Category Archives: Panc-28

Oleanolic Acid (OA)

Cancer:
Pancreatic, hepatocellular carcinoma, prostate, lung, gastric, breast

Action: Radio-sensitizer, pro-apoptotic with 5-FU

Oleanolic acid (OA), a pentacyclic triterpenoid isolated from several plants, including Rosa woodsii (Lindl.), Prosopis glandulosa (Torr.), Phoradendron juniperinum (Engelm. ex A. Gray), Syzygium claviflorum (Roxburgh), Hyptis capitata (Jacq.) and Ternstromia gymnanthera (L.) exhibits potential anti-tumor activity against many tumor cell lines. Mistletoe contains water-insoluble triterpenoids, mainly oleanolic acid, that have anti-tumorigenic effects (StrŸh et al., 2013).

Pancreatic Cancer

Results of a study by Wei et al. (2012) showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml−1. The study also showed that OA could induce remarkable apoptosis and revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells.

These results provide evidence that OA arrests the cell-cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cell.

The effects of the combination of OA and 5-fluorouracil (5-FU) on Panc-28 human pancreatic cells showed that combined use synergistically potentiated cell death effects on these cells, and that the pro-apoptotic effects were also increased. The expression of apoptosis related proteins was also affected in cells treated with the combination of OA and 5-FU, including activation of caspases-3 and the expression of Bcl-2/Bax, survivin and NF-κB (Wei et al., 2012).

Radio-sensitizer

The combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the down-regulation of γ-GCS activity. Therefore, the utilization of OA as a radio-sensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer (Wang et al., 2013).

Prostate Cancer, Lung Cancer, Gastric Cancer, Breast Cancer

Twelve derivatives of oleanolic acid (OA) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50=0.39 µM) and compound 28 displayed the best activity against A549 cell line (IC50=0.22 µM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines (Hao et al., 2013).

Hepatocellular Carcinoma

OA induced G2/M cell-cycle arrest through p21-mediated down-regulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell-cycle arrest. OA demonstrated significant anti-tumor activities in hepatocellular carcinoma (HCC) in vivo and in vitro models. These data provide new insights into the mechanisms underlying the anti-tumor effect of OA (Wang et al., 2013).

References

Hao J, Liu J, Wen X, Sun H. (2013). Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg Med Chem Lett, 23(7):2074-7. doi: 10.1016/j.bmcl.2013.01.129.


StrŸh CM, JŠger S, Kersten A, et al. (2013). Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One, 8(4):e62168. doi: 10.1371/journal.pone.0062168.


Wang J, Yu M, Xiao L, et al. (2013). Radio-sensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep, 30(2):917-24. doi: 10.3892/or.2013.2510.


Wang X, Bai H, Zhang X, et al. (2013). Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell-cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis, 34(6):1323-30. doi: 10.1093/carcin/bgt058.


Wei JT, Liu M, Liuz, et al. (2012). Oleanolic acid arrests cell-cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 33(8):756–765. doi: 10.1002/jat.2725


Wei J, Liu H, Liu M, et al. (2012). Oleanolic acid potentiates the anti-tumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol Rep, 28(4):1339-45. doi: 10.3892/or.2012.1921.