Category Archives: angiogenesis

Ellagic Acid

Cancer:
Pancreatic, prostate, ovarian, breast, bladder, lymphoma, oral., melanoma

Action: Anti-cancer, induces apoptosis, promoted ROS and Ca2+ productions

Ellagic acid (EA) is a polyphenol compound widely found in fruits such as berries, walnuts, pecans, pomegranate, cranberries, and longan. It is well known to have a free radical scavenging activity and has been approved in Japan as an 'existing food additive' for anti-oxidative purposes (HHLW, 1996). In vitro evidence revealed that 100µM EA represented little toxic effect on human normal cells (Losso et al., 2004; Larrosa et al., 2006). A subchronic toxicity study further demonstrated that orally feeding EA (9.4, 19.1, 39.1g/kg b.w., resp.) could not induce mortality or treatment-related clinical signs throughout the experimental period on F344 rats (Tasaki et al., 2008), indicating the low toxicity of EA to mammalians. Furthermore, EA exhibits potent anti-cancer and anti-carcinogenesis activities towards breast, colorectal., oral., prostate (Losso et al., 2004; Larrosa et al., 2006; Malik et al., 2011), pancreatic (Edderkaoui et al., 2008), bladder (Li et al., 2005), neuroblastoma (Fjaeraa et al., 2009), melanoma (Kim et al., 2009), and lymphoma cells (Mishra et al., 2011).

Pancreatic Cancer

Edderkaoui et al. (2008) show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kappa B binding activity.

Furthermore, inhibition of NF-kappa B activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.

Pancreatic Cancer (PANC-1) cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with ellagic acid (EA). Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth which was associated with suppression of cell proliferation and caspase-3 activation, and induction of PARP cleavage. EA also reversed epithelial to mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, MMP-2 and MMP-9.

These data suggest that EA can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt, Shh and Notch pathways. In view of the fact that EA could effectively inhibit human pancreatic cancer growth by suppressing Akt, Shh and Notch pathways, our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer (Zhao et al., 2013).

Ovarian Cancer

Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100  µ M) and assessed for viability, cell-cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell-cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax :  Bcl-2 ratio and restored anoikis in both cell lines.

The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma Chung et al., 2013).

Prostate Cancer; AR+

In the present study, Pitchakarn et al. (2013) investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. They found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Breast Cancer

The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as developing strategies for cancer chemoprevention.

In this study Munagala et al. (2013) used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3weeks until tumor time point. The effect of a chemo-preventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis is also established. These observations provide mechanistic insights into the new molecular events behind the chemo-preventive action of ellagic acid and treatment of breast cancer.

Bladder Cancer

To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase-9 and -3.

On the basis of these observations, Ho et al (2013) suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells.

Lymphoma

Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signaling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells.

Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. The role of ellagic acid was tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation.

The anti-carcinogenic action of ellagic acid was also confirmed by up-regulation of TGF-β1 and down-regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down- regulation of PKC signaling pathway leading to cell proliferation (Mishra et al., 2013).

References

Chung YC, Lu LC, Tsai MH, et al. (2013). The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells. Evid Based Complement Alternat Med, 2013(2013):306705. doi: 10.1155/2013/306705.


Edderkaoui M, Odinokova I, Ohno I, et al. (2008). Ellagic acid induces apoptosis through inhibition of nuclear factor κ B in pancreatic cancer cells. World Journal of Gastroenterology, 14(23):3672–3680.


Fjaeraa C, NŒnberg E. (2009). Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomedicine and Pharmacotherapy, 63(4):254–261.


HHLW (Ministry of Health, Labor and Welfare of Japan). (1996). List of Existing Food Additives, Notification No. 120 of the Ministry of Health and Welfare.


Ho CC, Huang AC, Yu CS, Lien JC, et al. (2013). Ellagic acid induces apoptosis in tsgh8301 human bladder cancer cells through the endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Environ Toxicol. doi: 10.1002/tox.21857.


Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y. (2009). Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. Journal of Biomedical Materials Research, 90(1):145–155.


Larrosa M, Tomás-Barberán FA, Espín JC. (2006). The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry, 17(9):611–625.


Li TM, Chen GW, Su CC, et al. (2005). Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anti-cancer Research, 25(2 A):971–979.


Losso JN, Bansode RR, Trappey A, II, Bawadi HA, Truax R. (2004). In vitro anti-proliferative activities of ellagic acid. Journal of Nutritional Biochemistry, 15(11):672–678.


Mishra S, Vinayak M. (2013). Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep, 40(2):1417-28. doi: 10.1007/s11033-012-2185-8.


Malik A, Afaq S, Shahid M, Akhtar K, Assiri A. (2011). Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pacific Journal of Tropical Medicine, 4(7):550–555.


Mishra S, Vinayak M. (2011). Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leukemia and Lymphoma, 52(11):2155–2161.


Munagala R, Aqil F, Vadhanam MV, Gupta RC. (2013). MicroRNA 'signature' during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett, S0304-3835(13)00462-X. doi: 10.1016/j.canlet.2013.06.012.


Pitchakarn P, Chewonarin T, Ogawa K, et al. (2013). Ellagic Acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac J Cancer Prev, 14(5):2859-63.


Tasaki M, Umemura T, Maeda M, et al. (2008). Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food and Chemical Toxicology, 46(3):1119–1124.


Zhao M, Tang SN, Marsh JL, et al. (2013). Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 337(2):210–217

Genistein (See also Daidzien)

Cancer:
Breast, kidney, prostate, renal., liver, endometrial., ovarian

Action: Anti-angiogenesis, cell-cycle arrest, cancer stem cells, VEGF, radiotherapy, sex hormone-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1)

Genistein is a natural isoflavone phytoestrogen present in a number of plants, including soy, fava, and kudzu (Glycine max [(L.) Merr.], Vicia faba (L.), Pueraria lobata [(Willd.) Ohwi]).

Phytoestrogens

Phytoestrogens have been investigated at the epidemiological., clinical and molecular levels to determine their potential health benefits. The two major groups of phytoestrogens, isoflavones and lignans, are abundant in soy products and flax respectively, but are also present in a variety of other foods. It is thought that these estrogen-like compounds may protect against chronic diseases, such as hormone-dependent cancers, cardiovascular disease and osteoporosis (Stark & Madar, 2002).

S-Equol Production and Isoflavone Metabolism

S-Equol and Breast Cancer

Differences in ability to metabolize daidzein to equol might help explain inconsistent findings about isoflavones and breast cancer. Tseng et al. (2013) examined equol-producing status in relation to breast density, a marker of breast cancer risk, and evaluated whether an association of isoflavone intake with breast density differs by equol-producing status in a sample of Chinese immigrant women. In their sample, 30% were classified as equol producers. In adjusted linear regression models, equol producers had significantly lower mean dense tissue area (32.8 vs. 37.7 cm(2), P = 0.03) and lower mean percent breast density (32% vs. 35%, P = 0.03) than nonproducers. Significant inverse associations of isoflavone intake with dense area and percent density were apparent, but only in equol producers (interaction P = 0.05 for both).

Although these findings warrant confirmation in a larger sample, they offer a possible explanation for the inconsistent findings about soy intake and breast density and possibly breast cancer risk as well. The findings further suggest the importance of identifying factors that influence equol-producing status and exploring appropriate targeting of interventions.

S-Equol and Dietary Factors

S-(-)equol, an intestinally derived metabolite of the soy isoflavone daidzein, is proposed to enhance the efficacy of soy diets. Setchell et al. (2013) performed a comprehensive dietary analysis of 143 macro- and micro-nutrients in 159 healthy adults to determine whether the intake of specific nutrients favors equol production. Three-day diet records were collected and analyzed using Nutrition Data System for Research software and S-(-)equol was measured in urine by mass spectrometry.

Equol producers accounted for 29.6% of participants. No significant differences were observed for total protein, carbohydrate, fat, saturated fat, or fiber intakes between equol producers and nonproducers. However, principal component analysis revealed differences in several nutrients, including higher intakes of polyunsaturated fatty acids (P = 0.039), maltose (P = 0.02), and vitamins A (P = 0.01) and E (P = 0.035) and a lower intake of total cholesterol (P = 0.010) in equol producers.

Subtle differences in some nutrients may influence the ability to produce equol.

S-Equol and Dietary Factors; Fats

The soy isoflavones, daidzein and genistein, and the lignans, matairesinol and secoisolariciresinol, are phytoestrogens metabolized extensively by the intestinal microflora. Considerable important evidence is already available that shows extensive interindividual variation in isoflavone metabolism. There was a 16-fold variation in total isoflavonoid excretion in urine after the high-isoflavone treatment period. The variation in urinary equol excretion was greatest (664-fold), and subjects fell into two groups: poor equol excretors and good equol excretors (36%). A significant negative correlation was found between the proportion of energy from fat in the habitual diet and urinary equol excretion (r = -0.55; p = 0.012). Good equol excretors consumed less fat as percentage of energy than poor excretors (26 +/- 2.3% compared with 35 +/- 1.6%, p < 0.01) and more carbohydrate as percentage of energy than poor excretors (55 +/- 2.9% compared with 47 +/- 1.7%, p < 0.05).

It is suggested that the dietary fat intake decreases the capacity of gut microbial flora to synthesize equol (Rowland et al., 2000).

Isoflavones and Fermented Soy Foods

Serum concentrations of total isoflavones after 1–4 hours were significantly higher in the aglycone-rich fermented soybeans (Fsoy) group than in the glucoside-rich non-fermented soybeans (Soy) group. The Fsoy group showed significantly higher maximum concentration (Cmax: 2.79 ± 0.13 vs 1.74 ± 0.13 µmol L(-1) ) and area under the curve (AUC(0-24 h) : 23.78 ± 2.41 vs 19.95 ± 2.03 µmol day L(-1) ) and lower maximum concentration time (Tmax: 1.00 ± 0.00 vs 5.00 ± 0.67 h) compared with the Soy group. The cumulative urinary excretion of total isoflavones after 2 hours was significantly higher in the Fsoy group than in the Soy group. Individual isoflavones (daidzein, genistein and glycitein) showed similar trends to total isoflavones. Equol (a metabolite from daidzein) did not differ between the two groups.

The results of this study demonstrated that the isoflavones of aglycone-rich Fsoy were absorbed faster and in greater amounts than those of glucoside-rich Soy in postmenopausal Japanese women (Okabe et al., 2011).

Phytoestrogens and Breast Cancer; ER+/ER-, ER α /ER β

Dietary-derived Anti-angiogenic Compounds

Consumption of a plant-based diet can prevent the development and progression of chronic diseases that are associated with extensive neovascularization; however, little is known about the mechanisms. To determine whether prevention might be associated with dietary-derived angiogenesis inhibitors, the urine of healthy human subjects consuming a plant-based diet was fractionated and the fractions examined for their ability to inhibit the proliferation of vascular endothelial cells.

The isoflavonoid genistein was the most potent, and inhibited endothelial cell proliferation and in vitro angiogenesis at concentrations giving half-maximal inhibition of 5 and 150 microM, respectively. Genistein concentrations in urine of subjects consuming a plant-based diet are in the micromolar range, while those of subjects consuming a traditional Western diet are lower by a factor of > 30. The high excretion of genistein in urine of vegetarians and in addition to these results suggest that genistein may contribute to the preventive effect of a plant-based diet on chronic diseases, including solid tumors, by inhibiting neovascularization.

Thus, genistein may represent a member of a new class of dietary-derived anti-angiogenic compounds (Fotsis et al., 1993).

ERβ as a Down-regulator of ER+ Breast Cancer

The estrogen receptor (ER) isoform known as ERβ has become the focus of intense investigation as a potential drug target. The existence of clear-cut differences in ERβ and ERα expression suggests that tissues could be differentially targeted with ligands selective for either isoform (Couse et al., 1997; Enmark et al., 1997). In particular, the fact that ER β is widely expressed but not the primary estrogen receptor in, for example, the uterus (where estrogenic effects are mediated via ERα) (Harris, Katzenellenbogen, & Katzenellenbogen, 2002) opens up the possibility of targeting other tissues while avoiding certain classical estrogenic effects.

A major advance toward understanding how some phytoestrogens achieve modest ERβ selectivity was the X-ray structure determination of the ERβ ligand binding domain (LBD) complexed with genistein (GEN) (Pike et al., 1999), a 40-fold ERβ-selective ligand (Harris et al., 2002). This study clearly showed that there are only two residue substitutions in close proximity to GEN: ERα Leu384 is replaced by ER β Met336, and ERα Met421 is replaced by ER β Ile373.

ERbeta works as counter partner of ERalpha through inhibition of the transactivating function of ERalpha by heterodimerization, distinct regulation on several specific promoters by ERalpha or ERbeta, and ERbeta-specific regulated genes which are probably related to its anti-proliferative properties. Epidemiological studies of hormone replacement therapy and isoflavone (genistein) consumption indicate the possible contribution of ERbeta-specific signaling in breast cancer prevention. A selective estrogen receptor modulator, which works as an antagonist of ERalpha and an agonist of ERbeta, may be a promising chemo-preventive treatment (Saji, Hirose, & Toi, 2005).

Genistein and Apoptosis

The association between consumption of genistein containing soybean products and lower risk of breast cancer suggests a cancer chemo-preventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively.

After 6 days of incubation with 50 microM genistein, MCF-7, but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells.

In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7, but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was also studied. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner; whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18–24 hours but then increased considerably after 48 hours. Hence, the Bax:Bcl-2 ratio initially increased but later decreased.

Data suggests that at the concentration tested, MCF-7 cells, in contrast to MDA-MB-231 cells, were sensitive to the induction of apoptosis by genistein. However, the roles of Bax and Bcl-2 are unclear (Xu & Loo, 2001).

Genistein Derivatives and Breast Cancer Inhibition

Genistein binds to estrogen receptors and stimulates growth at concentrations that would be achieved by a high soy diet, but inhibits growth at high experimental concentrations.

The estrogen receptor (ER) is a major target for the treatment of breast cancer cells. Genistein, a soy isoflavone, possesses a structure similar to estrogen and can both mimic and antagonize estrogen effects although at high concentrations it inhibits breast cancer cell proliferation. Hence, to enhance the anti-cancer activity of Genistein at lower concentrations, seven structurally modified derivatives of Genistein based on the structural requirements for an optimal anti-cancer effect were synthesised. Among those seven, three derivatives showed high anti-proliferative activity with IC(50) levels in the range of 1-2.5 µM, i.e., at much lower concentrations range than Genistein itself, in three ER-positive breast cancer cell lines (MCF-7, 21PT and T47D) studied. In our analysis, we noticed that at IC(50) concentrations, the MA-6, MA-8 and MA-19 Genistein derivatives induced apoptosis, inhibited ER-α messenger RNA expression and increased the ratio of ER-β to ER-α levels in a manner comparable to that of the parent compound Genistein.

Of note, these three modified Genistein derivatives exerted their effects at concentrations 10–15 times lower than the parent compound, decreasing the likelihood of significant ER- α pathway activation, which has been a concern for Genistein. Hence these compounds might play a useful role in breast cancer chemoprevention (Marik et al., 2011).

Genistein and ER α

To determine the effects of low-dose, long-term genistein exposure MCF-7 breast cancer cells were cultured in 10nM genistein for 10-12 weeks and investigated whether or not this long-term genistein treatment (LTGT) altered the expression of estrogen receptor alpha (ERalpha) and the activity of the PI3-K/Akt signaling pathway. This is known to be pivotal in the signaling of mitogens such as oestradiol (E(2)), insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). LTGT significantly reduced the growth promoting effects of E(2) and increased the dose-dependent growth-inhibitory effect of the PI3-K inhibitor, LY 294002, compared to untreated control MCF-7 cells.

This was associated with a significant decreased protein expression of total Akt and phosphorylated Akt but not ERalpha. Rapamycin, an inhibitor of one of the downstream targets of Akt, mammalian target of rapamycin (mTOR), also dose-dependently inhibited growth but the response to this drug was similar in LTGT and control MCF-7 cells. The protein expression of liver receptor homologue-1 (LRH1), an orphan nuclear receptor implicated in tumorigenesis was not affected by LTGT.

These results show that LTGT results in a down-regulation of the PI3-K/Akt signaling pathway and may be a mechanism through which genistein could offer protection against breast cancer (Anastasius et al., 2009).

Genistein and ER+/ER-

Genistein was found to cause a dose-dependent growth inhibition of the two hormone-sensitive cell lines T47D and ZR75.1 and of the two hormone-independent cell lines MDAMB-231 and BT20. Flow cytometric analysis of cells treated for 4 days with 15 and 30 M genistein showed a dose-dependent accumulation in the G2M phase of the cell-cycle. At the highest tested concentration, there was a 7-fold increase in the percentage of cells in G2M (63%) with respect to the control (9%) in the case of T47D cells and a 2.4-fold increase in the case of BT20. An intermediate 4-fold accumulation was observed in the case of MDAMB-231 and ZR75.1. The G2M arrest was coupled with a parallel depletion of the G0/G1 phase.

To understand the mechanism of action underlying the block in G2M induced by genistein, Cappelletti et al. (2000) investigated the expression and the activity of cyclins and of cyclin-dependent kinases specifically involved in the G2M transition. As expected, p34cdc-2 expression, monitored by Western blotting, was unaffected by genistein treatment in all cell lines. With the exception of the T47D cell line, we revealed an increase in the tyrosine phosphorylated form of p34, suggesting an inactivation of the p34cdc-2 catalytic activity consequent to treatment of cells with genistein. In fact, immunoprecipitates from genistein-treated MDAMB-231 and BT20 cells displayed a 4-fold decrease in kinase activity evaluated using the histone H1 as substrate.

Conversely, no variation in kinase activity was observed between treated and untreated ZR75.1 cells despite the increase in p34 phosphorylation. In cells treated with 30 M genistein, cyclin B1 (p62) increased 2.8-,8-and 103-fold, respectively, in BT20, MDAMB-231, and ZR75.1 cells, suggesting an accumulation of the p62, which is instead rapidly degraded in cycling cells. No effects were observed on cyclin expression in T47D cells.

We therefore conclude that genistein causes a G2M arrest in breast cancer cell lines, but that such growth arrest is not necessarily coupled with deregulation of the p34cdc-2/cyclin B1 complex only in all of the studied cell lines.

Genistein and ER+/ER-; MDR

Genistein is a potent inhibitor of the growth of the human breast carcinoma cell lines, MDA-468 (estrogen receptor negative), and MCF-7 and MCF-7-D-40 (estrogen receptor positive) (IC50 values from 6.5 to 12.0 µg/ml). The presence of the estrogen receptor is not required for the isoflavones to inhibit tumor cell growth (MDA-468 vs MCF-7 cells). In addition, the effects of genistein and biochanin A are not attenuated by over expression of the multi-drug resistance gene product (MCF-7-D40 vs MCF-7 cells (Peterson et al., 1991).

Studies have shown that genistein exerts multiple suppressive effects on both estrogen receptor positive (ER+) as well as estrogen receptor negative (ER-) human breast carcinoma lines suggesting that the mechanisms of these effects may be independent of ER pathways.

In the present study however Shao et al. (2000) provide evidence that in the ER+ MCF-7, T47D and 549 lines but not in the ER-MDA-MB-231 and MDA-MB-468 lines both presumed 'ER-dependent' and 'ER-independent' actions of genistein are mediated through ER pathways. Genistein's anti-proliferative effects are estrogen dependent in these ER+ lines, being more pronounced in estrogen-containing media and in the presence of exogenous 17-beta estradiol. Genistein also inhibits the expression of ER-downstream genes including pS2 and TGF-beta in these ER+ lines and this inhibition is also dependent on the presence of estrogen. Genistein inhibits estrogen-induced protein tyrosine kinase (PTK) activity. Genistein is only a weak transcriptional activator and actually decreases ERE-CAT levels induced by 17-beta estradiol in the ER+ lines.

Genistein also decreases steady state ER mRNA only in the presence of estrogen in the ER+ lines thereby manifesting another suppression of and through the ER pathway. Their observations resurrect the hypothesis that genistein functions as a 'good estrogen' in ER+ breast carcinomas. Since chemo-preventive effects of genistein would be targeted to normal ER-positive ductal-lobular cells of the breast, this 'good estrogen' action of genistein is most relevant to our understanding of chemoprevention.

Genistein and Concentration

The anti-proliferative activity of the isoflavones daidzein and genistein were investigated in three breast cancer cell lines with different patterns of estrogen receptor (ER) and c erbB 2 protein expression (ERα positive MCF 7 cells, c erbB 2 positive SK BR 3 cells and ERα/c erbB 2 positive ZR 75 1). After treatment at various concentrations (1 200 µM for 72 hours), the effect of daidzein and genistein on the proliferation of different cell types varied; these effects were found to be associated with ERα and c erbB 2 expression. Daidzein and genistein exhibited biphasic effects (stimulatory or inhibitory) on proliferation and ERα expression in MCF 7 cells. Although 1 µM daidzein significantly stimulated cell growth, ERα expression was unaffected. However, genistein showed marked increases in proliferation and ERα expression after exposure to <10 µM genistein.

Notably, the inhibition of cell proliferation by 200 µM genistein was greater compared to that by daidzein at the same concentration. Daidzein and genistein significantly inhibited proliferation of SK BR 3 and ZR 75 1 cells in a dose-dependent manner. In addition, ERα and c erbB 2 expression was reduced by daidzein and genistein in both SK BR 3 and ZR 75 1 cells in a dose-dependent manner. However, the effect of genistein was greater compared to that of daidzein.

In conclusion, the isoflavones daidzein and genistein showed anti breast cancer activity, which was associated with expression of the ERα and c erbB 2 receptors (Choi et al., 2013).

ER- α / ER β Receptors

Isoflavones are phytoestrogens that have been linked to both beneficial as well as adverse effects in relation to cell proliferation and cancer risks. The mechanisms that could be involved in this dualistic mode of action were investigated. One mechanism relates to the different ultimate cellular effects of activation of estrogen receptor (ER) α, promoting cell proliferation, and of ERβ, promoting apoptosis, with the major soy isoflavones genistein and daidzein activating especially ERβ.

A second mode of action includes the role of epigenetics, including effects of isoflavones on DNA methylation, histone modification and miRNA expression patterns. The overview presented reveals that we are only at the start of unraveling the complex underlying mode of action for effects of isoflavones, both beneficial or adverse, on cell proliferation and cancer risks. It is evident that whatever model system will be applied, its relevance to human tissues with respect to ERα and ERβ levels, co-repressor and co-activator characteristics as well as its relevance to human exposure regimens, needs to be considered and defined (Rietjens et al., 2013).

Genistein and ER+/ER-, ER- α / ER β Receptors

A novel mechanism of adipokine, adiponectin (APN) -mediated signaling that influences mammary epithelial cell proliferation, differentiation, and apoptosis to modify breast cancer risk has been identified. It was demonstrated that early dietary exposure to soy protein isolate induced mammary tissue APN production without corresponding effects on systemic APN levels. In estrogen receptor (ER)-negative MCF-10A cells, recombinant APN promoted lobuloalveolar differentiation by inhibiting oncogenic signal transducer and activator of transcription 3 activity.

In ER-positive HC11 cells, recombinant APN increased ERβ expression, inhibited cell proliferation, and induced apoptosis. Using the estrogen-responsive 4X-estrogen response element promoter-reporter construct to assess ER transactivation and small interfering RNA targeting of ERα and ERβ, Rahal et al. (2011) show that APN synergized with the soy phytoestrogen genistein to promote ERβ signaling in the presence of estrogen (17β-estradiol) and ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and to oppose ERα signaling in the presence of the ERα-specific agonist 4,4',4'-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol.

The enhancement of ERβ signaling with APN + genistein co-treatments was associated with induction of apoptosis, increased expression of pro-apoptotic/prodifferentiation genes (Bad, p53, and Pten), and decreased anti-apoptotic (Bcl2 and survivin) transcript levels. These results suggest that mammary-derived APN can influence adjacent epithelial function by ER-dependent and ER-independent mechanisms that are consistent with reduction of breast cancer risk and suggest local APN induction by dietary factors as a targeted approach for promotion of breast health.

Genistein and Non-breast Cancer

Genistein Concentrations; Endometrial Cancer

The influence of two phytoestrogens (Genistein and Daidzein) on estrogen-related receptor-α in endometrial cancer cell line Ishikawa was investigated on the proliferation of the cells in this cell line. Ishikawa cells were incubated with different concentrations of Genistein and Daidzein (40, 20, 10, 5 µmol/L) for 24 hours or 48 hours, followed by Real-Time PCR for analyzing the expression of ERR-α mRNA in the cell line. MTT assay was then performed to evaluate the proliferation of Ishikawa cells.

The expression level of ERR-α mRNA in Ishikawa cells was higher than that of the control group after being dealt for 24 hours or 48 hours with Genistein, and the concentration 20 µmol/L was most effective. Nevertheless, this up-regulation was blocked when the cells were treated with 40 µmol/L Genistein. Lower concentration (5, 10 µmol/L) Genistein had depressant effect on proliferation of the cells, while higher concentrations (20, 40 µmol/L) had stimulant effect. After being treated with different concentrations of Daidzein, the expression of ERR- α mRNA in all experimental groups was significantly higher than that in the control group. In the 24 hour group, the concentration 40 µmol/L had most obvious effect; but in the 48 hour group, the concentration 20 µmol/L had most obvious effect, and this up-regulation was blocked when the concentration was elevated to 40 µmol/L.

Noticeably, all concentrations of Daidzein had depressant effect on the proliferation of Ishikawa cells in both 24 hour and 48 hour groups. In the 24 hour group, lower concentrations were more effective, but in the 48 hour group, concentration showed no significant effect. In lower concentrations, both Genistein and Daidzein have up-regulation effect on the expression of ERR-α, and block the proliferation of Ishikawa cells; but in higher concentrations, the up-regulation effect on ERR-α mRNA expression by these two phytoestrogens is not obvious. Genistein stimulates the proliferation of lshikawa cells in higher concentrations, while Daidzein suppresses the proliferation, especially in lower concentrations (Xin et al., 2009).

Genistein and VEGF; Ovarian Cancer

Genistein represses NF-kappaB (NF-κB), a pro-inflammatory transcription factor, and inhibits pro-inflammatory cytokines such as TNF-α and IL-6 in epithelial ovarian cancer. Additionally, it has been shown to stabilize p53 protein, sensitize TRAIL (TNF receptor apoptosis-inducing ligand) induce apoptosis, and prevent or delay chemotherapy-resistance. Recent studies further indicate that genistein potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro.

Based on widely published in vitro and mouse-model data, some anti-inflammatory phytochemicals appear to exhibit activity in modulating the tumor microenvironment. Specifically, apiegenin, baicalein, curcumin, EGCG, genistein, luteolin, oridonin, quercetin, and wogonin repress NF-kappaB (NF-κB, a pro-inflammatory transcription factor) and inhibit pro-inflammatory cytokines such as TNF-α and IL-6. Recent studies further indicate that apigenin, genistein, kaempferol, luteolin, and quercetin potently inhibit VEGF production and suppress ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM (Chen, Michael, & Butler-Manuel, 2012).

Renal Cell Carcinoma, Prostate Cancer; Radiotherapy

The KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer. These studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more effective and safer therapeutic approach as the tumor growth and progression are inhibited both in the primary and metastatic sites (Gilda et al., 2007).

Cell-cycle Arrest

Genistein treatment increased Wee1 levels and decreased phospho-Wee1 (Ser 642). Moreover, genistein substantially decreased the Ser473 and Thr308 phosphorylation of Akt and up-regulated PTEN expression. Down-regulation of PTEN by siRNA in genistein-treated cells increased phospho-Wee1 (Ser642), whereas it decreased phospho-Cdc2 (Tyr15), resulting in decreased G2/M cell-cycle-arrest. Therefore, induction of G2/M cell-cycle arrest by genistein involved up-regulation of PTEN (Liu et al., 2013).

Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity for self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs.

Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate (Dandawate et al., 2013).

Genistein and Sex Hormone-binding Globulin (SHBG)

Studies have indicated a correlation between a high level of urinary lignans and isoflavonoid phytoestrogens, particularly genistein, and a low incidence of hormone-dependent cancers, such as breast and prostate cancer. Previously it has been observed that a vegetarian diet is associated with high plasma levels of sex hormone-binding globulin (SHBG), reducing clearance of sex hormones and probably risk of breast and prostate cancer. In the present study we investigated the in vitro effect of genistein on the production of SHBG by human hepatocarcinoma (Hep-G2) cells in culture and its effect on cell proliferation.

It has additionally been found that genistein not only significantly increases the SHBG production by Hep-G2 cells, but also suppresses the proliferation of those cancer cells already at a stage when SHBG production continues to be high. It is hence concluded that, in addition to the lignan enterolactone, the most abundant urinary isoflavonoid genistein stimulates SHBG production and inhibits Hep-G2 cancer cell proliferation (Mousavi et al., 1993).

Insulin-like Growth Factor-1 (IGF-1); Prostate Cancer

Elevated levels of insulin-like growth factor-1 (IGF-1) are associated with an increased risk of several different cancers, including prostate cancer. Inhibition of IGF-1 and the downstream signaling pathways mediated by the activation of the IGF-1 receptor (IGF-1R) may be involved in inhibiting prostate carcinogenesis. Genistein treatment caused a significant inhibition of IGF-1-stimulated cell growth. Flow cytometry analysis revealed that genistein significantly decreased the number of IGF-1-stimulated cells in the G0/G1 phase of the cell-cycle. In IGF-1-treated cells, genistein effectively inhibited the phosphorylation of IGF-1R and the phosphorylation of its downstream targets, such as Src, Akt, and glycogen synthase kinase-3β (GSk-3β). IGF-1 treatment decreased the levels of E-cadherin but increased the levels of β-catenin and cyclin D1.

However, genistein treatment greatly attenuated IGF-1-induced β-catenin signaling that correlated with increasing the levels of E-cadherin and decreasing cyclin D1 levels in PC-3 cells. In addition, genistein inhibited T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity. These results showed that genistein effectively inhibited cell growth in IGF-1-stimulated PC-3 cells, possibly by inhibiting downstream of IGF-1R activation (Lee et al., 2012).

Sex Hormone-binding Globulin (SHBG); Hepatoma

Sex hormone-binding globulin (SHBG) is the main transport binding protein for sex steroid hormones in plasma and regulates their accessibility to target cells. Plasma SHBG is secreted by the liver under the control of hormones and nutritional factors. In the human hepatoma cell line (HepG2), thyroid and estrogenic hormones, and a variety of drugs including the anti-estrogen tamoxifen, the phytoestrogen, genistein and mitotane (Op'DDD) increase SHBG production and SHBG gene promoter activity. In contrast, monosaccharides (glucose or fructose) effectively decrease SHBG expression by inducing lipogenesis, which reduces hepatic HNF-4alpha levels, a transcription factor that plays a critical role in controlling the SHBG promoter. Interestingly, diminishing hepatic lipogenesis and free fatty acid liver biosynthesis also appear to be associated with the positive effects of thyroid hormones and PPARgamma antagonists on SHBG expression.

This mechanism provides a biological explanation for why SHBG is a sensitive biomarker of insulin resistance and the metabolic syndrome, and why low plasma SHBG levels are a risk factor for developing hyperglycemia and type 2 diabetes, especially in women (Pugeat et al., 2009).

Cancer: Pancreatic

Pancreatic cancer remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Genistein is a prominent isoflavonoid found in soy products and has been proposed to be responsible for lowering the rate of pancreatic cancer in Asians. However, the molecular mechanism(s) by which genistein elicits its effects on pancreatic cancer cells has not been fully elucidated.

Wang et al., (2006) have previously shown that genistein induces apoptosis and inhibits the activation of nuclear factor kappaB (NF-kappaB) pathway. Moreover, Notch signaling is known to play a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of pancreatic cancer. Hence, in our study, they investigated whether there is any cross talk between Notch and NF-kappaB during genistein-induced apoptosis in BxPC-3 pancreatic cancer cells. They found that genistein inhibits cell growth and induces apoptotic processes in BxPC-3 pancreatic cancer cells.

This was partly due to inhibition of Notch-1 activity. BxPC-3 cells transfected with Notch-1 cDNA showed induction of NF-kappaB activity, and this was inhibited by genistein treatment. From these results, we conclude that the inhibition of Notch-1 and NF-kappaB activity and their cross talk provides a novel mechanism by which genistein inhibits cell growth and induces apoptotic processes in pancreatic cancer cells.

References

Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA. (2009). Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signaling pathway. J Steroid Biochem Mol Biol, 116(1-2):50-55.


Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G J. (2000). Genistein blocks breast cancer cells in the G2M phase of the cell-cycle. Cell. Biochem, 79(4):594-600. doi: 10.1002/1097-4644(20001215)79:4<594::AID-JCB80>3.0.CO;2-4.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Choi EJ, Kim GH. (2013). Anti-proliferative activity of daidzein and genistein may be related to ERα /c-erbB-2 expression in human breast cancer cells. Mol Med Rep, 7(3):781-4. doi: 10.3892/mmr.2013.1283.


Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138(1997):4613–4621


Dandawate P, Padhye S, Ahmad A, Sarkar FH. (2013). Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res, 3(2):165-182.


Enmark E, Peltohuikko M, Grandien K, et al. (1997). Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab, 82(1997):4258–4265.


Fotsis T, Pepper M, Adlercreutz H, et al. (1993). Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci, 90(7):2690-4.


Harris HA, Albert LM, Leathurby Y, et al. (2002). Evaluation of an estrogen receptor- β agonist in animal models of human disease. Endocrinology, 144(2003):4241–4249


Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. (2002). Characterization of the biological roles of the estrogen receptors, ER alpha and ER beta, in estrogen target tissues in vivo through the use of an ER alpha-selective ligand. Endocrinology, 143(2002):4172–4177.


Hillman GG, Wang Y, Che M, et al. (2007). Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model. BMC Cancer, 7:4. doi:10.1186/1471-2407-7-4.


Lee J, Ju J, Park S, et al. (2012). Inhibition of IGF-1 Signaling by Genistein: Modulation of E-Cadherin Expression and Down-regulation of β -Catenin Signaling in Hormone Refractory PC-3 Prostate Cancer Cells. Nutrition and Cancer, 64(1). doi:10.1080/01635581.2012.630161


Liu YL, Zhang GQ, Yang Y, et al. (2013). Genistein Induces G2/M Arrest in Gastric Cancer Cells by Increasing the Tumor Suppressor PTEN Expression. Nutr Cancer.


Marik R, Allu M, Anchoori R, et al. (2011). Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer Biol Ther, 11(10):883-92.


Mousavi Y, Adlercreutz H. (1993). Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids, 58(7):301-4.


Okabe Y, Shimazu T, Tanimoto H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric, 91(4):658-63. doi: 10.1002/jsfa.4228.


Peterson G, Barnes S. (1991). Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochemical and Biophysical Research Communications, 179(1):661-667. doi:10.1016/0006-291X(91)91423-A.


Pike ACW, Brzozowski AM, Hubbard RE, et al. (1999). Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J, 18(1999): 4608–4618


Pugeat M, Nader N, Hogeveen K, et al. (2010). Sex hormone-binding globulin gene expression in the liver: Drugs and the metabolic syndrome. Mol Cell Endocrinol, 316(1):53-9. doi: 10.1016/j.mce.2009.09.020.


Rahal OM, Simmen RC. (2011). Paracrine-Acting Adiponectin Promotes Mammary Epithelial Differentiation and Synergizes with Genistein to Enhance Transcriptional Response to Estrogen Receptor β Signaling. Endocrinology, 152(9):3409-21. doi: 10.1210/en.2011-1085.


Rietjens IM, Sotoca AM, Vervoort J, Louisse J. (2013). Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res, 57(1):100-13. doi: 10.1002/mnfr.201200439.


Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer, 36(1):27-32.


Saji S, Hirose M, Toi M. (2005). Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol, 56(1):21-6.


Setchell KD, Brown NM, Summer S, et al. (2013). Dietary Factors Influence Production of the Soy Isoflavone Metabolite S-(-)Equol in Healthy Adults. J Nutr.


Shao ZM, Shen ZZ, Fontana JA, Barsky SH. (2000). Genistein's ER-dependent and independent actions are mediated through ER pathways in ER-positive breast carcinoma cell lines. Anti-cancer Res, 20(4):2409-16.


Stark A, Madar Z. (2002). Phytoestrogens: a review of recent findings. J Pediatr Endocrinol Metab, 15(5):561-72.


Tseng M, Byrne C, Kurzer MS, Fang CY. (2013). Equol-producing status, isoflavone intake, and breast density in a sample of u.s. Chinese women. Cancer Epidemiol Biomarkers Prev, 22(11):1975-83. doi: 10.1158/1055-9965.EPI-13-0593.


Xin Z, Siji L, Yan D, Weijuan X, Jie S, Qianyu W. (2009). Influence of Genistein and Daidzein on estrogen-related receptor- α in an Endometrial Carcinoma Cell Line. Tong Ji Da Xue Xue Bao (Yi Xue Ban), 30(4): 12-17.


Xu J, Loo G. (2001). Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. Journal of Cellular Biochemistry, 82(1), 78-88.

Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer. 2006 Apr 15;118(8):1930-6.

Mangiferin

Cancer: Breast, gliomas, colon

Action: Chemo-preventive agent, chelating agent

Mangiferin, a glucosylxanthone isolated from Anemarrhena asphodeloides, is an efficient iron chelator, therefore preventing the generation of hydroxyl radical in Fenton-type reactions. Numerous published in vitro and in vivo pharmacological studies have demonstrated many other activities of mangiferin: analgesic, anti-diabetic, anti-sclerotic, anti-microbial and anti-viral., cardio-, hepato-, and neuro-protective, anti-inflammatory, anti-allergic, MAO-inhibiting and memory-improving, as well as radio-protective against X-ray, gamma, and UV radiation. Several studies also indicated its ability to inhibit cancerogenesis and cancer cell growth by apoptosis induction in vitro and in vivo (Matkowski et al., 2013).

Colon Cancer; Pre-neoplastic Lesions

Recent studies have shown that mangiferin has potential as an anti-oxidant, and as an anti-viral agent. The effects of mangiferin in rat colon carcinogenesis induced by the chemical carcinogen, azoxymethane (AOM), were studied. Two experiments were carried out: a short-term   assay to investigate the effects of mangiferin on the development of pre-neoplastic lesions by AOM, aberrant crypt foci (ACF); and a long-term assay for the influence of mangiferin on tumorigenesis induced by AOM. In the short-term assay, 0.1% mangiferin in a diet significantly inhibited the ACF development in rats treated with AOM, compared to rats treated with AOM alone (64.6±22.0 vs. 108.3±43.0).

In the long-term assay, the group treated with 0.1% mangiferin in initiation phase of the experimental protocol had significantly lower incidence and multiplicity of intestinal neoplasms induced by AOM (47.3% and 41.8% reductions of the group treated with AOM alone for incidence and multiplicity, respectively). In addition, the cell proliferation in colonic mucosa was reduced in rats treated with mangiferin (65–85% reductions of the group treated with AOM alone). These results suggest that mangiferin has potential as a naturally-occurring chemo-preventive agent (Yoshimi et al., 2001).

Mangiferin may be used as an effective chemo-preventive agent against breast cancer. Mangiferin, which is a naturally occurring glucosylxanthone, has exhibited promising anti-cancer activities. In this study, the anti-cancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. Li et al. (2013) showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells.

Gliomas

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which play a key role in invasion, migration, and angiogenesis of astrogliomas and other malignant tumors. Thus, controlling MMPs has been considered an important therapeutic strategy for prevention and/or treatment of gliomas.

Mangiferin inhibits the binding of NF- κB and AP-1 to the MMP-9 promoter and suppresses the PMA-induced phosphorylation of Akt and MAP kinases, which are upstream signaling molecules in MMP-9 expression. Thus, the specific inhibition of MMP-9 by mangiferin may provide a valuable pharmacological tool for treatment of gliomas (Jung et al., 2012,).

References

Jung JS, Jung K, Kim DH, Kim HS. (2012). Selective inhibition of MMP-9 gene expression by mangiferin in PMA-stimulated human astroglioma cells: involvement of PI3K/Akt and MAPK signaling pathways. Pharmacol Res, 66(1):95-103. doi: 10.1016/j.phrs.2012.02.013.


Li H, Huang J, Yang B, et al. (2013). Mangiferin exerts anti-tumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β -catenin signaling pathway. Toxicol Appl Pharmacol, 272(1):180-90. doi: 10.1016/j.taap.2013.05.011.


Matkowski A, Ku ś P, G-ralska E, Wo ź niak D. (2013). Mangiferin – a bioactive xanthonoid, not only from mango and not just anti-oxidant. Mini Rev Med Chem, 13(3):439-55.


Yoshimi N, Matsunaga K, Katayama M, et al. (2001). The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Letters, 163(2):163-70. doi:10.1016/S0304-3835(00)00678-9

Honokiol (See also Injectables)

Cancer:
Lung, breast, prostate, leukemia, colorectal., esophageal., ovarian, myeloma, pancreatic, stomach, uterine

Action: Anti-angiogenic, chemo-sensitizer, multi-drug resistance reversal., anti-inflammatory, anxiolytic, anti-depressant, inhibits VEGF, anti-metastatic, synergistic effects with other cancer treatments

Honokiol is a phenolic compound purified from plants of the Magnolia genus, including Magnolia officinalis (Rehder & Wilson) and Magnolia grandiflora (L.), that exhibits anti-cancer effects in experimental models with various types of cancer cells, including esophageal., ovarian, breast, and lung cancer, as well as myeloma and leukemia. It is speculated that this compound causes cancer cell death in part through targeting mitochondria (Munroe et al., 2007; Chen et al., 2009; Fried & Arbiser, 2009).

Inhibits Angiogenesis, MDR, Anti-inflammatory, Inhibits VEGF

Honokiol is one of two dominant biphenolic compounds isolated from Magnolia spp. bark, and is the most widely researched active constituent of the bark. In vivo studies suggest that honokiol's greatest value is in its multiple anti-cancer actions. In vitro research suggests honokiol has potential to enhance current anti-cancer regimens by inhibiting angiogenesis, promoting apoptosis, providing direct cytotoxic activity, down-regulating cancer cell signaling pathways, regulating genetic expression, enhancing the effects of specific chemotherapeutic agents, radio-sensitizing cancer cells to radiation therapy, and inhibiting multi-drug resistance.

Honokiol also shows potential in preventive health by reducing inflammation and oxidative stress, providing neurological protection, and regulating glucose; in mental illness by its effects against anxiety and depression; and in helping regulate stress response signaling. Its anti-microbial effects demonstrate potential for partnering with anti-viral/antibiotic therapy, and treating secondary infections.

Honokiol may occupy a distinct therapeutic niche because of its unique characteristics: the ability to cross the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSFB), high systemic bioavailability, and its actions on a multiplicity of signaling pathways and genomic activity. There is a need for research on honokiol to progress to human studies and on into clinical use.

The preclinical research on honokiol's broad-ranging capabilities shows its potential as a therapeutic compound for numerous solid and hematological cancers, including its effectiveness in combating multi-drug resistance (MDR) and its synergy with other anti-cancer therapies. Research thus far shows no toxicity or serious adverse effects in animal models.

Honokiol has also been shown to inhibit spread of cancer cells through the lymph system by inhibiting one of the primary pathways involved in growth stimulation related to vascular endothelial growth factor (VEGF) (Wen et al., 2009).

Inhibits Angiogenesis, Gastric Cancer

A 2012 in vivo study in PLoS One showed that honokiol, by inhibiting angiogenic pathways such as STAT-3, dampened peritoneal dissemination of gastric cancer in mice (5 mg/kg delivered intraperitoneally) (Liu et al., 2012).    

Induces Apoptosis; Leukemia

Honokiol induces cell apoptosis in several cell lines, such as leukemia cell lines HL-60, colon cancer cell lines RKO, lung cancer cell lines A549 and CH27 (Hirano et al., 1994; Wang et al., 2004; Hibasami et al., 1998; Konoshima et al., 1991;Yang et al., 2002; Kong et al., 2005). It also has remarkable in vivo anti-tumor activities in tumor mouse models (Bai et al., 2003). Honokiol has demonstrated potent anti-angiogenic and anti-tumor properties against aggressive angiosarcoma by blocking of VEGF-induced VEGF receptor 2 autophosphorylation (Konoshima et al., 1991; Yang et al., 2002).

MDR

Honokiol has also been found to down-regulate the expression of P-glycoprotein at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line. The down-regulation of P-glycoprotein is accompanied with a partial recovery of the intracellular drug accumulation (Xu et al., 2006).

Prostate Cancer

In addition, it has been shown that prostate cancer cells that failed to respond to hormone withdrawal responded to honokiol-induced apoptosis. It was found to significantly induce death in cells surrounding primary and metastatic prostate cancers, the prostate stromal fibroblasts, marrow stromal cells, and bone marrow-associated endothelial cells. Honokiol is hence a promising nontoxic agent that could be used as an adjuvant with low-dose docetaxel for the treatment of hormone-refractory prostate cancer and its distant bone metastases (Shigemura et al., 2007).

Anti-metastatic

Honokiol inhibited the activity of MMP-9, which may be responsible, in part, for the inhibition of tumor cell invasiveness (Nagase et al., 2001).

Breast Cancer

The development of more targeted and low toxic drugs from traditional Chinese medicines for breast cancer are needed due to most of the anti-breast cancer drugs often being limited because of drug resistance and serious adverse reactions. Results have shown that honokiol inhibited the rate of breast cancer MDA-MB-231 cell growth (Nagalingam et al., 2012).

Synergistic Effects with Other Cancer Treatments

One of the most promising benefits of honokiol is its ability to synergize with other cancer treatments. Clinical trials are desperately needed to validate the potential synergy that has been demonstrated in vitro and in vivo.

Chemotherapy

• A 2013 in vitro study published in the International Journal of Oncology showed that honokiol synergized chemotherapy drugs in Multi-drug-resistant breast cancer (Tian et al., 2013). A 2011 in vitro study published in PLoS One found that honokiol enhanced the apoptotic effects of the anti-cancer drug gemcitabine against pancreatic cancer (Arora et al., 2011).

• In vivo research published in Oncology Letters in 2011 found honokiol enhanced the action of cisplatin against colon cancer (Cheng et al., 2011).

• A 2010 in vitro study from the Journal of Biological Regulators and Homeostatic Agents showed that honokiol resensitized cancer cells to doxorubicin in Multi-drug-resistant uterine cancer (Angelini et al., 2010).

• A 2010 in vitro study published in Toxicology Mechanisms and Methods showed honokiol performed synergistically with the drug imatinib against human leukemia cells (Wang et al., 2010).

• 2008 in vivo research published in the International Journal of Gynecological Cancer showed honokiol to potentiate the activity of cisplatin in murine models of ovarian cancer (Liu et al., 2008).

• 2005 in vitro research published in Blood showed honokiol enhanced the cytotoxicity induced by fludarabine, cladribine, and chlorambucil, indicating it is a potent inducer of apoptosis in B-CLL cells (Battle et al., 2005).

Radiation treatment

• 2012 in vitro research published in Molecular Cancer Therapeutics showed that honokiol was able to sensitize cancer cells to radiation treatments (Ponnurangam et al., 2012).

• A 2011 in vitro study published in American Journal of Physiology Gastrointestinal and Liver Physiology showed honokiol sensitized treatment-resistant colon cancer cells to radiation therapy (He et al., 2011).

Inhibition of multi-drug resistance

Honokiol has been shown to interact with genes that are involved with mechanisms of drug efflux, thus reversing MDR in experimental models. The exact mechanisms of action in this regard are thought to be related to effects of blocking of NF-kB activity, but other mechanisms may also be involved (Xu et al., 2006).

References

Angelini A, Di Ilio C, Castellani ML, Conti P, Cuccurullo F. (2010). Modulation of Multi-drug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): Implications for natural sedatives as chemosensitizing agents in cancer therapy. Journal of Biological Regulators & Homeostatic Agents, 24(2). 197-205.


Arora S, Bhardwaj A, Srivastava SK, et al. (2011). Honokiol arrests Cell-cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One, 6(6), e21573. doi: 10.1371/journal.pone.0021573.


Bai X, Cerimele F, Ushio-Fukai M, et al. (2003). Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem, 278: 35501–7.


Battle TE, Arbiser J, Frank DA. (2005). The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood, 106(2), 690-697.


Chen G, Izzo J, Demizu Y, et al. (2009). Different redox states in malignant and nonmalignant esophageal epithelial cells and differential cytotoxic responses to bile acid and honokiol. Antioxid. Redox Signal., 11(5):1083–1095


Cheng N, Xia T, Han Y, et al. (2001). Synergistic anti-tumor effects of liposomal honokiol combined with cisplatin in colon cancer models. Oncology Letters, 2(5), 957-962.


Eliaz I. (2013). Honokiol research review: A promising extract with multiple applications. Natural Medicine Journal., 5(7).


Fried LE, Arbiser JL. (2009). Honokiol, a multifunctional anti-angiogenic and anti-tumor agent. Antioxid. Redox Signal., 1(5):1139–1148. doi: 10.1089/ARS.2009.2440.


He Z, Subramaniam D, Ramalingam S, et al. (2011). Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects. American Journal of Physiology: Gastrointest and Liver Physiology, 301(5):G929-937.


Hibasami H, Achiwa Y, Katsuzaki H, et al. (1998). Honokiol induces apoptosis in human lymphoid leukemia Molt 4B cells. Int J Mol Med, 2:671–3.


Hirano T, Gotoh M, Oka K. (1994). Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci, 55:1061–9.


Hou X, Yuan X, Zhang B, Wang S, Chen Q. (2013). Screening active anti-breast cancer compounds from Cortex Magnolia officinalis by 2D LC-MS. J Sep Sci, 36(4):706-12. doi: 10.1002/jssc.201200896.


Kong ZL, Tzeng SC, Liu YC. (2005). Cytotoxic neolignans: an SAR study. Bioorg Med Chem Lett, 15: 163–6.


Konoshima T, Kozuka M, Tokuda H, et al. (1991). Studies on inhibitors of skin tumor promotion. IX. Neolignans from Magnolia officinalis. J Nat Prod, 54: 816–22.


Liu Y, Chen L, He X, et al. (2010). Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. International Journal of Gynecological Cancer, 18(4), 652-659.


Liu SH, Wang KB, Lan KH, et al. (2012). Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PLoS One, 7(8):e43711.


Munroe ME, Arbiser JL, Bishop GA. (2007). Honokiol, a natural plant product, inhibits inflammatory signals and alleviates inflammatory arthritis. J. Immunol., 179(2):753–763


Nagalingam A, Arbiser JL, Bonner MY, Saxena NK, Sharma D. (2012). Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Research, 14:R35 doi:10.1186/bcr3128


Nagase H, Ikeda K, Sakai Y. (2001). Inhibitory Effect of Magnolol and Honokiol from Magnolia obovata on Human Fibrosarcoma HT-1080 Invasiveness in vitro. Planta Med, 67(8): 705-708. DOI: 10.1055/s-2001-18345


Ponnurangam S, Mammen JM, Ramalingam S, et al. (2012). Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Molecular Cancer Therapeutics, 11(4), 963-972. doi: 10.1371/journal.pone.0043711.


Shigemura K, Arbiser JL, Sun SY, et al. (2007). Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer, 109(7), 1279-1289.


Tian W, Deng Y, Li L, et al. (2013). Honokiol synergizes chemotherapy drugs in Multi-drug-resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death. International Journal of Oncology, 42(2), 721-732. doi: 10.3892/ijo.2012.1739.


Wang Y, Yang Z, Zhao X. (2010). Honokiol induces parapoptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicology Mechanisms and Methods, 20(5), 234-241. doi: 10.3109/15376511003758831.


Wang T, Chen F, Chen Z, et al. (2004). Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol, 10: 2205–8.


Wen J, Fu AF, Chen LJ, et al. (2009). Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. International Journal of Cancer, 124(11), 2709-2718. doi: 10.1002/ijc.24244.


Xu D, Lu Q, Hu X. (2006). Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Letters, 243(2), 274-280.


Yang SE, Hsieh MT, Tsai TH, Hsu SL. (2002). Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochemical Pharmacology, 63(9), 1641-1651.

Source

Eliaz I. (2013). Honokiol research review: A promising extract with multiple applications. Natural Medicine Journal., 5(7). Retrieved from http://www.naturalmedicinejournal.com/article_content.asp?edition=1.

Formononetin

Cancer: Prostate, colorectal., breast, cervical

Action: Cell-cycle arrest, MDR, growth-inhibitory

Estrogenic or Anti-estrogenic

Formononetin is one of the main active components of red clover plants, and considered as a phytoestrogen. Its pharmacological effects in vivo may be either estrogenic or anti-estrogenic, mainly depending upon the estrogen levels (Chen & Sun., 2012).

Cell-cycle Arrest, Prostate Cancer

Formononetin has been demonstrated to cause cell-cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. The molecular mechanisms involved in the effect of formononetin on prostate cancer cells were hence investigated. These results suggest that higher concentrations of formononetin inhibit the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells.

From these results, it was concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, these results provided the foundation for future development of different concentrations of formononetin for treatment of prostate cancer (Ye et al., 2012).

Colon Cancer

Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses anti-tumorigenic properties. It has been demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. The potential of formononetin in controlling angiogenesis and tumor cell invasiveness has further been examined in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group.

The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers (Auyeung et al., 2012).

Cervical Cancer

Formononetin may potentiate the cytotoxicity of epirubicin in HeLa cells through the ROS-mediated MRP inhibition and concurrent activation of the mitochondrial and death receptor pathways of apoptosis. Hence, the circumvention of pump and non-pump resistance using formononetin and epirubicin may pave the way for a powerful chemotherapeutic regimen for treating human cervical cancer (Lo et al., 2013).

Breast Cancer

Recent studies by Chen & Sun (2012) suggest that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. In their present study, they further investigated the molecular mechanisms involved in the induced apoptosis effect of formononetin on breast cancer cells and formononetin inhibited the proliferation of ER-positive MCF-7 cells and T47D cells. The induced apoptosis effect of formononetin on human breast cancer cells was related to Ras-p38MAPK pathway.

Formononetin causes cell-cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1 mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis (Chen et al., 2011).

References

Auyeung KK, Law PC, Ko JK. (2012). Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep, 28(6):2188-94. doi: 10.3892/or.2012.2056.


Chen J, Zeng J, Xin M, Huang W, Chen X. (2011). Formononetin induces cell-cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res, 43(10):681-6. doi: 10.1055/s-0031-1286306.


Chen J, Sun L. (2012). Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells. Horm Metab Res, 44(13):943-8. doi: 10.1055/s-0032-1321818.


Lo YL, Wang W. (2013). Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem Biol Interact, 205(3):188-97. doi: 10.1016/j.cbi.2013.07.003.


Ye Y, Hou R, Chen J, et al. (2012). Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res, 44(4):263-7. doi: 10.1055/s-0032-1301922.

Curcumin

Cancer: Colorectal., prostate, pancreatic

Action: MDR, chemo-preventive activity, anti-inflammatory, attenuation of immune suppression

Chemo-preventive Activity

Curcumin is a naturally occurring, dietary polyphenolic phytochemical that is under preclinical trial evaluation for cancer-preventive drug development. It is derived from the rhizome of Curcuma longa L. and has both anti-oxidant and anti-inflammatory properties; it inhibits chemically-induced carcinogenesis in the skin, forestomach, and colon when it is administered during initiation and/or postinitiation stages. Chemo-preventive activity of curcumin is observed when it is administered prior to, during, and after carcinogen treatment as well as when it is given only during the promotion/progression phase (starting late in premalignant stage) of colon carcinogenesis (Kawamori et al., 1999)

Anti-inflammatory

With respect to inflammation, in vitro, it inhibits the activation of free radical-activated transcription factors, such as nuclear factor κB (NFκB) and AP-1, and reduces the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and interleukin-8 (Chan et al., 1998)

Prostate Cancer

In addition, NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin may abrogate their survival mechanisms (Mukhopadhyay et al., 2001).

Pancreatic Cancer

In patients suffering from pancreatic cancer, orally-administered curcumin was found to be well-tolerated and despite limited absorption, had a reasonable impact on biological activity in some patients. This was attributed to its potent nuclear factor-kappaB (NF-kappaB) and tumor-inhibitory properties, against advanced pancreatic cancer (Dhillon et al., 2008)

MDR

Curcumin, the major component in Curcuma longa (Jianghuang), inhibited the transport activity of all three major ABC transporters, i.e. Pgp, MRP1 and ABCG2 (Ganta et al., 2009).

Curcumin reversed MDR of doxorubicin or daunorubicin in K562/DOX cell line and decreased Pgp expression in a time-dependent manner (Chang et al., 2006). Curcumin enhanced the sensitivity to vincristine by the inhibition of Pgp in SGC7901/VCR cell line (Tang et al., 2005). Moreover, curcumin was useful in reversing MDR associated with a decrease in bcl-2 and survivin expression but an increase in caspase-3 expression in COC1/DDP cell line (Ying et al., 2007).

The cytotoxicity of vincristine and paclitaxel were also partially restored by curcumin in resistant KBV20C cell line. Curcumin derivatives reversed MDR by inhibiting Pgp efflux (Um et al., 2008). A chlorine substituent at the meta-or para-position on benzamide improved MDR reversal [72]. Bisdemethoxycurcumin modified from curcumin resulted in greater inhibition of Pgp expression (Limtrakul et al., 2004).

Attenuation of Immune Suppression

Curcumin (a chalcone) exhibited toxicity to human neural stem cells (hNSCs). Although oridonin (a diterpene) showed a null toxicity toward hNSCs, it repressed the enzymatic function only marginally in contrast to its potent cytotoxicity in various cancer cell lines. While the mode of action of the enzyme-polyphenol complex awaits to be investigated, the sensitivity of enzyme inhibition was compared to the anti-proliferative activities toward three cancer cell lines.

The IC50s obtained from both sets of the experiments indicate that they are in the vicinity of micromolar concentration with the enzyme inhibition slightly more active.

These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

Cancer Stem Cells

In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size.

Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in 'complete' or 'partial' responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples (Reddy et al., 2011).

Multiple Cancer Effects; Cell-signaling

Curcumin has been shown to interfere with multiple cell signaling pathways, including cell-cycle (cyclin D1 and cyclin E), apoptosis (activation of caspases and down-regulation of anti-apoptotic gene products), proliferation (HER-2, EGFR, and AP-1), survival (PI3K/AKT pathway), invasion (MMP-9 and adhesion molecules), angiogenesis (VEGF), metastasis (CXCR-4) and inflammation (NF- κB, TNF, IL-6, IL-1, COX-2, and 5-LOX).

The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets (Anand et al., 2008).

Anti-inflammatory; Cell-signaling

Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anti-cancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene.

Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies (Cretu et al., 2012). Curcumin also sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5) (Jung et al., 2005).

Curcumin and bioavailability

Curcumin, a major constituent of the spice turmeric, suppresses expression of the enzyme cyclooxygenase 2 (Cox-2) and has cancer chemo-preventive properties in rodents. It possesses poor systemic availability. Marczylo et al. (2007) explored whether formulation with phosphatidylcholine increases the oral bioavailability or affects the metabolite profile of curcumin. Their results suggest that curcumin formulated with phosphatidylcholine furnishes higher systemic levels of parent agent than unformulated curcumin.

Curcuminoids are poorly water-soluble compounds and to overcome some of the drawbacks of curcuminoids, Aditya et al. (2012) explored the potential of liposomes for the intravenous delivery of curcuminoids. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC). Curcumin/curcuminoids were encapsulated in phosphatidylcholine vesicles with high yields. Vesicles in the size range around 200 nm were selected for stability and cell experiments. Liposomal curcumin were found to be twofold to sixfold more potent than corresponding curcuminoids. Moreover, the mixture of curcuminoids was found to be more potent than pure curcumin in regard to the anti-oxidant and anti-inflammatory activities (Basnet et al., 2012). Results suggest that the curcumin-phosphatidylcholine complex improves the survival rate by increasing the anti-oxidant activity (Inokuma et al., 2012). Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases (Wang et al., 2012). Data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response (Patzk- et al., 2012).

References

Aditya NP, Chimote G, Gunalan K, et al. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol, 131(3):292-9. doi: 10.1016/j.exppara.2012.04.010.


Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. (2008). Curcumin and cancer: An 'old-age' disease with an 'age-old' solution. Cancer Letters, 267(1):133–164. doi: 10.1016/j.canlet.2008.03.025.


Basnet P, Hussain H, Tho I, Skalko-Basnet N. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci, 101(2):598-609. doi: 10.1002/jps.22785.


Chan MY, Huang HI, Fenton MR, Fong D. (1998). In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer-preventive Natural Product with Anti-Inflammatory Properties. Biochemical Pharmacology, 55(12), 1955-1962.


Chang HY, Pan KL, Ma FC, et al. (2006). The study on reversing mechanism of Multi-drug resistance of K562/DOX cell line by curcumin and erythromycin. Chin J Hem, 27(4):254-258.


Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Cre ţ u E, Trifan A, Vasincu A, Miron A. (2012). Plant-derived anti-cancer agents – curcumin in cancer prevention and treatment. Rev Med Chir Soc Med Nat Iasi, 116(4):1223-9.


Dhillon N, Aggarwal BB, Newman RA, et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res,14(14):4491-9. doi: 10.1158/1078-0432.CCR-08-0024.


Ganta S, Amiji M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations To overcome Multi-drug resistance in tumor cells. Mol Pharm, 6(3):928-939. doi: 10.1021/mp800240j.


Inokuma T, Yamanouchi K, Tomonaga T, et al. (2012). Curcumin improves the survival rate after a massive hepatectomy in rats. Hepatogastroenterology, 59(119):2243-7. doi: 10.5754/hge10650.


Jung EM, Lim JH, Lee TJ, et al. (2005). Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5). Carcinogenesis, 26(11):1905-1913.


Kawamori T, Lubet R, Steele V E, et al. (1999). Chemo-preventive Effect of Curcumin, a Naturally Occurring Anti-Inflammatory Agent, during the Promotion/Progression Stages of Colon Cancer. Cancer Research, 59(3), 597-601.


Limtrakul P, Anuchapreeda S, Buddhasukh D. (2004). Modulation of human Multi-drug resistance MDR-1 gene by natural curcuminoids. BMC Cancer, 4:13.


Marczylo TH, Verschoyle RD, Cooke DN, et al. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol, 60(2):171-7.


Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, & Aggarwal., B. B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609.


Patzk- A, Bai Y, Saporta MA, et al. (2012). Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain, 135(Pt 12):3551-66. doi: 10.1093/brain/aws299.


Reddy RM, Kakarala M, Wicha MS. (2011). Clinical trial design for testing the stem cell model for the prevention and treatment of cancer. Cancers (Basel), 3(2):2696-708. doi: 10.3390/cancers3022696.


Tang XQ, Bi H, Feng JQ, Cao JG. (2005). Effect of curcumin on Multi-drug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin, 26(8):1009-1016.


Um Y, Cho S, Woo HB, et al. (2008). Synthesis of curcumin mimics with Multi-drug resistance reversal activities. Bioorg Med Chem,16(7):3608-3615.


Wang LL, Sun Y, Huang K, Zheng L. (2012). Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res, 57(9):1557-68. doi: 10.1002/mnfr.201200718.


Ying HC, Zhang SL, Lv J. (2007). Drug-resistant reversing effect of curcumin on COC1/DDP and its mechanism. J Mod Oncol, 15(5):604-607.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.

VEGF

The tumour microenvironment is closely correlated with the malignant degrees, metastasis, and recurrence of tumours. Besides, the acid environment, oxygen deficiency, and other inducible factors may severely affect the efficacies of routine therapies, radiotherapy and chemotherapy. Recent studies have also proved that many Chinese herbs could fight against tumour vascular angiogenesis, lower serum VEGF concentration, and inhibit expressions of VEGF. This may lead to the development of new potential antiangiogenic drugs.

Angiogenesis

Angiogenesis, the sprouting of new capillaries, is required for the development of the vascular system and, consequently, the growth of vertebrates. Angiogenic proteins, including several from the fibroblast growth factor family were found to be mitogenic not only for vascular endothelial cells but also for a wide variety of other types of cells and appeared to promote angiogenesis as part of coordinated tissue growth and repair. In the late 1980s the first selective angiogenic growth factor was purified on the basis of its ability to induce transient vascular leakage and endothelial cell mitogenesis called vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) (Neufeld et al 1994). The identification of VEGF (Ferrara 1993) set the stage for a rapid expansion in the understanding of what now appears to be one of the most important mediators of physiologic and pathologic angiogenesis yet discovered.

Transcription of VEGF mRNA is induced by a variety of factors. Serum-derived and paracrine growth factors and cytokines, including Platelet-Derived Growth Factor BB (PDGF-BB), basic fibroblast growth factor (bFGF) (Sipos et al 2002), epidermal growth factor, tumor necrosis factor α (Frank et al 1995), nitric oxide (Frank et al 1999), transforming growth factor-β1, and interleukin-1β (Li et al 1995; Jung et al 2001), can each induce expression of VEGF from 3- to 20-fold in a variety of cultured cells.

Hypoxia

Without an independent blood supply, tumours must rely on diffusion to obtain oxygen and other nutrients, and typically cannot grow more than 2-3 mm in size. Thus, a growing tumour without sufficient vasculature will have hypoxic areas.

In response to hypoxic conditions, tumours secrete vascular endothelial growth factor (VEGF) in order to recruit new vasculature, which then provides a supply of oxygen (Gimbrone et al., 1972). Hypoxia is known to induce angiogenesis, thereby providing a compensatory mechanism by which tissues can increase oxygenation. Therefore, diminished O2 is one of the most intriguing transcriptional inducers of VEGF (Shweiki et al 1992) and its receptors (Tuder, Flook & Voelkel 1995) in normal and transformed cells. Hypoxic induction of VEGF appears to be a general response since many types of cultured cells have been observed to increase VEGF mRNA levels by approximately 10-50-fold as a consequence of lowering the percentage of O2 from ambient 21% to the range of 0-3% (Sipos et al 2002).

Vascular permeability factor (VPF)

The microvasculature of tumours is hyperpermeable compared with that of most normal tissues and as a consequence, fluid and plasma accumulate in the interstitium of solid tumors (Heldin et al 2004) and this barrier is an obstacle in tumour treatment, as it results in inefficient uptake of therapeutic agents. Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition, which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factor in vitro, and it presumably stimulates EC proliferation in vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation (Senger et al 1993; Baban & Seymour 1998). Although VEGF is known to be a powerful growth factor for therapeutic angiogenesis/vascularization in the ischemic hind limb and myocardium, it has other activities that can increase the proliferation and permeability of capillary endothelial cells. These activities may produce unwanted side effects, such as tumor angiogenesis, vascular leakage, oedema, and inflammation (Chae et al, 2000).

Medicinal herbs and their phytochemicals are potential novel leads for developing antiangiogenic drugs. Jeong et al., (2011) conducted a review that aimed to assess the current status of research with medicinal herbs and their phytochemicals for the development of antiangiogenic agents for cancer and other angiogenesis-related diseases including inflammation, diabetic retinopathy, endometriosis and obesity. Most studies reviewed have focused on vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR-2) signaling for endothelial response processes and have led to the identification of many potential antiangiogenic agents.

Since human clinical trials with antiangiogenic modalities targeting VEGF/VEGFR-2 signaling have shown limited efficacy and occasional toxic side effects, screening strategies for herbal phytochemicals based on other signaling pathways important for cancer-endothelial and stromal crosstalks should be emphasized in the future.

Reference

Baban DF & Seymour LW. (1998) Control of tumour vascular permeability. Advanced Drug Delivery Reviews. Volume 34, Issue 1, 5 October 1998, Pp 109-9. doi:10.1016/S0169-409X(98)00003-9

Chae JK, Kim I, Lim ST, et al. (2000) Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000 Dec; 20(12): 2573-8.

Ferrara N. (1993) Trends Cardiovasc. Med. 3, 244–250

Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J. (1999) Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J. 1999 Nov;13(14):2002-14.

Heldin C-H, Rubin K, Pietras K & Östman A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Reviews Cancer 4, 806-813 (October 2004) doi:10.1038/nrc1456

Jung YD, Liu W, Reinmuth N, et al. (2001) Vascular endothelial growth factor is up-regulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis. 2001;4(2):155-62.

Li J, Perrella M. A, Tsai J-C, et al. (1995) Induction of Vascular Endothelial Growth Factor Gene Expression by Interleukin-1 in Rat Aortic Smooth Muscle Cells. J. Biol. Chem. 270, 308–312

Neufeld G, Tessler S, Gitay-Goren H, Cohen T & Levi B-Z. (1994) Prog. Growth Factor Res. 5, 89–97

Senger DR, Water L, Lawrence F. Brown LF, et al. (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews. Volume 12, Numbers 3-4, Pp. 303-24, DOI: 10.1007/BF00665960

Shweiki D, Itin A, Soffer D & Keshet E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845

Sipos B, Weber D, Ungefroren H, et al. (2002) Vascular endothelial growth factor mediated angiogenic potential of pancreatic ductal carcinomas enhanced by hypoxia: an in vitro and in vivo study. Int J Cancer. 2002 Dec 20;102(6):592-600.

Tuder RM, Flook BE & Voelkel NF. (1995) J. Clin. Invest. 95, 1798–1807

Jeong SJ, Koh W, Lee EO, et al. (2011) Antiangiogenic phytochemicals and medicinal herbs. Phytother Res. 2011 Jan;25(1):1-10. doi: 10.1002/ptr.3224. DOI: 10.1002/ptr.3224

Cordyceps sinensis

The aqueous extract of Cordyceps sinensis (Cs), one of the traditional Chinese medicines, has been used for the treatment of a wide range of disorders for centuries. It is generally accepted that its cultivated Cs fungi possess the same functions as Cs natural herbs. Although polysaccharide from Cs is one of its bioactive compositions, its antitumor ability has not been confirmed. In a study, Yang et al., (2005) investigated the effects of the exopolysaccharide fraction (EPSF) of a cultivated Cs fungus on c-Myc, c-Fos, and vascular endothelial growth factor (VEGF) expression of tumor-bearing mice. The mice (C57BL/6) were administered three different doses of EPSF peritoneally every 2 days, starting from the day of implantation of B16 melanoma cells through their tail veins for 27 days (14 times).

Sections from mouse paraffin-embedded liver and lung tissues were subjected to immunohistochemical analyses. The results of c-Myc, c-Fos, and VEGF expression were analyzed using SimplePCI image analysis software. The c-Myc, c-Fos, and VEGF levels in the lungs and livers of EPSF-treated mice were found to be significantly lower than those of untreated mice (p<0.05). This suggests that EPSF had inhibited tumor growth in the lungs and livers of mice, and that it might be a potential adjuvant in cancer therapy.

Reference

Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y. (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice.

Pathol Res Pract. 2005;201(11):745-50. Epub 2005 Oct 19.

Ligustrazine

Ligustrazine is isolated from Ligustici Chuangxiong and can significantly inhibit the growth of vascular endothelial cell line (VEC-304), induce VEC-304 apoptosis and down-regulate the expression of VEGF (Peng, Jiang, & Wu, 2006).

Reference

Peng J, Jiang D, & Wu Y. (2006) Effect of Ligustrazine on Apoptosis of Expression of VEGF Gene in Blood Vessel Endothelial Cells. Zhong Hua Shi Yong Zhong Xi Yi Zha Zhi, 19(21), 2562–2564.

Ginsenoside Rg2

Ginseng saponins 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells in a fermenter show a protection effect on human umbilical cord vein endothelial cells (VEC-304) from H2O2-induced cell apoptosis. When 50 mg/ml 20(S)-ginsenoside Rg2 was present in the culture medium for 8 h, the H2O2-damaged VEC-304 cells acquired about 11-fold ( p < 0.01) on the amount and about 2-fold ( p < 0.05) increase in PA activity compared with those untreated cells. And the Rg2 has a strong ability in scavenging intracellular ROS induced by H2O2 (Xin et al., 2005).

Reference

Xin Xj, Zhong Jj, Wei Dz, Liu Jw. (2005) Protection effect of 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells on hydrogen peroxide-induced cytotoxity of human umbilical cord vein endothelial cells in vitro. Process Biochemistry 40 (2005) 3202–3205

Spica Prunellae Extract

Cancer: Colorectal

Action: Promotes apoptosis, anti-angiogenic, induces angiogenesis

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, Lin et al., (2013) found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro.

CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.

EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreasedanti-angiogenic cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.

Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Reference

Lin W, Zheng L, Zhuang Q, Zhao J, et al. (2013) Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun 24;13(1):144.

Torilin

Cancer: none noted

Action: Anti-angiogenesis

Torilin is a sesquiterpene compound purified from fruits of Torilis japonica (Umbelliferae).

Torilin decreased both neovascularization and basic fibroblast growth factor-induced vessel formation. Torilin also reduced the proliferation and tube formation of human umbilical vein endothelial cells. In addition, the concentrated conditioned media obtained from torilin-treated HepG2 human hepatoblastoma cells blocked the angiogenic activation of torilin-untreated concentrated conditioned media, indicating that torilin may have an inhibitory effect on tumor-induced angiogenesis.

Torilin significantly down-regulated the expression of hypoxia-inducible vascular endothelial growth factor and insulin-like growth factor-II. Taken together, our data suggest that torilin may be a strong angiogenic inhibitor with the ability to decrease tube formation of vascular endothelial cells and to reduce expression of angiogenic factors of tumor cells.

Reference

Kim MS, Lee YM, Moon EJ, et al. (2000). Anti-angiogenic activity of torilin, a sesquiterpene compound isolated from Torilis japonica. Int J Cancer, 87(2):269-75.