):507–518.


Chang KSS, Gao C, Wang LC. (1990). Berberine-induced morphologic differentiation and down-regulation of c-Ki-ras2 protooncogene expression in human teratocarcinoma cells. Cancer Letters, 55(2):103–108.


Chen J, ZHao H, Wang X, et al. (2008). Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 29(10):2135–2147.


Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.


El-Wahab AEA, Ghareeb DA, et al. (2013). In vitro biological assessment of berberis vulgaris and its active constituent, berberine: anti-oxidants, anti-acetylcholinesterase, anti-diabetic and anti-cancer effects. BMC Complementary and Alternative Medicine, 13:218 doi:10.1186/1472-6882-13-218


Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.


Hamsa TP & Kuttan G. (2012). Anti-angiogenic activity of berberine is mediated through the down-regulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. Drug and Chemical Toxicology, 35(1):57–70.


Han J, Lin H, Huang W. (2011). Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 17(7):RA164–RA167.


Ho YT, Yang JS, Li TC, et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Letters, 279(2):155–162.


Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. (2009). The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. Journal of Cellular Biochemistry, 107(5):955–964.


Islam MM & Kumar GS. (2009). RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA and Cell Biology, 28(12):637–650.


Ji JB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Cp., LTD.


Jie S, Li H, Tian Y, et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1):179–185.


Kang JX, Liu J, Wang J, He C, Li FP. (2005). The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by up-regulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 26(11):1934-1939. doi:10.1093/carcin/bgi154


Kim JB, Yu JH, Ko E, et al. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Phytomedicine, 17(6):436-40. doi: 10.1016/j.phymed.2009.08.012.


Komal Singh M, & Deshwal VK. (2013). Natural plant product berberine/cisplatin based radiotherapy for cervical cancer: The new and effective method to treat cervical cancer. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 2(5), 278-291.


Kulkarni SK & Dhir A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3):317–324.


Lau CW, X. Q. Yao XQ, et al. (2001). Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3):234–244.


Li, XL Hu XJ, Wang H, et al. (2012). Molecular spectroscopy evidence for berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3):873–880.


Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol, 31(1-2):65-9.


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine, a natural product, induces G1-phase cell-cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27(10):2018-27. doi: 10.1093/carcin/bgl043


Meeran SM, Katiyar S & Katiyar SK. (2008). Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 229(1):33-43. doi:10.1016/j.taap.2007.12.027


Singh T, Vaid M, Katiyar N, et al. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1):86–92.


Sun Y, Xun K, Wang Y, Chen X. (2009). A systematic review of the anti-cancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9):757–769.


Tan W, Lu J, Huang M, et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6(1):27.


Tang F, Wang D, Duan C, et al. (2009) Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567. Journal of Biological Chemistry, 284(40):27456–27466.


Wang N, Feng Y, Zhu M et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of Cellular Biochemistry, 111(6):1426–1436.


Wu HL, Hsu CY, Liu WH, Yung BYM. (1999). Berberine‐induced apoptosis of human leukemia HL‐60 cells is associated with down‐regulation of nucleophosmin/B23 and telomerase activity. International Journal of Cancer, 81(6):923–929.


Youn MJ, So HS, Cho HJ, et al. (2008). Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells. Biological and Pharmaceutical Bulletin, 31(5):789–795.


Yu HH, Kim KJ, Cha JD, et al. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Journal of Medicinal Food, 8(4):454–461.