Category Archives: MAPK

Salvianolic acid-B / Salvinal

Cancer:
Head and neck squamous cell carcinoma, oral squamous cell carcinoma, glioma

Action: MDR, reduction of cardiotoxicity, COX-2 inhibitor, inflammatory-associated tumor development, anti-cancer

Salvia miltiorrhiza contains a variety of anti-tumor active ingredients, such as the water-soluble components, salvianolic acid A, salvianolic acid B, salvinal, and liposoluble constituents, tanshinone I, tanshinone IIA, dihydrotanshinone I, miltirone, cryptotanshinone, ailantholide, neo-tanshinlactone, and nitrogen-containing compounds. These anti-tumor active components play important roles in the different stages of tumor evolution, progression and metastasis (Zhang & Lu, 2010).

Anti-cancer/MDR

Aqueous extracts of Salvia miltiorrhizae Bunge have been extensively used in the treatment of cardiovascular disorders and cancer in Asia. Recently, a compound, 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde (salvinal), isolated from this plant showed inhibitory activity against tumor cell growth and induced apoptosis in human cancer cells. In the present study, we investigated the cytotoxic effect and mechanisms of action of salvinal in human cancer cell lines. Salvinal caused inhibition of cell growth (IC50 range, 4-17 microM) in a variety of human cancer cell lines.

In particular, salvinal exhibited similar inhibitory activity against parental KB, P-glycoprotein-overexpressing KB vin10 and KB taxol-50 cells, and multi-drug resistance-associated protein (MRP)-expressing etoposide-resistant KB 7D cells.

Taken together, our data demonstrate that salvinal inhibits tubulin polymerization, arrests cell-cycle at mitosis, and induces apoptosis. Notably, Salvinal is a poor substrate for transport by P-glycoprotein and MRP. Salvinal may be useful in the treatment of human cancers, particularly in patients with drug resistance (Chang et al., 2004).

Glioma

Salvianolic acid B (SalB) has been shown to exert anti-cancer effect in several cancer cell lines. SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment.

These findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anti-cancer agent for glioma prevention and treatment (Wang et al., 2013).

Reduced Cardiotoxicity

Clinical attempts to reduce the cardiotoxicity of arsenic trioxide (ATO) without compromising its anti-cancer activities remain an unresolved issue. In this study, Wang et al., (2013b) determined that Sal B can protect against ATO-induced cardiac toxicity in vivo and increase the toxicity of ATO toward cancer cells.

The combination treatment significantly enhanced the ATO-induced cytotoxicity and apoptosis of HepG2 cells and HeLa cells. Increases in apoptotic marker cleaved poly (ADP-ribose) polymerase and decreases in procaspase-3 expressions were observed through Western blot. Taken together, these observations indicate that the combination treatment of Sal B and ATO is potentially applicable for treating cancer with reduced cardiotoxic side effects.

Oral Cancer

Sal B has inhibitory effect on oral squamous cell carcinoma (OSCC) cell growth. The anti-tumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma.

Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited; expression of THBS2 was up-regulated (Yang et al., 2011).

Head and Neck Cancer

Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a non-steroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer-preventive agent. Concerns about the cardiotoxicity of celecoxib limit its use in long-term chemo-prevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China.

Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p < 0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E(2) synthesis, either with or without lipopolysaccharide stimulation. Taking these results together, Sal-B shows promise as a COX-2 targeted anti-cancer agent for HNSCC prevention and treatment (Hao et al., 2009).

Inflammatory-associated tumor development

A half-dose of daily Sal-B (40 mg/kg/d) and celecoxib (2.5 mg/kg/d) significantly inhibited JHU-013 xenograft growth relative to mice treated with a full dose of Sal-B or celecoxib alone. The combination was associated with profound inhibition of COX-2 and enhanced induction of apoptosis. Taken together, these results strongly suggest that a combination of Sal-B, a multifunctional anti-cancer agent, with low-dose celecoxib holds potential as a new preventive strategy in targeting inflammatory-associated tumor development (Zhao et al., 2010).

Squamous Cell Carcinoma

The results showed that Sal B significantly decreased the squamous cell carcinoma (SCC) incidence from 64.7 (11/17) to 16.7% (3/18) (P=0.004); angiogenesis was inhibited in dysplasia and SCC (P<0.01), with a simultaneous decrease in the immunostaining of hypoxia-inducible factor 1alpha and vascular endothelium growth factor protein (P<0.05). The results suggested that Sal B had inhibitory effect against the malignant transformation of oral precancerous lesion and such inhibition may be related to the inhibition of angiogenesis (Zhou, Yang, & Ge, 2006).

References

Chang JY, Chang CY, Kuo CC, et al. (2004). Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in Multi-drug-sensitive and -resistant human tumor cells. Mol Pharmacol, 65(1):77-84.


Hao Y, Xie T, Korotcov A, et al. (2009). Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer, 124(9):2200-9. doi: 10.1002/ijc.24160.


Wang ZS, Luo P, Dai SH, et al., (2013a). Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol, 33(7):921-8. doi: 10.1007/s10571-013-9958-z.


Wang M, Sun G, Wu P, et al. (2013b). Salvianolic Acid B prevents arsenic trioxide-induced cardiotoxicity in vivo and enhances its anti-cancer activity in vitro. Evid Based Complement Alternat Med, 2013:759483. doi: 10.1155/2013/759483.


Yang Y, Ge PJ, Jiang L, Li FL, Zhum QY. (2011). Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement Altern Med, 11:54. doi: 10.1186/1472-6882-11-54.


Zhang W, Lu Y. (2010). Advances in studies on anti-tumor activities of compounds in Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi, 35(3):389-92.


Zhao Y, Hao Y, Ji H, Fang Y, et al. (2010). Combination effects of salvianolic acid B with low-dose celecoxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev Res (Phila), 3(6):787-96. doi: 10.1158/1940-6207.CAPR-09-0243.


Zhou ZT, Yang Y, Ge JP. (2006). The preventive effect of salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters. Carcinogenesis, 27(4):826-32.

RG3 (See also Ginsenosides)

Cancer: Glioblastoma, prostate, breast, colon

Action: Anti-angiogenesis, MDR, enhances chemotherapy, MDR, enhanced paclitaxel absorption, anti-metastatic

RG3 is a ginsenoside isolated from red ginseng (Panax ginseng (L.)), after being peeled, heated, and dried.

Angiosuppressive Activity

Aberrant angiogenesis is an essential step for the progression of solid tumors. Thus anti-angiogenic therapy is one of the most promising approaches to control tumor growth.

Rg3 was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) with an IC50 of 10 nM in Trypan blue exclusion assay.

Rg3 (1-10(3) nM) also dose-dependently suppressed the capillary tube formation of HUVEC on the Matrigel in the presence or absence of 20 ng/ml vascular endothelial growth factor (VEGF). The Matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which play an important role in the degradation of basement membrane in angiogenesis and tumor metastasis present in the culture supernatant of Rg3-treated aortic ring culture were found to decrease in their gelatinolytic activities. Taken together, these data underpin the anti-tumor properties of Rg3 through its angiosuppressive activity (Yue et al., 2006).

Glioblastoma

Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. Our data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of glioblastoma multiforme (GBM) (Choi et al., 2013).

Sin, Kim, & Kim (2012) report that chronic treatment with Rg3 in a sub-lethal concentration induced senescence-like growth arrest in human glioma cells. Rg3-induced senescence was partially rescued when the p53/p21 pathway was inactivated. Data indicate that Rg3 induces senescence-like growth arrest in human glioma cancer through the Akt and p53/p21-dependent signaling pathways.

MDR/Enhanced Paclitaxel Absorption

The penetration of paclitaxel through the Caco-2 monolayer from the apical side to the basal side was facilitated by 20(s)-ginsenoside Rg3 in a concentration-dependent manner. Rg3 also inhibited P-glycoprotein (P-gp), and the maximum inhibition was achieved at 80 µM (p < 0.05). The relative bioavailability (RB)% of paclitaxel with 20(s)-ginsenoside Rg3 was 3.4-fold (10 mg/kg) higher than that of the control. Paclitaxel (20 mg/kg) co-administered with 20(s)-ginsenoside Rg3 (10 mg/kg) exhibited an effective anti-tumor activity with the relative tumor growth rate (T/C) values of 39.36% (p <0.05).

The results showed that 20(s)-ginsenoside Rg3 enhanced the oral bioavailability of paclitaxel in rats and improved the anti-tumor activity in nude mice, indicating that oral co-administration of paclitaxel with 20(s)-ginsenoside Rg3 could provide an effective strategy in addition to the established i.v. route (Yang et al., 2012).

Prostate Cancer

The anti-proliferation effect of Rg3 on prostate cancer cells has been well reported. Rg3 treatment triggered the activation of p38 MAPK; and SB202190, a specific inhibitor of p38 MAPK, antagonized the Rg3-induced regulation of AQP1 and cell migration, suggesting a crucial role for p38 in the regulation process. Rg3 effectively suppresses migration of PC-3M cells by down-regulating AQP1 expression through p38 MAPK pathway and some transcription factors acting on the AQP1 promoter (Pan et al., 2012).

Enhances Chemotherapy

The clinical use of cisplatin (cis-diamminedichloroplatinum II) has been limited by the frequent emergence of cisplatin-resistant cell populations and numerous other adverse effects. Therefore, new agents are required to improve the therapy and health of cancer patients. Oral administration of ginsenoside Rg3 significantly inhibited tumor growth and promoted the anti-neoplastic efficacy of cisplatin in mice inoculated with CT-26 colon cancer cells. In addition, Rg3 administration remarkably inhibited cisplatin-induced nephrotoxicity, hepatotoxicity and oxidative stress.

Rg3 promotes the efficacy of cisplatin by inhibiting HO-1 and NQO-1 expression in cancer cells and protects the kidney and liver against tissue damage by preventing cisplatin-induced intracellular ROS generation (Lee et al., 2012).

Colon Cancer

Rg3-induced apoptosis in HT-29 cells is mediated via the AMPK signaling pathway, and that 20(S)-Rg3 is capable of inducing apoptosis in colon cancer. Rg3-treated cells displayed several apoptotic features, including DNA fragmentation, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) and morphological changes. 20(S)-Rg3 down-regulated the expression of anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl2), up-regulated the expression of pro-apoptotic protein of p53 and Bcl-2-associated X protein (Bax), and caused the release of mitochondrial cytochrome c, PARP, caspase-9 and caspase-3 (Yuan et al., 2010).

Anti-metastatic

Studies have linked Rg3 with anti-metastasis of cancer in vivo and in vitro and the CXC receptor 4 (CXCR4) is a vital molecule in migration and homing of cancer to the docking regions. At a dosage without obvious cytotoxicity, Rg3 treatment elicits a weak CXCR4 stain color, decreases the number of migrated cells in CXCL12-elicited chemotaxis and reduces the width of the scar in wound healing and Rg3 is a new CXCR4 inhibitor (Chen et al., 2011).

References

Chen XP, Qian LL, Jiang H, Chen JH. (2011). Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol, 16(5):519-23. doi: 10.1007/s10147-011-0222-6.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep. doi: 10.3892/or.2013.2555.


Lee CK, Park KK, Chung AS, Chung WY. (2012). Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem Toxicol, 50(7):2565-74. doi: 10.1016/j.fct.2012.01.005.


Pan XY, Guo H, Han J, et al. (2012). Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol, 683(1-3):27-34. doi: 10.1016/j.ejphar.2012.02.040.


Sin S, Kim SY, Kim SS. (2012). Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol., 41(5):1669-74. doi: 10.3892/ijo.2012.1604.


Yang LQ, Wang B, Gan H, et al. (2012). Enhanced oral bioavailability and anti-tumor effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos., 33(8):425-36. doi: 10.1002/bdd.1806.


Yuan HD, Quan HY, Zhang Y, et al. (2010). 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep., 3(5):825-31. doi: 10.3892/mmr.2010.328.


Yue PY, Wong DY, Wu PK, et al. (2006). The angiosuppressive effects of 20 (R)-ginsenoside Rg3. Biochem Pharmacol, 72(4):437-45.

Retinoids

Cancer: none noted

Action: Down-regulates,epidermal growth factor receptor

Human papillomavirus (HPV) is an important etiological agent in the genesis of cervical cancer. HPV-positive cervical tumors and human papillomavirus-positive cell lines display increased epidermal growth factor receptor (EGFR) expression, which is associated with increased cell proliferation. ECE16-1 cells are an HPV-immortalized human ectocervical epithelial cell line that is a model of HPV-associated cervical neoplasia and displays elevated EGFR levels.

The effects of receptor-selective retinoid ligands on EGFR-associated signal transduction were examined. It has been shown that retinoic acid receptor (RAR)-selective ligands reduce EGFR level and the magnitude and duration of EGFR activation in EGF-stimulated cells.

These effects are reversed by co-treatment with an RAR antagonist. To identify the mechanism, Sah et al. (2002) examined the effects of retinoid treatments on EGF-dependent signaling. Stimulation with EGF causes a biphasic activation of the ERK1/2 MAPK.

This effect is specific as retinoid treatment does not alter the level or activity of other EGFR-regulated kinases, including AKT and the MAPKs p38 and JNK. Retinoid X receptor-selective ligands, in contrast, did not regulate these responses. These results suggest that RAR ligand-associated down-regulation of EGFR activity reduces cell proliferation by reducing the magnitude and duration of EGF-dependent ERK1/2 activation.

All-trans retinoic acid (RA), through binding to the retinoic acid receptors (RARs), alters interactions of the RARs with various protein components of the transcription complex at numerous genes in stem cells, and some of these protein components of the transcription complex then either place or remove epigenetic marks on histones or on DNA, altering chromatin structure and leading to an exit from the self-renewing, pluripotent stem cell state.

Different epigenetic mechanisms, i.e. first, primarily H3K27me3 marks and then DNA methylation, may be employed by embryonic stem cells and other stem cells for control of early vs. late stages of cell differentiation. Creating these stable epigenetic changes requires the actions of many molecules, including tet1, polycomb protein complexes (PRCs), miRNAs, DNA methyltransferases (DNMTs), and telomerase reverse transcriptase (Gudas, 2013).

References

Gudas LJ. (2013). Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol, S1084-9521(13)00102-X. doi: 10.1016/j.semcdb.2013.08.002.


Sah JF, Eckert RL, Chandraratna RA, Rorke EA. (2002). Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem, 277(12):9728-35.

Hispolon

Cancer: Bladder, breast, liver, gastric

Action: Anti-inflammatory, cytostatic, cytotoxic, pro-oxidative, anti-proliferative

Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have anti-oxidant, anti-inflammatory, and anti-cancer activities.

Liver Cancer

Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell-cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells.

These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell-cycle arrest and apoptosis in Hep3B cells (Huang et al., 2011).

Gastric Cancer, Breast Cancer, Bladder Cancer

Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. Hispolon has also been found to inhibit breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment.

Lu et al. (2009) also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126.

In conclusion, hispolon ubiquitinates and down-regulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

Gastric Cancer

The efficacy of hispolon in human gastric cancer cells and cell death mechanism was explored. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells.

The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione anti-oxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer.

These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anti-cancer agents (Chen et al., 2008).

Anti-proliferative Activity

Hispolon, which lacks one aromatic unit in relation to curcumin, exhibits enhanced anti-inflammatory and anti-proliferative activities. Dehydroxy hispolon was least potent for all three activities. Overall the results indicate that the substitution of a hydroxyl group for a methoxy group at the meta positions of the phenyl rings in curcumin significantly enhanced the anti-inflammatory activity, and the removal of phenyl ring at the 7(th) position of the heptadiene back bone and addition of hydroxyl group significantly increased the anti-proliferative activity of curcumin and hispolon (Ravindran et al., 2010).

References

Chen W, Zhao Z, Li L, et al. (2008). Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med, 45(1):60-72. doi: 10.1016/j.freeradbiomed.2008.03.013.


Huang GJ, Deng JS, Huang SS, Hu ML. (2011). Hispolon induces apoptosis and cell-cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem, 59(13):7104-13. doi: 10.1021/jf201289e.


Lu TL, Huang GJ, Lu TJ, et al. (2009). Hispolon from Phellinus linteus has anti-proliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol, 47(8):2013-21. doi: 10.1016/j.fct.2009.05.023.


Ravindran J, Subbaraju GV, Ramani MV, et al. (2010). Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol, 79(11):1658-66. doi: 10.1016/j.bcp.2010.01.033.

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Cryptotanshinone (See also Tanshinone)

Cancer:
Prostate, breast, cervical., leukemia, hepatocellular carcinoma

Action: Anti-inflammatory, cell-cycle arrest, inhibits dihydrotestosterone (DHT), anti-proliferative, hepato-protective

Cryptotanshinone is a major constituent of tanshinones from Salvia miltiorrhiza (Bunge).

Tanshinone IIA and cryptotanshinone could induce CYP3A activity (Qiu et al., 2103).

Anti-proliferative Agent

Cryptotanshinone (CPT), a natural compound, is a potential anti-cancer agent. Chen et al., (2010) have shown that CPT inhibited cancer cell proliferation by arresting cells in G(1)-G(0) phase of the cell-cycle. This is associated with the inhibition of cyclin D1 expression and retinoblastoma (Rb) protein phosphorylation.

Furthermore, they found that CPT inhibited the signaling pathway of the mammalian target of rapamycin (mTOR), a central regulator of cell proliferation. This is evidenced by the findings that CPT inhibited type I insulin-like growth factor I- or 10% fetal bovine serum-stimulated phosphorylation of mTOR, p70 S6 kinase 1, and eukaryotic initiation factor 4E binding protein 1 in a concentration- and time-dependent manner. Expression of constitutively active mTOR conferred resistance to CPT inhibition of cyclin D1 expression and Rb phosphorylation, as well as cell growth. The results suggest that CPT is a novel anti-proliferative agent.

Anti-inflammatory; COX-2, PGE2

Cyclooxygenase-2 (COX-2) is a key enzyme that catalyzes the biosynthesis of prostaglandins from arachidonic acid and plays a critical role in some pathologies including inflammation, neurodegenerative diseases and cancer. Cryptotanshinone is a major constituent of tanshinones and has well-documented anti-oxidative and anti-inflammatory effects.

This study confirmed the remarkable anti-inflammatory effect of cryptotanshinone in the carrageenan-induced rat paw edema model. Since the action of cryptotanshinone on COX-2 has not been previously described, in this study, Jin et al. (2006) examined the effect of cryptotanshinone on cyclooxygenase activity in the exogenous arachidonic acid-stimulated insect sf-9 cells, which highly express human COX-2 or human COX-1, and on cyclooxygenases expression in human U937 promonocytes stimulated by lipopolysaccharide (LPS) plus phorbolmyristate acetate (PMA).

Cryptotanshinone reduced prostaglandin E2 synthesis and reactive oxygen species generation catalyzed by COX-2, without influencing COX-1 activity in cloned sf-9 cells. In PMA plus LPS-stimulated U937 cells, cryptotanshinone had negligible effects on the expression of COX-1 and COX-2, at either a mRNA or protein level. These results demonstrate that the anti-inflammatory effect of cryptotanshinone is directed against enzymatic activity of COX-2, not against the transcription or translation of the enzyme.

Prostate Cancer

Cryptotanshinone was identified as a potent STAT3 inhibitor. Cryptotanshinone rapidly inhibited STAT3 Tyr705 phosphorylation in DU145 prostate cancer cells and the growth of the cells through 96 hours of the treatment. Inhibition of STAT3 Tyr705 phosphorylation in DU145 cells decreased the expression of STAT3 downstream target proteins such as cyclin D1, survivin, and Bcl-xL.

Cryptotanshinone can suppress Bcl-2 expression and augment Fas sensitivity in DU145 prostate cancer cells. Park et al. (2010) show that JNK and p38 MAPK act upstream of Bcl-2 expression in Fas-treated DU145 cells, and that cryptotanshinone significantly blocked activation of these kinases. Moreover, cryptotanshinone sensitized several tumor cells to a broad range of anti-cancer agents. Collectively, the data suggest that cryptotanshinone has therapeutic potential in the treatment of human prostate cancer (Park et al., 2010).

Cryptotanshinone was colocalized with STAT3 molecules in the cytoplasm and inhibited the formation of STAT3 dimers. Computational modeling showed that cryptotanshinone could bind to the SH2 domain of STAT3. These results suggest that cryptotanshinone is a potent anti-cancer agent targeting the activation STAT3 protein. It is the first report that cryptotanshinone has anti-tumor activity through the inhibition of STAT3 (Shin et al., 2009).

Prostate Cancer; Androgen Receptor Positive

Anti-androgens to reduce or prevent androgens binding to androgen receptor (AR) are widely used to suppress AR-mediated PCa growth; however, the androgen depletion therapy is only effective for a short period of time. Xu et al., (2012) found that cryptotanshinone (CTS), with a structure similar to dihydrotestosterone (DHT), can effectively inhibit the DHT-induced AR transactivation and prostate cancer cell growth. Their results indicated that 0.5 µM CTS effectively suppresses the growth of AR-positive PCa cells, but has little effect on AR negative PC-3 cells and non-malignant prostate epithelial cells.

Furthermore, data indicated that CTS could modulate AR transactivation and suppress the DHT-mediated AR target genes expression in both androgen responsive PCa LNCaP cells and castration resistant CWR22rv1 cells. The mechanistic studies indicate that CTS functions as an AR inhibitor to suppress androgen/AR-mediated cell growth and PSA expression by blocking AR dimerization and the AR-coregulator complex formation.

Furthermore, they showed that CTS effectively inhibits CWR22Rv1 cell growth and expressions of AR target genes in the xenograft animal model. The previously un-described mechanisms of CTS may explain how CTS inhibits the growth of PCa cells and help us to establish new therapeutic concepts for the treatment of PCa.

Breast Cancer, Cervical Cancer, Leukemia, Hepatocellular Carcinoma

The three tanshinone derivatives, tanshinone I, tanshinone IIA, and cryptotanshinone, exhibited significant in vitro cytotoxicity against several human carcinoma cell lines (Wang et al., 2007).

Tanshinone I was found to inhibit the growth and invasion of breast cancer cells both in vitro and in vivo through regulation of adhesion molecules including ICAM-1 and VCAM-1 (Nizamutdinova et al., 2008), and induce apoptosis of leukemia cells by interfering with the mitochondrial transmembrane potential (ΔΨm), increasing the expression of Bax, as well as activating caspase-3 (Liu et al., 2010). Tanshinone IIA has been reported to inhibit the growth of cervical cancer cells through disrupting the assembly of microtubules, and induces G2/M phase arrest and apoptosis (Pan et al., 2010).

This compound can also inhibit invasion and metastasis of hepatocellular carcinoma (HCC) cells both in vitro and in vivo, by suppressing the expression of the metalloproteinases, MMP2 and MMP9 and interfering with the NFκB signaling pathway (Xu et al., 2009).

Breast Cancer

Cryptotanshione was reported to induce cell-cycle arrest at the G1-G0 phase, which was accompanied by the inhibition of cyclin D1 expression, retinoblastoma (Rb) protein phosphorylation, and of the rapamycin (mTOR) signaling pathway (Chen et al., 2010).

Hepato-protective Effect

Cryptotanshinone (20 or 40mg/kg) was orally administered 12 and 1h prior to GalN (700mg/kg)/LPS (10µg/kg) injection. The increased mortality and TNF- α levels by GalN/LPS were declined by cryptotanshinone pre-treatment. In addition, cryptotanshinone attenuated GalN/LPS-induced apoptosis, characterized by the blockade of caspase-3, -8, and -9 activation, as well as the release of cytochrome c from the mitochondria. Furthermore, cryptotanshinone significantly inhibited the activation of NF-κB and suppressed the production of pro-inflammatory cytokines.

These findings suggest that the hepato-protective effect of cryptotanshinone is likely to be associated with its anti-apoptotic activity and the down-regulation of MAPKs and NF-κB associated at least in part with suppressing TAK1 phosphorylation (Jin et al., 2013).

References

Chen W, Luo Y, Liu L, Zhou H, Xu B, Han X, Shen T, Liu Z, Lu Y, Huang S. (2010). Cryptotanshinone Inhibits Cancer Cell Proliferation by Suppressing Mammalian Target of Rapamycin–Mediated Cyclin D1 Expression and Rb Phosphorylation. Cancer Prev Res (Phila), 3(8):1015-25. doi: 10.1158/1940-6207.CAPR-10-0020. Epub 2010 Jul 13.

Jin DZ, Yina LL, Jia XQ, Zhu XZ. (2006). Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. European Journal of Pharmacology, 549(1-3):166-72. doi:10.1016/j.ejphar.2006.07.055

Jin VQ, Jiang S, Wu YL, et al. (2013). Hepato-protective effect of cryptotanshinone from Salvia miltiorrhiza in d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Phytomedicine. doi:10.1016/j.phymed.2013.07.016

Liu JJ, Liu WD, Yang HZ, et al. (2010). Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol, 89:1089–1097. doi: 10.1007/s00277-010-0996-z.

Nizamutdinova IT, Lee GW, Lee JS, et al. (2008). Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 29(10):1885-1892. doi:10.1093/carcin/bgn151

Pan TL, Hung YC, Wang PW, et al. (2010). Functional proteomic and structural insights into molecular targets related to the growth-inhibitory effect of tanshinone IIA on HeLa cells. Proteomics,10:914–929.

Park IJ, Kim MJ, Park OJ, et al. (2010). Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett, 298:88–98. doi: 10.1016/j.canlet.2010.06.006.

Qiu F, Jiang J, Ma Ym, et al. (2013). Opposite Effects of Single-Dose and Multidose Administration of the Ethanol Extract of Danshen on CYP3A in Healthy Volunteers. Evidence-Based Complementary and Alternative Medicine, 2013(2013) http://dx.doi.org/10.1155/2013/730734

Shin DS, Kim HN, Shin KD, et al. (2009). Cryptotanshinone Inhibits Constitutive Signal Transducer and Activator of Transcription 3 Function through Blocking the Dimerization in DU145 Prostate Cancer Cells. Cancer Research, 69:193. doi: 10.1158/0008-5472.CAN-08-2575

Wang X, Morris-Natschke SL, Lee KH. (2007). New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev, 27:133–148. doi: 10.1002/med.20077.

Xu D, Lin TH, Li S, Da J, et al. (2012). Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett, 316(1):11-22. doi: 10.1016/j.canlet.2011.10.006.

Xu YX, Feng T, Li R, Liu ZC. (2009). Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo. Tumori, 95:789–795.

Chrysin

Cancer:
Lung cancer, breast cancer, leukemia, gastric, colon

Action: Anti-inflammatory, induces apoptosis, inhibits HIF-1 α, immunomodulatory

Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants (including Scutellaria baicalensis (Georgi), Passiflora caerulea (L.), Passiflora incarnate (L.))., honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbs cell-cycle progression. Chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21 (Waf1/Cip1) expression (Weng et al., 2005).

MDR; NSCLC

Chrysin is a major flavonoid in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. Novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in human non-small lung cancer have been demonstrated, and the protein kinase C pathway may play an important role in this process. It is thought that chrysin may act as a potential adjuvant therapy for drug-resistant non-small lung cancer, especially for those with AKR1C1/1C2 overexpression (Wang et al., 2007).

Gastric Cancer, Colon Cancer

Additionally, derivatives of chrysin have been shown to have strong activities against SGC-7901 human gastric cell line and HT-29 human colon cancer cell lines (Zheng et al., 2003).

Breast Cancer

While Chrysin is a potent breast cancer resistance protein inhibitor, it was found to have no significant effect on toptecan pharmacokinetics in rats (Zhang et al., 2005).

VEGF, HIF-1

Chrysin was found to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through AKT signaling. Inhibition of HIF-1α by chrysin resulted in abrogation of vascular endothelial growth factor expression (Fu et al., 2007).

Leukemia

Chrysin has been shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells (Khoo et al., 2010).

Immune

The chemo-preventive action of chrysin has been found to specifically inhibit the enzymatic activity of IDO-1 but not mRNA expression in human neuronal stem cells (hNSC), confirmed by cell-based assay and qRT-PCR. These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

References

Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Fu B, Xue J, Li Z, et al. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1 α through reducing hypoxia-inducible factor-1 α stability and inhibiting its protein synthesis. Mol Cancer Ther, 6:220. doi: 10.1158/1535-7163.MCT-06-0526


Khoo BY, Chua SL, Balaram P. (2010). Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci, 11(5), 2188-2199. doi:10.3390/ijms11052188


Wang HW, Lin CP, Chiu JH, et al. (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. International Journal of Cancer, 120(9), 2019-2027.


Weng MS, Ho YS, Lin JK. (2005). Chrysin induces G1 phase cell-cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol, 69(12):1815-27.


Zhang S, Wang X, Sagawa K, Morris ME. (2005). Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (,äì/,äì) mice. Drug Metabolism and Disposition, 33(3), 341-348.


Zheng X, Meng WD, Xu YY, Cao JG, & Qing FL. (2003). Synthesis and anti-cancer effect of chrysin derivatives. Bioorganic & Medicinal Chemistry Letters, 13(5), 881-884.

Caffeic acid phenethyl ester (CAPE)

Cancer:
Breast, prostate, leukemia, cervical., oral., melanoma

Action: EMT, anti-mitogenic, anti-carcinogenic, anti-inflammatory, immunomodulatory

Anti-mitogenic, Anti-carcinogenic, Anti-inflammatory, Immunomodulatory Properties

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory properties. A variety of in vitro pharmacology for CAPE has been reported. A study using CAPE showed a positive effect on reducing carcinogenic incidence. It is known to have anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory properties in vitro (Orban et al., 2000) Another study also showed that CAPE suppresses acute immune and inflammatory responses and holds promise for therapeutic uses to reduce inflammation (Huang et al., 1996).

Caffeic acid phenethyl ester (CAPE) specifically inhibits NF-κB at µM concentrations and shows ability to stop 5-lipoxygenase-catalyzed oxygenation of linoleic acid and arachidonic acid. Previous studies have demonstrated that CAPE exhibits anti-oxidant, anti-inflammatory, anti-proliferative, cytostatic, anti-viral., anti-bacterial., anti-fungal., and, most importantly, anti-neoplastic properties (Akyol et al., 2013).

Multiple Immunomodulatory and Anti-inflammatory Activities

The results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active.

Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and anti-inflammatory activities (Natarajan et al., 1996).

Breast Cancer

Aqueous extracts from Thymus serpyllum (ExTs), Thymus vulgaris (ExTv), Majorana hortensis (ExMh), and Mentha piperita (ExMp), and the phenolic compounds caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), luteolin-7-O-glucuronide (Lgr), luteolin-7-O-rutinoside (Lr), eriodictiol-7-O-rutinoside (Er), and arbutin (Ab), were tested on two human breast cancer cell lines: Adriamycin-resistant MCF-7/Adr and wild-type MCF-7/wt.

ExMh showed the highest cytotoxicity, especially against MCF-7/Adr, whereas ExMp was the least toxic; particularly against MCF-7/wt cells. RA and LA exhibited the strongest cytotoxicity against both MCF-7 cell lines, over 2-fold greater than CA and Lgr, around 3-fold greater than Er, and around 4- to 7-fold in comparison with Lr and Ab. Except for Lr and Ab, all other phytochemicals were more toxic against MCF-7/wt, and all extracts exhibited higher toxicity against MCF-7/Adr. It might be concluded that the tested phenolics exhibited more beneficial properties when they were applied in the form of extracts comprising their mixtures (Berdowska et al., 2013).

Prostate Cancer

Evidence is growing for the beneficial role of selective estrogen receptor modulators (SERM) in prostate diseases. Caffeic acid phenethyl ester (CAPE) is a promising component of propolis that possesses SERM activity. CAPE-induced inhibition of AKT phosphorylation was more prominent (1.7-folds higher) in cells expressing ER-α such as PC-3 compared to LNCaP. In conclusion, CAPE enhances the anti-proliferative and cytotoxic effects of DOC and PTX in prostate cancer cells (Tolba et al., 2013).

EMT, Prostate Cancer

CAPE suppressed the expression of Twist 2 and growth of PANC-1 xenografts without significant toxicity. CAPE could inhibit the orthotopic growth and EMT of pancreatic cancer PANC-1 cells accompanied by down-regulation of vimentin and Twist 2 expression (Chen et al., 2013).

CAPE is a well-known NF-κB inhibitor. CAPE has been used in folk medicine as a potent anti-inflammatory agent. Recent studies indicate that CAPE treatment suppresses tumor growth and Akt signaling in human prostate cancer cells (Lin et al., 2013). Combined treatments of CAPE with chemotherapeutic drugs exhibit synergistic suppression effects. Pharmacokinetic studies suggest that intraperitoneal injection of CAPE at concentration of 10mg/kg is not toxic. CAPE treatment sensitizes cancer cells to chemotherapy and radiation treatments. In addition, CAPE treatment protects therapy-associated toxicities (Liu et al., 2013).

Cervical Cancer

CAPE preferentially induced S- and G2 /M-phase cell-cycle arrests and initiated apoptosis in human cervical cancer lines. The effect was found to be associated with increased expression of E2F-1, as there is no CAPE-mediated induction of E2F-1 in the pre-cancerous cervical Z172 cells. CAPE also up-regulated the E2F-1 target genes cyclin A, cyclin E and apoptotic protease activating of factor 1 (Apaf-1) but down-regulated cyclin B and induced myeloid leukemia cell differentiation protein (Mcl-1) (Hsu et al., 2013).

Oral Cancer

CAPE attenuated SCC-9 oral cancer cells migration and invasion at noncytotoxic concentrations (0  µM to 40 µM). CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and potently decreased migration by reducing focal adhesion kinase (FAK) phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK (Peng et al., 2012).

Melanoma

CAPE is suggested to suppress reactive-oxygen species (ROS)-induced DNA strand breakage in human melanoma A2058 cells when compared to other potential protective agents. CAPE can be applied not only as a chemo-preventive agent but also as an anti-metastatic therapeutic agent in lung cancer and because CAPE is a nuclear factor-κB (NF-κB) inhibitor and 5α reductase inhibitor, it has potential for the treatment of prostate cancer (Ozturk et al., 2012).

References

Akyol S, Ozturk G, Ginis Z, et al. (2013). In vivo and in vitro antõneoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives. Nutr Cancer, 65(4):515-26. doi: 10.1080/01635581.2013.776693.


Berdowska I, Ziel iński B, Fecka I, et al. (2013). Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem, 15;141(2):1313-21. doi: 10.1016/j.foodchem.2013.03.090.


Chen MJ, Shih SC, Wang HY, et al. (2013). Caffeic Acid phenethyl ester inhibits epithelial-mesenchymal transition of human pancreatic cancer cells. Evid Based Complement Alternat Med, 2013:270906. doi: 10.1155/2013/270906.


Hsu TH, Chu CC, Hung MW, et al. (2013). Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J, 280(11):2581-93. doi: 10.1111/febs.12242.


Huang MT, Ma W, Yen P, et al. (1996). Inhibitory effects of caffeic acid phenethyl ester (CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA, RNA and protein in HeLa cells. Carcinogenesis, 17(4):761–5. doi:10.1093/carcin/17.4.761.


Lin HP, Lin CY, Liu CC, et al. (2013). Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int J Mol Sci, 14(3):5264-83. doi: 10.3390/ijms14035264.


Liu CC, Hsu JM, Kuo LK, et al. (2013). Caffeic acid phenethyl ester as an adjuvant therapy for advanced prostate cancer. Med Hypotheses, 80(5):617-9. doi: 10.1016/j.mehy.2013.02.003.


Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA, 93(17):9090-5.


Orban Z, Mitsiades N, Burke TR, Tsokos M, Chrousos GP. (2000). Caffeic acid phenethyl ester induces leukocyte apoptosis, modulates nuclear factor-kappa B and suppresses acute inflammation. Neuroimmunomodulation, 7(2): 99–105. doi:10.1159/000026427.


Ozturk G, Ginis Z, Akyol S, et al. (2012). The anti-cancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci, 16(15):2064-8.


Peng CY, Yang HW, Chu YH, et al. (2012). Caffeic Acid phenethyl ester inhibits oral cancer cell metastasis by regulating matrix metalloproteinase-2 and the mitogen-activated protein kinase pathway. Evid Based Complement Alternat Med, 2012:732578. doi: 10.1155/2012/732578.


Tolba MF, Esmat A, Al-Abd AM, et al. (2013). Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life, 65(8):716-29. doi: 10.1002/iub.1188.

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

β-Elemene

Cancer: Lung, malignant ascites, glioblastoma, gastric

Action: Anti-tumoral., chemotherapy support

Ingredients: Mixed liquid of β-, γ-, δ-elemene.

Indications: Increases the therapeutic effect and lowers the toxic and side-effects of radiotherapy and chemotherapy when in combination with routine regiments of radiotherapy or chemotherapy for lung cancer, liver cancer, esophageal cancer, nasopharyngeal cancer, brain tumors, metastatic bone cancer and other malignancies. It can also be used for intervention, intracavitary chemotherapy and pleural effusion or ascites caused by cancer.

Dosage and usage:

Intravenous injection: 0.4-0.6 g, once daily, 2-3 weeks as a course of treatment.

Pleural injection: 300 ml + 10 ml of 2% procaine. The treatment can be repeated once after 5-7 days if the pleural effusion does not reduce.

Abdominal injection: 500 ml + 10 ml of 2% procaine, 1-2 times every week for 2 consecutive weeks.

Topical administration: 25-50 mg, once daily, 5-10 times as a course of treatment.

Arterial infusion: 300-400 mg once.

Elemene Injection is made from mixed liquid of β-, γ-, δ-elemene. It can increase the therapeutic effect and lower the toxicity and side-effects of radiotherapy and chemotherapy when combined with routine regiments of radiotherapy or chemotherapy for lung cancer, liver cancer, esophageal cancer, nasopharyngeal cancer, brain tumors, metastatic bone cancer and other malignancies. It can also be used for intervention, intraperitoneal chemotherapy, and pleural effusion or ascites caused by cancer (Drug Information Reference in Chinese: See end. 2000-12).

NSCLC; Chemotherapy

Randomized controlled trials (RCTs) of elemene injection combined with cisplatin chemotherapeuties in treating small cell lung cancer (NSCLC) were collected by Xu et al., (2013). Their meta-analysis results suggested that compared with cisplatin chemotherapy alone, the combination of elemene injection and cisplatin chemotherapeutics showed a higher clinical benefit rate (OR = 2. 03, 95% CI:1.43-2. 88, P <0. 000 1) and a better quality of life (OR = 3.23, 95% CI:2. 20-4. 74, P <0. 000 01). As well, the combination could also reduce leucopenia (OR =0. 50, 95% CI:0. 33-0. 76, P <0. 001), and thrombocytopenia (OR =0. 38, 95% CI:0. 16-0. 85, P <0. 02), increase CD4 (MD = 3.32, 95% C1:2. 94-3.70, P <0. 000 01), and CD4/CD8 (MD = 0. 36, 95% CI:0. 28-0. 44, P < 0. 000 01), and relieve gastrointestinal reactions such as nausea and vomiting (OR = 0. 37, 95% CI: 0. 19-0. 71, P = 0. 003).

The analysis indicates that elemene can enhance the chemotherapeutic effect on NSCLC, improve the quality of life, and reduce adverse effect of platinum-contained chemotherapeutics, thereby being worth promoting in clinic.

Lung Cancer

Randomized controlled clinical trials related to the use of β>-elemene injection, as an adjunctive treatment for lung cancer, were retrieved from the Chinese Biomedical (CBMweb), Chinese Medical Current Content (CMCC), China National Knowledge Infrastructure (CNKI), ChinaInfo, Cochrane Central Register of Controlled Trials; MEDLINE, EMBASE, OVID and TCMLARS databases.

A total of 21 source documents (1,467 patients) matched pre-specified criteria for determining the effectiveness and safety of β>-elemene injection as an adjunctive treatment for lung cancer. Five studies involving 285 NSCLC patients reported a higher 24-month survival rate (39.09%) with the adjunctive treatment than with chemotherapy alone (26.17%; RR, 1.51; 95% CI, 1.03 to 2.21). Four studies involving 445 patients reported that the increased probability for improved performance status for patients treated with elemene-based combinations was higher than that of patients treated with chemotherapy alone (RR, 1.82; 95% CI, 1.45 to 2.29).

The results from a subgroup analysis on 12 studies involving 974 NSCLC patients and 9 studies involving 593 patients with both SCLC and NSCLC showed that the tumor control rate for NSCLC improved more in the elemene-based combinations treatment group (78.70%) than in the chemotherapy alone control group (71.31%; RR, 1.06; 95% CI, 1.00 to 1.12). The tumor response rate for NSCLC also improved more among patients treated with elemene based combinations (50.71%) than among patients treated with chemotherapy alone (38.04%; RR, 1.34; 95% CI, 1.17 to 1.54). The effectiveness of chemotherapy for the treatment of lung cancer may improve when combined with β-elemene injection as an adjunctive treatment. The combined treatment can result in an improved quality of life and prolonged survival (Wang et al., 2012).

Malignant Ascites

The effective combination therapy for malignant ascites, the therapeutic value of the combination of Endostar, a modified recombinant human endostatin, and β-elemene, an active component of a traditional Chinese herb, in an H22 mouse malignant ascites model was investigated by Jiang et al. (2012). The results of this study revealed that the combination therapy had significant synergistic effects on the inhibition of ascites formation and a deceased number of tumor cells and protein levels in ascites compared with the results of treatment with a single agent. A decreased peritoneal microvascular permeability and reduction in VEGF, MMP-2 and hypoxia inducible factor 1α(HIF1α) was noted in the combination group, when compared with single agent treatment.

These studies found that in the ascitic tumor cells, the protein levels of VEGF and MMP-2, as well as levels of VEGF mRNA, were significantly inhibited by the combination therapy. The potentiating effects of the combination of Endostar with β-elemene suggest that this novel therapy may yield an effective therapy for the treatment of malignant ascites.

Glioblastoma

Anti-proliferation of glioblastoma cells induced by beta-elemene was dependent on p38 MAPK activation. Treatment of glioblastoma cell lines with beta-elemene, led to phosphorylation of p38 MAPK, cell-cycle arrest in G0/G1 phase and inhibition of proliferation of these cells. Inhibition of p38 MAPK reversed beta-elemene-mediated anti-proliferation effect. Furthermore, the growth of glioblastoma cell-transplanted tumors in nude mice was inhibited by intraperitoneal injection of beta-elemene (Yao et al., 2008).

Breast Cancer; Chemotherapy

Beta-elemene had synergistic effect with Paclitaxel, and its possible mechanism might be correlated with down-regulating the cell-cycle protein cyclin-B1 expression and up-regulating the P27(kip1) expression. Beta-elemene (20 and 40 microg/mL respectively) and Paclitaxel (0.016 and 0.008 microg/mL respectively) synergistically inhibited cell proliferation of MB-468 breast cancer cells, with Q value > 1.15. Beta-elemene alone (52.59 microg/mL) apparently decreased the expression of cyclin-B1 protein. The expression of cyclin-B1 protein in the combined group was also lower than that in the PI group (1.698 microg/mL). The expression of P27(kip1) was up-regulated when compared with that in the betaI group or the PI group (Cai et al., 2013).

Gastric Cancer

TCM therapy applied in the 34 patients assigned in the TCM group (group I) included intravenous injection of Cinobufotalin, beta-elemene, or orally taking of anti-cancer Chinese herbs. The same TCM was also applied in the 36 patients of the combined treatment group (group II), but in combined use of FOLFOX chemotherapeutic protocol.

The median survival period in group II was 31 months, while it was 30 months in group I; the 1-, 2-, 3-year survival rates in group II were 88.89%, 84.38% and 59.26%, and those in the group I were 82.35%, 71.43% and 65.00%, respectively with insignificant difference between the two groups (chi2 = 0.298, P > 0.05); QOF in group I was significantly superior to that in group II (P < 0.05), and the adverse reaction occurrence was significantly less in group I than that in group II.

Chinese medicine treatment can improve the QOF and prolong the survival period of patients with progressive gastric cancer with few side-effects (Liu et al., 2008).

References

Jiang, Z.Y., Qin, S.K., Yin, X.J., Chen, Y.L., Zhu, L. (2012). Synergistic effects of Endostar combined with β-elemene on malignant ascites in a mouse model. Exp Ther Med, 4(2):277-284.

Liu X, Hua BJ. (2008). Effect of traditional Chinese medicine on quality of life and survival period in patients with progressive gastric cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi, 28(2):105-7.

Wang, B., Peng, X.X., Sun, R., Li, J., Zhan, X.R., Wu, L.J., Wang, S.L., & Xie, T. (2012). Systematic review of β-elemene injection as adjunctive treatment for lung cancer. Chinese Journal of Integrative Medicine, 18(11), 8313-823.

Xu, X.W., Yuan, Z.Z., Hu, W.H., Wang, X.K. (2013). Meta-analysis on elemene injection combined with cisplatin chemotherapeutics in treatment of non-small-cell lung cancer. Zhongguo Zhong Yao Za Zhi, 38(9):1430-7.

Yao, Y.Q., Ding, X., Jia, Y.C, et al. (2008). Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett, 264(1):127-34. doi: 10.1016/j.canlet.2008.01.049.

Mollugin

Cancer: Breast, ovarian

Action: Multi-drug resistance, anti-inflammatory, blocks neurotoxicity

Mollugin originally isolated from Rubia cordifolia (L.) is a pharmacological compound for its anti-inflammation, anti-cancer, and anti-viral activity. Mollugin-caused inhibition of phenacetin O-deethylation was concentration-dependent in hierarchical linear models (HLMs), but not time-dependent. In addition, the Lineweaver-Burk plot indicated a typical competitive inhibition. Inhibitory effects of mollugin on human recombinant cDNA-expressed CYP1A1 and 1A2 were comparable. Taken together, the results suggested that mollugin might cause herb-drug interaction through selective inhibition of CYP1A2 in humans receiving herbal medications, including R. cordifolia (Kim et al., 2013).

MDR, Anti-inflammatory

Mollugin treatment significantly inhibited MDR1 expression by blocking MDR1 transcription. P-glycoprotein (P-gp), an important efflux transporter, is encoded by the MDR1 class of genes and is a central element of the multi-drug resistance (MDR) phenomenon in cancer cells. The suppression of MDR1 promoter activity and protein expression was mediated through mollugin-induced activation of AMP-activated protein kinase (AMPK). Furthermore, mollugin inhibited MDR1 expression through the suppression of NF-κB and cAMP-response element binding protein (CREB) activation. These results suggest that mollugin treatment enhanced suppression of P-gp expression by inhibiting the NF-κB signaling pathway and COX-2 expression, as well as attenuating cAMP-response element (CRE) transcriptional activity through AMPK activation (Tran et al., 2013).

Breast Cancer; Ovarian Cancer

Mollugin exhibited potent inhibitory effects on cancer cell proliferation, especially in HER2-overexpressing SK-BR-3 human breast cancer cells and SK-OV-3 human ovarian cancer cells in a dose- and time-dependent manner without affecting immortalized normal mammary epithelial cell line MCF-10A. Mollugin treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level, potentially in part through suppression of NF-κB activation. The combination of mollugin with a MEK1/2 inhibitor may be required in order to achieve optimal efficacy in HER2-overexpressing cancers.

These findings suggest that mollugin is a novel modulator of the HER2 pathway in HER2-overexpressing cancer cells with a potential role in the treatment and prevention of human breast and ovarian cancer with HER2 overexpression (Do et al., 2013).

Blocks Neurotoxicity, Anti-inflammatory

Mollugin also has effects as a neuro-protective agent in glutamate-induced neurotoxicity in the mouse hippocampal HT22 cell line and as an anti-inflammatory agent in lipopolysaccharide-induced microglial activation in BV2 cells. Mollugin showed potent neuro-protective effects against glutamate-induced neuro-toxicity and reactive oxygen species generation in mouse hippocampal HT22 cells.

In addition, the anti-inflammatory effects of mollugin were demonstrated by the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-6). Furthermore, mollugin also activated the p38 mitogen-activated protein kinase (MAPK) pathway both in HT22 and BV2 cells. These results suggest that mollugin may be a promising candidate for the treatment of neurodegenerative diseases related to neuroinflammation (Jeong et al., 2011).

References

Do MT, Hwang YP, Kim HG, et al. (2013). Mollugin inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Journal of Cellular Physiology, 228(5):1087–1097. doi: 10.1002/jcp.24258.


Jeong GS, Lee DS, Kim DC, et al. (2011). Neuroprotective and anti-inflammatory effects of mollugin via up-regulation of heme oxygenase-1 in mouse hippocampal and microglial cells. Eur J Pharmacol, 654(3):226-34. doi: 10.1016/j.ejphar.2010.12.027.


Kim H, Choi HK, Jeong TC, et al. (2013). Selective inhibitory effects of mollugin on CYP1A2 in human liver microsomes. Food Chem Toxicol, 51:33-7. doi: 10.1016/j.fct.2012.09.013.


Tran TP, Kim HG, Choi JH, et al. (2013). Reversal of P-glycoprotein-mediated Multi-drug resistance is induced by mollugin in MCF-7/adriamycin cells. Phytomedicine. doi:10.1016/j.phymed.2013.01.014.

Formononetin

Cancer: Prostate, colorectal., breast, cervical

Action: Cell-cycle arrest, MDR, growth-inhibitory

Estrogenic or Anti-estrogenic

Formononetin is one of the main active components of red clover plants, and considered as a phytoestrogen. Its pharmacological effects in vivo may be either estrogenic or anti-estrogenic, mainly depending upon the estrogen levels (Chen & Sun., 2012).

Cell-cycle Arrest, Prostate Cancer

Formononetin has been demonstrated to cause cell-cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. The molecular mechanisms involved in the effect of formononetin on prostate cancer cells were hence investigated. These results suggest that higher concentrations of formononetin inhibit the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells.

From these results, it was concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, these results provided the foundation for future development of different concentrations of formononetin for treatment of prostate cancer (Ye et al., 2012).

Colon Cancer

Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses anti-tumorigenic properties. It has been demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. The potential of formononetin in controlling angiogenesis and tumor cell invasiveness has further been examined in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group.

The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers (Auyeung et al., 2012).

Cervical Cancer

Formononetin may potentiate the cytotoxicity of epirubicin in HeLa cells through the ROS-mediated MRP inhibition and concurrent activation of the mitochondrial and death receptor pathways of apoptosis. Hence, the circumvention of pump and non-pump resistance using formononetin and epirubicin may pave the way for a powerful chemotherapeutic regimen for treating human cervical cancer (Lo et al., 2013).

Breast Cancer

Recent studies by Chen & Sun (2012) suggest that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. In their present study, they further investigated the molecular mechanisms involved in the induced apoptosis effect of formononetin on breast cancer cells and formononetin inhibited the proliferation of ER-positive MCF-7 cells and T47D cells. The induced apoptosis effect of formononetin on human breast cancer cells was related to Ras-p38MAPK pathway.

Formononetin causes cell-cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1 mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis (Chen et al., 2011).

References

Auyeung KK, Law PC, Ko JK. (2012). Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep, 28(6):2188-94. doi: 10.3892/or.2012.2056.


Chen J, Zeng J, Xin M, Huang W, Chen X. (2011). Formononetin induces cell-cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res, 43(10):681-6. doi: 10.1055/s-0031-1286306.


Chen J, Sun L. (2012). Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells. Horm Metab Res, 44(13):943-8. doi: 10.1055/s-0032-1321818.


Lo YL, Wang W. (2013). Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem Biol Interact, 205(3):188-97. doi: 10.1016/j.cbi.2013.07.003.


Ye Y, Hou R, Chen J, et al. (2012). Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res, 44(4):263-7. doi: 10.1055/s-0032-1301922.

Fucoidan

Cancer:
Lymphoma, prostate, hepatocellular carcinoma, breast, colorectal

Action: Chemotherapy protective

Fucoidan is a ulphated polysaccharide found in brown seaweed, including Sargassum thunbergii [(Mertens ex Roth) Kuntze] and Fucus vesiculosus (L.).

Lymphoma

Fucoidan, a sulfated polysaccharide in brown seaweed, was found to inhibit proliferation and induce apoptosis in human lymphoma HS-Sultan cell lines. Fucoidan-induced apoptosis was accompanied by the activation of caspase-3 and was partially prevented by pre-treatment with a pan-caspase inhibitor, z-VAD-FMK. The neutralizing antibody, Dreg56, against human l-selectin, did not prevent the inhibitory effect of fucoidan on the proliferation of IM9 and MOLT4 cells, both of which express l-selectin; thus it is possible fucoidan induced apoptosis through different receptors. These results demonstrate that fucoidan has direct anti-cancer effects on human HS-Sultan cells through caspase and ERK pathways (Aisa et al., 2005).

Colorectal Cancer; Chemotherapy

A total of 20 patients with unresectable advanced or recurrent colorectal cancer scheduled to undergo treatment with FOLFOX or FOLFIRI were randomly allocated into a fucoidan treatment group (n=10) and a control group without fucoidan treatment (n=10). Results showed that fucoidan regulated the occurrence of fatigue during chemotherapy. Chemotherapy with fucoidan was continued for a longer period than chemotherapy without fucoidan. Additionally, the survival of patients with fucoidan treatment was longer than that of patients without fucoidan, although the difference was not significant.

Thus, fucoidan may enable the continuous administration of chemotherapeutic drugs for patients with unresectable advanced or recurrent colorectal cancer, and as a result, the prognosis of such patients is prolonged (Ikeguchi et al., 2011).

Prostate Cancer

Fucoidan obtained from Undaria pinnatifida induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. The data support that fucoidan might have potential for the treatment of prostate cancer (Boo et al., 2013).

Hepatocellular Carcinoma

Fucoidan isolated from U. pinnatifida induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, and a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation (Yang et al., 2013).

Breast Cancer

Fucoidan exerts its anti-cancer activity through down-regulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer. Fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell- cycle arrest in breast cancer 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan down-regulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin (Xue et al., 2013).

References

Aisa Y, Miyakawa Y, Nakazato T, Shibata H, et al. (2005). Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK Pathways. Am. J. Hematol, 78:7–14. doi: 10.1002/ajh.20182.


Boo HJ, Hong JY, Kim SC, et al. (2013). The anti-cancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs, 11(8):2982-99. doi: 10.3390/md11082982.


Ikeguchi M, Yamamoto M, Arai Y, et al. (2011). Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncology Letters, 2(2). doi: 10.3892/ol.2011.254.


Xue M, Ge Y, Zhang J, et al. (2013). Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via down-regulation of Wnt/β -catenin signaling. Nutr Cancer, 65(3):460-8. doi: 10.1080/01635581.2013.757628.


Yang L, Wang P, Wang H, et al. (2013). Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs, 11(6):1961-76. doi: 10.3390/md11061961.