Category Archives: Artemisia annua

Artemisinin

Cancer: Breast, leukemia, gastric

Action: Anti-cancer

Artemisinin is isolated from Artemisia annua (L.).

Anti-cancer

Artemisinin and related compounds (artemisinins) is a frontline treatment for malaria. According to experimental evidence from more than 400 literature studies, 558 key proteins were derived and the artemisinins-rewired protein interaction network was constructed. Topological properties were analyzed to show that the protein network was a scale-free biological system. Five key pathways including PI3K-Akt, T cell receptor, Toll-like receptor, TGF-beta and insulin signaling pathways were involved in artemisinins-mediated anti-cancer effects (Huang et al., 2013).

Breast Cancer

Artemisinin has previously been shown to have selective toxicity towards cancer cells in vitro. The potential of artemisinin to prevent breast cancer development has been investigated in rats treated with a single oral dose (50 mg/kg) of 7,12-dimethylbenz[a]anthracene (DMBA), known to induce multiple breast tumors. Starting from the day immediately after DMBA treatment, one group of rats was provided with a powdered rat-chow containing 0.02% artemisinin, whereas a control group was provided with plain powdered food. For 40 weeks, both groups of rats were monitored for breast tumors.

Oral artemisinin significantly delayed (P<.002) and in some animals prevented (57% of artemisinin-fed versus 96% of the controls developed tumors, P<.01) breast cancer development in the monitoring period. In addition, breast tumors in artemisinin-fed rats were significantly fewer (P<.002) and smaller in size (P<.05) when compared with controls. Since artemisinin is a relatively safe compound that causes no known side-effects even at high oral doses, the present data indicate that artemisinin may be a potent chemoprevention agent (Lai, 2006).

Leukemia

Artemisinin is also a well-known anti-leukemic agent. The effect of artemisinin on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system has been investigated. Artemisinin markedly increased the degree of HL-60 leukemia cell differentiation when simultaneously combined with low doses of 1α,25-dihydoxyvitamin D3 [1,25-(OH)2D3] or all-trans retinoic acid (all-trans RA).

Extracellular-regulated kinase (ERK) inhibitors markedly inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)2D3 or all-trans RA, whereas phosphatidylinositol 3-kinase (PI3-K) inhibitors did not. Particularly, protein kinase C (PKC) inhibitors inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)2D3 but not with all-trans RA. Artemisinin enhanced PKC activity and protein level of PKCβI isoform in only 1,25-(OH)2D3-treated HL-60 cells.

Taken together, these results indicate that artemisinin strongly enhances the action of low doses of 1α,25-dihydoxyvitamin D3 [1,25-(OH)2D3] and all-trans retinoic acid in leukemia cell differentiation (Kim, 2003).

Gastric Cancer

Zhang et al. (2013) found that artemisinin inhibited growth and modulated expression of cell-cycle regulators in gastric cancer cells (AGS and MKN74 cells). Treatment with artemisinin was also associated with induction of p27kip1 and p21kip1, two negative cell-cycle regulators. Furthermore, we revealed that artemisinin treatment led to an increased expression of p53.

The side-effects from the artemisinin class of medications are similar to the symptoms of malaria: nausea, vomiting, anorexia, and dizziness. Mild blood abnormalities have also been noted. A rare but serious adverse effect is allergic reaction (Leonardi et al., 2001).

References

Huang C, Ba Q, Yue Q, et al. (2013). Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction. Mol Biosyst. Kim SH, Kim HJ, Kim TS. (2003). Differential involvement of protein kinase C in human promyelocytic leukemia cell differentiation enhanced by artemisinin. European Journal of Pharmacology, 482(1–3):67–76. doi:10.1016/j.ejphar.2003.09.057.


Lai H, Singh NP. (2006). Oral artemisinin prevents and delays the development of 7, 12-dimethylbenz [a] anthracene (DMBA)-induced breast cancer in the rat. Cancer Letters, 231(1):43–48. doi: 10.1016/j.canlet.2005.01.019.


Leonardi E, Gilvary G, White NJ, Nosten F. (2001). Severe allergic reactions to oral artesunate: a report of two cases'. Trans. R. Soc. Trop. Med. Hyg, 95(2):182–3. doi:10.1016/S0035-9203(01)90157-9.


Sun H, Meng X, Han J, et al. (2013) Anti-cancer activity of DHA on gastric cancer-an in vitro and in vivo study. Tumor Biol.


Zhang HT, Wang YL, Zhang J, Zhang QX. (2013). Artemisinin inhibits gastric cancer cell proliferation through up-regulation of p53. Tumor Biol.

Artesunate

Cancer: Colon, esophageal., pancreatic, ovarian, multiple myeloma and diffuse large B-cell lymphoma, osteosarcoma, lung, breast, skin, leukemia/lymphoma

Action: Anti-metastatic, MDR, radio-sensitizer

Pulmonary Adenocarcinomas

Artesunate exerts anti-proliferative effects in pulmonary adenocarcinomas. It mediates these anti-neoplastic effects by virtue of activating Bak (Zhou et al., 2012). At the same time, it down-regulates epidermal growth factor receptor expression. This results in augmented non-caspase dependent apoptosis in the adenocarcinoma cells. Artesunate mediated apoptosis is time as well as dose-dependent. Interestingly, AIF and Bim play significant roles in this Bak-dependent accentuated apoptosis (Ma et al., 2011). Adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) expression is also attenuated while transcription of matrix metallopeptidase 7 (MMP-7) is also down-regulated (Zhao et al., 2011). In addition, arsenuate enhances the radio-sensitization of lung carcinoma cells. It mediates this effect by down-regulating cyclin B1 expression, resulting in augmented G2/M phase arrest (Rasheed et al., 2010).

Breast Cancer

Similarly, artesunate exhibits anti-neoplastic effects in breast carcinomas. Artesunate administration is typically accompanied by attenuated turnover as well as accentuated peri-nuclear localization of autophagosomes in the breast carcinoma cells. Mitochondrial outer membrane permeability is typically augmented. As a result, artesunate augments programmed cellular decline in breast carcinoma cells (Hamacher-Brady et al., 2011).

Skin Cancer

Artesunate also exerts anti-neoplastic effects in skin malignancies. It mediates these effects by up-regulating p21. At the same time it down-regulates cyclin D1 (Jiang et al., 2012).

Colon Cancer

Artemisunate significantly inhibited both the invasiveness and anchorage independence of colon cancer SW620 cells in a dose-dependent manner. The protein level of intercellular adhesion molecule 1 (ICAM-1) was down-regulated as relative to the control group.

Artemisunate could potentially inhibit invasion of the colon carcinoma cell line SW620 by down-regulating ICAM-1 expression (Fan, Zhang, Yao & Li, 2008).

Multi-drug resistance; Colon Cancer

A profound cytotoxic action of the antimalarial., artesunate (ART), was identified against 55 cancer cell lines of the U.S. National Cancer Institute (NCI). The 50% inhibition concentrations (IC50 values) for ART correlated significantly to the cell doubling times (P = 0.00132) and the portion of cells in the G0/G1 (P = 0.02244) or S cell-cycle phases (P = 0.03567).

Efferth et al., (2003) selected mRNA expression data of 465 genes obtained by microarray hybridization from the NCI data-base. These genes belong to different biological categories (drug resistance genes, DNA damage response and repair genes, oncogenes and tumor suppressor genes, apoptosis-regulating genes, proliferation-associated genes, and cytokines and cytokine-associated genes). The constitutive expression of 54 of 465 (=12%) genes correlated significantly to the IC50 values for ART. Hierarchical cluster analysis of these 12 genes allowed the differentiation of clusters with ART-sensitive or ART-resistant cell lines (P = 0.00017).

Multi-drug-resistant cells differentially expressing the MDR1, MRP1, or BCRP genes were not cross-resistant to ART. ART acts via p53-dependent and- independent pathways in isogenic p53+/+ p21WAF1/CIP1+/+, p53-/- p21WAF1/CIP1+/+, and p53+/+ p21WAF1/CIP1-/- colon carcinoma cells.

Multi-drug resistance; Esophageal Cancer

The present study aimed to investigate the correlation between ABCG2 expression and the MDR of esophageal cancer and to estimate the therapeutic benefit of down-regulating ABCG2 expression and reversing chemoresistance in esophageal cells using artesunate (ART).

ART is a noteworthy antimalarial agent, particularly in severe and drug-resistant cancer cases, as ART is able to reverse drug resistance. ART exerted profound anti-cancer activity. The mechanism for the reversal of multi-drug resistance by ART in esophageal carcinoma was analyzed using cellular experiments, but still remains largely unknown (Liu, Zuo, & Guo, 2013).

Pancreatic Cancer

The combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Results indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications (Liu & Cui, 2013).

Ovarian Cancer

Advanced-stage ovarian cancer (OVCA) has a unifocal origin in the pelvis. Molecular pathways associated with extrapelvic OVCA spread are also associated with metastasis from other human cancers and with overall patient survival. Such pathways represent appealing therapeutic targets for patients with metastatic disease.

Pelvic and extrapelvic OVCA implants demonstrated similar patterns of signaling pathway expression and identical p53 mutations.

However, Marchion et al. (2013) identified 3 molecular pathways/cellular processes that were differentially expressed between pelvic and extrapelvic OVCA samples and between primary/early-stage and metastatic/advanced or recurrent ovarian, oral., and prostate cancers. Furthermore, their expression was associated with overall survival from ovarian cancer (P = .006), colon cancer (1 pathway at P = .005), and leukemia (P = .05). Artesunate-induced TGF-WNT pathway inhibition impaired OVCA cell migration.

Multiple Myeloma, B-cell Lymphoma

Findings indicate that artesunate is a potential drug for treatment of multiple myeloma and diffuse large B-cell lymphoma (DLBCL) at doses of the same order as currently in use for treatment of malaria without serious adverse effects. Artesunate treatment efficiently inhibited cell growth and induced apoptosis in cell lines. Apoptosis was induced concomitantly with down-regulation of MYC and anti-apoptotic Bcl-2 family proteins, as well as with cleavage of caspase-3. The IC50 values of artesunate in cell lines varied between 0.3 and 16.6 µm. Furthermore, some primary myeloma cells were also sensitive to artesunate at doses around 10 µm. Concentrations of this order are pharmacologically relevant as they can be obtained in plasma after intravenous administration of artesunate for malaria treatment (Holien et al., 2013).

Osteosarcoma, Leukemia/Lymphoma

Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo (Xu et al. 2011). ART alone or combined with chemotherapy drugs could inhibit the proliferation of B/T lymphocytic tumor cell lines as well ALL primary cells in vitro, probably through the mechanism of apoptosis, which suggest that ART is likely to be a potential drug in the treatment of leukemia/lymphoma (Zeng et al., 2009).

References

Efferth, T., Sauerbrey, A., Olbrich, A., et al. (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol, 64(2):382-94.


Fan, Y., Zhang, Y.L., Yao, G.T., & Li, Y.K. (2008). Inhibition of Artemisunate on the invasion of human colon cancer line SW620. Lishizzhen Medicine and Materia Medica Research, 19(7), 1740-1741.


Hamacher-Brady, A., Stein, H.A., Turschner, S., et al. (2011). Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286(8):6587–6601. doi: 10.1074/jbc.M110.210047.


Holien, T., Olsen, O.E., Misund, K., et al. (2013). Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. Eur J Haematol, 91(4):339-46. doi: 10.1111/ejh.12176.


Jiang, Z., Chai, J., Chuang, H.H., et al. (2012). Artesunate induces G0/G1 cell-cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anti-cancer Drugs, 23(6):606–613. doi: 10.1097/CAD.0b013e328350e8ac.


Liu, L., Zuo, L.F., Guo, J.W. (2013). Reversal of Multi-drug resistance by the anti-malaria drug artesunate in the esophageal cancer Eca109/ABCG2 cell line. Oncol Lett, 6(5):1475-1481.


Liu, Y. & Cui, Y.F. (2013). Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pac J Cancer Prev, 14(9):5243-8.


Ma, H., Yaom Q., Zhang, A.M., et al. (2011). The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules, 16(12):10556–10569. doi: 10.3390/molecules161210556.


Marchion, D.C., Xiong, Y., Chon, H.S., et al. (2013). Gene expression data reveal common pathways that characterize the unifocal nature of ovarian cancer. Am J Obstet Gynecol, S0002-9378(13)00827-2. doi: 10.1016/j.ajog.2013.08.004.


Rasheed, S.A., Efferth, T., Asangani, I.A., Allgayer, H. (2010). First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer, 127(6):1475–1485. doi: 10.1002/ijc.25315.


Xu, Q., Li, Z.X., Peng, H.Q., et al. (2011). Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 12(4):247–255. doi: 10.1631/jzus.B1000373.


Zhao, Y., Jiang, W., Li, B., et al. (2011). Artesunate enhances radiosensitivity of human non-small-cell lung cancer A549 cells via increasing no production to induce cell-cycle arrest at G2/M phase. Int Immunopharmacol, 11(12):2039–2046. doi: 10.1016/j.intimp.2011.08.017.


Zeng, Y., Ni, X., Meng, W.T., Wen, Q., Jia, Y.Q. (2009). Inhibitive effect of artesunate on human lymphoblastic leukemia/lymphoma cells. Sichuan Da Xue Xue Bao Yi Xue Ban, 40(6):1038-43.


Zhou, C., Pan, W., Wang, X.P., Chen, T.S. (2012). Artesunate induces apoptosis via a bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol, 227(12):3778–3786. doi: 10.1002/jcp.24086.