Category Archives: Ca Ski

Curzerenone

Cancer: Breast, cervical., colorectal

Action: Inhibits proliferation

Breast Cancer, Cervical Cancer, Colorectal Cancer

Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay.

Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner.

The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemo-preventive and chemotherapeutic strategies (Syed Abdul Rahman, Abdul Wahab & Abd Malek, 2013).

Reference

Syed Abdul Rahman SN, Abdul Wahab N, & Abd Malek SN. (2013). In vitro morphological assessment of apoptosis induced by anti-proliferative constituents from the rhizomes of Curcuma zedoaria. Evidence-Based Complementary and Alternative Medicine, 2013(2013), 257108. doi: 10.1155/2013/257108.

Alismol

Cancer: Breast, cervical, colorectal

Action: Inhibits Ca2+ influx

Breast Cancer, Cervical Carcinoma, Colorectal Carcinoma

Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8).

Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7 breast cancer, Ca Ski cervical carcinoma, and HCT-116 colorectal carcinoma in a dose-dependent manner. It can be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signaling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemo-preventive and chemotherapeutic strategies (Syed Abdul Rahman, Abdul Wahab, & Abd Malek, 2013).

Ca2+ influx

Alismol inhibited mainly Ca2+ influx through a voltage-dependent Ca2+ channel (Matsuda et al., 1987) and Alismol, a sesquiterpenoid isolated from Alismatis Rhizoma, caused a sustained, though weak, anti-hypertensive action in all the experimental models, but did not significantly affect the plasma renin activity, ACE activity and the level of aldosterone (Yamahara et al., 1989).

References

Matsuda H, Kobayashi G, Yamahara J, et al. (1987). Effects of alismol isolated from Alismatis Rhizoma on calcium-induced contraction in the rabbit thoracic aorta. Life Sci, 41(15):1845-52.


Syed Abdul Rahman SN, Abdul Wahab N, & Abd Malek SN. (2013). In vitro morphological assessment of apoptosis induced by anti-proliferative constituents from the rhizomes of Curcuma zedoaria. Evidence-Based Complementary and Alternative Medicine, 2013(2013), 257108. doi: 10.1155/2013/257108.


Yamahara J, Kobayashi G, Iwamoto M, et al. (1989). The effect of alismol isolated from alismatis rhizoma on experimental hypertensive models in rats. Phytotherapy Research, 3(2):57–60. doi: 10.1002/ptr.2650030205