Category Archives: induces apoptosis

Geniposide –Penta-acetyl Geniposide (Ac)5GP

Cancers:
Glioma, melanoma, liver, hepatocarcinogenesis, hepatoma, prostate, cervical

Action: Cytostatic, induces apoptosis

Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia fructus , exhibits anti-tumor effect.

Hepatocarcinogenesis, Glioma

It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis, induced by aflatoxin B1 (AFB1), by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells, especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest.

Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. It arrested the cell-cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F.

Data from in vivo experiments indicated that (Ac)5GP is not harmful to the liver, heart and kidney. (Ac)5GP is strongly suggested to be an anti-tumor agent for development in the future (Peng, Huang, & Wang, 2005).

Induces Apoptosis

Previous studies have demonstrated the apoptotic cascades protein kinase C (PKC) delta/c-Jun NH2-terminal kinase (JNK)/Fas/caspases induced by penta-acetyl geniposide [(Ac)5GP]. However, the upstream signals mediating PKCdelta activation have not yet been clarified. Ceramide, mainly generated from the degradation of sphingomyelin, was hypothesized upstream above PKCdelta in (Ac)5GP-transduced apoptosis.

After investigation, (Ac)5GP was shown to activate neutral sphingomyelinase (N-SMase) immediately, with its maximum at 15 min. The NGF and p75 enhanced by (Ac)5GP was inhibited when combined with GW4869, the N-SMase inhibitor, indicating NGF/p75 as the downstream signals of N-SMase/ceramide. To evaluate whether N-SMase is involved in (Ac)5GP-transduced apoptotic pathway, cells were treated with (Ac)5GP, alone or combined with GW4869. It was demonstrated that N-SMase inhibition blocked FasL expression and caspase 3 activation. Similarly, p75 antagonist peptide attenuated the FasL/caspase 3 expression. It indicated that N-SMase activation is pivotal in (Ac)5GP-mediated apoptosis.

SMase and NGF/p75 are suggested to mediate upstream above PKCdelta, thus transducing FasL/caspase cascades in (Ac)5GP-induced apoptosis (Peng, Huang, Hsu, & Wang, 2006).

Glioma

Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepato-protective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. The anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line C6 glioma cells were investigated.

Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun.

Findings suggest (Ac)(5)GP is highly likely to be an inhibiting cancer migration agent to be further developed in the future (Huang et al., 2009).

Melanoma

A new iridoid glycoside, 10-O-(4'-O-methylsuccinoyl) geniposide, and two new pyronane glycosides, jasminosides Q and R, along with nine known iridoid glycosides, and two known pyronane glycosides, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae).

The structures of new compounds were elucidated on the basis of extensive spectroscopic analyzes and comparison with literature. Upon evaluation of these compounds on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 µM, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 µM) (Akisha et al., 2012).

Hepatoma, Prostate Cancer, Cervical Cancer

Genipin is a metabolite of geniposide isolated from an extract of Gardenia fructus. Some observations suggested that genipin could induce cell apoptosis in hepatoma cells and PC3 human prostate cancer cells. Genipin could remarkably induce cytotoxicity in HeLa cells and inhibit its proliferation. Induction of the apoptosis by genipin was confirmed by analysis of DNA fragmentation and induction of sub-G(1) peak through flow cytometry.

The results also showed that genipin-treated HeLa cells cycle was arrested at G(1) phase. Western blot analysis revealed that the phosphorylated c-Jun NH(2)-terminal kinase (JNK) protein, phospho-Jun protein, p53 protein and bax protein significantly increased in a dose-dependent manner after treatment of genipin for 24 hours; the activation of JNK may result in the increase of the p53 protein level; the increase of the p53 protein led to the accumulation of bax protein; and bax protein further induced cell apoptotic death eventually (Cao et al., 2010).

References

Akihisa T, Watanabe K, Yamamoto A, et al. (2012). Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chemistry & Biodiversity, 9(8), 1490-9. doi: 10.1002/cbdv.201200030.


Cao H, Feng Q, Xu W, et al. (2010). Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol Pharm Bull, 33(8):1343-8.


Huang HP, Shih YW, Wu CH, et al. (2009). Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways. Chemico-biological Interactions, 181(1), 8-14. doi: 10.1016/j.cbi.2009.05.009.


Peng CH, Huang CN, Hsu SP, Wang CJ. (2006). Penta-acetyl geniposide induce apoptosis in C6 glioma cells by modulating the activation of neutral sphingomyelinase-induced p75 nerve growth factor receptor and protein kinase Cdelta pathway. Molecular Pharmacology, 70(3), 997-1004.


Peng CH, Huang CN, Wang CJ. (2005). The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Current Cancer Drug Targets, 5(4), 299-305.

Diosgenin

Cancer: Breast, colon, prostate, leukemia, stomach

Action: HER-2, apoptosis, chemo-enhancing

Diosgenin is a plant-derived steroid isolated from Trigonella foenum-graecum (L.).

Breast Cancer; Chemo-enhancing

Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK.

The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, it was shown that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemo-preventive or chemotherapeutic agent for cancers that overexpress HER2 (Chiang et al., 2007).

Colon Cancer

On 24 hours exposure to diosgenin, MTT cytotoxicity activity reduced by ³50% was achieved at the higher concentrations (i.e., ³80 µmol/L). However, compared with the control, 20 to 60 µmol/L diosgenin reduced the MTT activity only by 5% to 30%. Diosgenin caused a significant time-dependent and dose-dependent decrease in the proliferation of HT-29 cells. Twenty four hours exposure to diosgenin (20 to 100 µmol/L) inhibited cell proliferation compared with untreated cell growth. The in vitro experiment results indicated that diosgenin inhibits cell growth and induces apoptosis in the HT-29 human colon cancer cell line in a dose-dependent manner.

Furthermore, diosgenin induces apoptosis in HT-29 cells at least in part by inhibition of bcl-2 and by induction of caspase-3 protein expression (Raju et al., 2004).

Breast Cancer

The electrochemical behavior of breast cancer cells was studied on a graphite electrode by cyclic voltammetry (CV) and potentiometric stripping analysis (PSA) in unexposed and diosgenin exposed cells. In both cases, only one oxidative peak at approximately +0.75 V was observed. The peak area in PSA was used to study the growth of the cells and the effect of diosgenin on MCF-7 cells. The results showed that diosgenin can effectively inhibit the viability and proliferation of the breast cancer cells (Li et al., 2005).

Leukemia

Cell viability was assessed via an MTT assay. Apoptosis was investigated in terms of nuclear morphology, DNA fragmentation, and phosphatidylserine externalization. Cell cycle analysis was performed via PI staining and flow cytometry (FCM). Western blotting and immunofluorescence methods were used to determine the levels of p53, cell-cycle-related proteins and Bcl-2 family members. Cell cycle analysis showed that diosgenin caused G2/M arrest independently of p53. The levels of cyclin B1 and p21Cip1/Waf1 were decreased, whereas cdc2 levels were increased. The anti-apoptotic Bcl-2 and Bcl-xL proteins were down-regulated, whereas the pro-apoptotic Bax was upregulated.

Diosgenin was hence found to inhibit K562 cell proliferation via cell-cycle G2/M arrest and apoptosis, with disruption of Ca2+ homeostasis and mitochondrial dysfunction playing vital roles (Liu et al., 2005).

In recent years, Akt signaling has gained recognition for its functional role in more aggressive, therapy-resistant malignancies. As it is frequently constitutively active in cancer cells, several drugs are being investigated for their ability to inhibit Akt signaling. Diosgenin (fenugreek), a dietary compound, was examined for its action on Akt signaling and its downstream targets on estrogen receptor positive (ER+) and estrogen receptor negative (ER-) breast cancer (BCa) cells. Additionally, in vivo tumor studies indicate diosgenin significantly inhibits tumor growth in both MCF-7 and MDA-231 xenografts in nude mice. Thus, these results suggest that diosgenin might prove to be a potential chemotherapeutic agent for the treatment of BCa (Srinivasan et al., 2009).

Leukemia, Stomach Cancer

Protodioscin (PD) was purified from fenugreek (Trigonella foenumgraecum L.) and identified by mass spectrometry, and 1H- and 13C-NMR. The effects of PD on cell viability in human leukemia HL-60 and human stomach cancer KATO III cells were investigated. PD displayed strong growth-inhibitory effect against HL-60 cells, but weak growth-inhibitory effect on KATO III cells.

These findings suggest that growth inhibition by PD of HL-60 cells results from the induction of apoptosis by this compound in HL-60 cells (Hibasami et al., 2003).

References

Chiang CT, Way TD, Tsai SJ, Lin JK. (2007). Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS letters, 581(30), 5735-42. doi:     10.1016/j.febslet.2007.11.021.


Hibasami H, Moteki H, Ishikawa K, et al. (2003). Protodioscin isolated from fenugreek (Trigonella foenumgraecum L.) induces cell death and morphological change indicative of apoptosis in leukemic cell line H-60, but not in gastric cancer cell line KATO III. Int J Mol Med, 11(1):23-6.


Li J, Liu X, Guo M, et al. (2005). Electrochemical Study of Breast Cancer Cells MCF-7 and Its Application in Evaluating the Effect of Diosgenin. Analytical Sciences, 21(5), 561. doi:10.2116/analsci.21.561


Liu MJ, Wang Z, Ju Y, Wong RNS, Wu QY. (2005). Diosgenin induces cell-cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemotherapy and Pharmacology, 55(1), 79-90, doi: 10.1007/s00280-004-0849-3


Raju J, Patlolla JMR, Swamy MV, Rao CV. (2004). Diosgenin, a Steroid Saponin of Trigonella foenum graecum (Fenugreek), Inhibits Azoxymethane-Induced Aberrant Crypt Foci Formation in F344 Rats and Induces Apoptosis in HT-29 Human Colon Cancer Cells. Cancer Epidemiol Biomarkers Prev, 13; 1392.


Srinivasan S, Koduru S, Kumar R, et al. (2009). Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. International Journal of Cancer, 125(4), 961–967. doi: 10.1002/ijc.24419

Dandelion Root Extract (Taraxacum)

Cancer:
Pancreatic, Chronic Myelomonocytic Leukemia, leukemia, liver, hepatocellular carcinoma

Action: Induces cytotoxicity, induces apoptosis

Dandelion root is extracted from Taraxacum officinale (F.H. Wigg).

Hepatocellular Carcinoma

Taraxacum officinale (TO) has been frequently used as a remedy for women's diseases (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties. TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells (Koo et al., 2004).

Pancreatic Cancer

The efficacy of dandelion root extract (DRE) in inducing apoptosis and autophagy in aggressive and resistant pancreatic cancer cells, known to have a high rate of mortality, have been investigated. The effect of DRE was evaluated using WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) assay.

This extract induces selective apoptosis in a dose- and time-dependent manner. Dandelion root extract caused the collapse of the mitochondrial membrane potential., leading to prodeath autophagy. Normal human fibroblasts were resistant at similar doses. It was demonstrated that DRE has the potential to induce apoptosis and autophagy in human pancreatic cancer cells with no significant effect on noncancerous cells. This will provide a basis on which further research in cancer treatment through DRE can be executed (Ovadje et al., 2012a).

Chronic Myelomonocytic Leukemia

Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease that is not only hard to diagnose and classify, but is also highly resistant to treatment. Available forms of therapy for this disease have not shown significant effects and patients rapidly develop resistance early on in therapy. These factors lead to the very poor prognosis observed with CMML patients, with median survival duration between 12 and 24 months after diagnosis. This study is therefore centered around evaluating the selective efficacy of a natural extract from dandelion roots, in inducing programmed cell death in aggressive and resistant CMML cell lines.

The results from this study indicate that Dandelion Root Extract (DRE) is able to efficiently and selectively induce apoptosis and autophagy in these cell lines in a dose and time-dependent manner, with no significant toxicity on non-cancerous peripheral blood mononuclear cells. More importantly, we observed early activation of initiator caspase-8, which led to mitochondrial destabilization and the induction of autophagy, suggesting that DRE acts through the extrinsic pathway of apoptosis (Ovadje et al., 2012b).

Leukemia

A study by Ovadje et al. (2011) determined the anti-cancer activity of dandelion root extract (DRE) against human leukemia, and evaluated the specificity and mechanism of DRE-induced apoptosis. Aqueous DRE contains components that act to induce apoptosis selectively in cultured leukemia cells, emphasizing the importance of this traditional medicine and thus presents a potential novel non-toxic alternative to conventional leukemia therapy.

References

Koo HN, Hong SH, Song BK, et al. (2004). Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells. Life Sci, 74(9):1149-57.


Ovadje P, Chatterjee S, Griffin C, et al. (2011). Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J Ethnopharmacol, 133(1):86-91. doi: 10.1016/j.jep.2010.09.005.


Ovadje P, Chochkeh M, Akbari-Asl P, Hamm C, Pandey S. (2012). Selective Induction of Apoptosis and Autophagy Through Treatment With Dandelion Root Extract in Human Pancreatic Cancer Cells. Pancreas, 41(7),1039-47. doi: 10.1097/MPA.0b013e31824b22a2.


Ovadje P, Hamm C, Pandey S. b (2012). Efficient induction of extrinsic cell death by dandelion root extract in human chronic myelomonocytic leukemia (CMML) cells. PLoS One. 2012;7(2):e30604. doi: 10.1371/journal.pone.0030604.

Cucurbitacin D (CuD) (See also Trichosanthin)

Cancer: Hepatocellular carcinoma, pancreatic, breast

Action: Apoptosis

Breast Cancer

Cucurbitacin D (CuD) isolated from Trichosanthes kirilowii induces apoptosis in several cancer cells. Constitutive signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor, is often observed in many human malignant tumors, including breast cancer. Kim et al. (2013) tested whether Trichosanthes kirilowii ethanol extract (TKE) or CuD suppresses cell growth and induces apoptosis through inhibition of STAT3 activity in breast cancer cells.

They found that both TKE and CuD suppressed proliferation and induced apoptosis and G2/M cell-cycle arrest in MDA-MB-231 breast cancer cells by inhibiting STAT3 phosphorylation. In addition, both TKE and CuD inhibited nuclear translocation and transcriptional activity of STAT3. Taken together, our results indicate that TKE and its derived compound, CuD, could be potent therapeutic agents for breast cancer, blocking tumor cell proliferation and inducing apoptosis through suppression of STAT3 activity.

Hepatocellular Carcinoma

Takahashi et al. (2009) found that the anti-tumor components isolated from the extract of trichosanthes (EOT) are cucurbitacin D and dihydrocucurbitacin D, and suggest that cucurbitacin D induces apoptosis through caspase-3 and phosphorylation of JNK in hepatocellular carcinoma cells. These results suggest that cucurbitacin D isolated from Trichosanthes kirilowii could be a valuable candidate for an anti-tumor drug.

Pancreatic Cancer

Dose-response studies showed that the drug inhibited 50% growth of seven pancreatic cancer cell lines at 10−7 mol/L, whereas clonogenic growth was significantly inhibited at 5 × 10−8 mol/L. Cucurbitacin B caused dose- and time-dependent G2-M-phase arrest and apoptosis of pancreatic cancer cells. This was associated with inhibition of activated JAK2, STAT3, and STAT5, increased level of p21WAF1 even in cells with nonfunctional p53, and decrease of expression of cyclin A, cyclin B1, and Bcl-XL with subsequent activation of the caspase cascade.

Cucurbitacin B has profound in vitro and in vivo anti-proliferative effects against human pancreatic cancer cells, and the compound may potentate the anti-proliferative effect of the chemotherapeutic agent gemcitabine. Further clinical studies are necessary to confirm our findings in patients with pancreatic cancer (Thoennissen et al., 2009).

References

Kim SR, Seo HS, Choi H-S, et al. (2013). Trichosanthes kirilowii Ethanol Extract and Cucurbitacin D Inhibit Cell Growth and Induce Apoptosis through Inhibition of STAT3 Activity in Breast Cancer Cells. Evidence-Based Complementary and Alternative Medicine, 2013. http://dx.doi.org/10.1155/2013/975350


Thoennissen NH, Iwanski GB, Doan NB, et al. (2009). Cucurbitacin B Induces Apoptosis by Inhibition of the JAK/STAT Pathway and Potentiates Anti-proliferative Effects of Gemcitabine on Pancreatic Cancer Cells.   Cancer Res, 69; 5876 doi: 10.1158/0008-5472.CAN-09-0536


Takahashi N, Yoshida Y, Sugiura T, et al. (2009). Cucurbitacin D isolated from Trichosanthes kirilowii induces apoptosis in human hepatocellular carcinoma cells in vitro. International Immunopharmacology, 9(4):508–513.

Chrysin

Cancer:
Lung cancer, breast cancer, leukemia, gastric, colon

Action: Anti-inflammatory, induces apoptosis, inhibits HIF-1 α, immunomodulatory

Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants (including Scutellaria baicalensis (Georgi), Passiflora caerulea (L.), Passiflora incarnate (L.))., honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbs cell-cycle progression. Chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21 (Waf1/Cip1) expression (Weng et al., 2005).

MDR; NSCLC

Chrysin is a major flavonoid in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. Novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in human non-small lung cancer have been demonstrated, and the protein kinase C pathway may play an important role in this process. It is thought that chrysin may act as a potential adjuvant therapy for drug-resistant non-small lung cancer, especially for those with AKR1C1/1C2 overexpression (Wang et al., 2007).

Gastric Cancer, Colon Cancer

Additionally, derivatives of chrysin have been shown to have strong activities against SGC-7901 human gastric cell line and HT-29 human colon cancer cell lines (Zheng et al., 2003).

Breast Cancer

While Chrysin is a potent breast cancer resistance protein inhibitor, it was found to have no significant effect on toptecan pharmacokinetics in rats (Zhang et al., 2005).

VEGF, HIF-1

Chrysin was found to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through AKT signaling. Inhibition of HIF-1α by chrysin resulted in abrogation of vascular endothelial growth factor expression (Fu et al., 2007).

Leukemia

Chrysin has been shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells (Khoo et al., 2010).

Immune

The chemo-preventive action of chrysin has been found to specifically inhibit the enzymatic activity of IDO-1 but not mRNA expression in human neuronal stem cells (hNSC), confirmed by cell-based assay and qRT-PCR. These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

References

Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Fu B, Xue J, Li Z, et al. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1 α through reducing hypoxia-inducible factor-1 α stability and inhibiting its protein synthesis. Mol Cancer Ther, 6:220. doi: 10.1158/1535-7163.MCT-06-0526


Khoo BY, Chua SL, Balaram P. (2010). Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci, 11(5), 2188-2199. doi:10.3390/ijms11052188


Wang HW, Lin CP, Chiu JH, et al. (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. International Journal of Cancer, 120(9), 2019-2027.


Weng MS, Ho YS, Lin JK. (2005). Chrysin induces G1 phase cell-cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol, 69(12):1815-27.


Zhang S, Wang X, Sagawa K, Morris ME. (2005). Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (,äì/,äì) mice. Drug Metabolism and Disposition, 33(3), 341-348.


Zheng X, Meng WD, Xu YY, Cao JG, & Qing FL. (2003). Synthesis and anti-cancer effect of chrysin derivatives. Bioorganic & Medicinal Chemistry Letters, 13(5), 881-884.

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

Berbamine

Cancer: Breast, leukemia, liver, neutropenia

Action: Anti-metastatic, chemo-sensitizer

Breast Cancer, Leukemia

Berbamine (BER), isolated from the Chinese herb Berberis amurensis and Berberis vulgaris (L.), selectively induces apoptosis in certain breast cancer and leukemia cell lines.

Studies have shown that berbamine suppresses the growth, migration and invasion in highly-metastatic human breast cancer cells by possibly inhibiting Akt and NF-kappaB signaling with their upstream target c-Met and downstream targets Bcl-2/Bax, osteopontin, VEGF, MMP-9 and MMP-2.

BER has synergistic effects with anti-cancer agents trichostatin A, celecoxib and carmofur on inhibiting the growth of MDA-MB-231 cells and reducing the ratio of Bcl-2/Bax and/or VEGF expressions in the cancer cells. These findings suggest that berbamine may have wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer and other cancers (Wang, 2009).

MDR, Leukemia stem cells

Previous studies have shown that berbamine selectively induces apoptosis of imatinib (IM)-resistant-Bcr/Abl-expressing leukemia cells from the K562 cell line and CML patients. Berbamine derivatives obtained by synthesis were found to have very high activity in vitro. Six of these exhibited consistent high anti-tumor activity for imatinib-resistant K562 leukemia cells. Their IC(50) values at 48h were 0.36-0.55 microM, whereas berbamine IC(50) value was 8.9 microM. Cell cycle analysis results showed that compound 3h could reduce G0/G1 cells. In particular, these compounds displayed potent inhibition of the cytoplasm-to-nucleus translocation of NF-kappaB p65 which plays a critical role in the survival of leukemia stem cells (Xie, 2009).

Liver Cancer, Leukemia

Meng et al. (2013) reported that berbamine and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+/calmodulin-dependent protein kinase II (CAMKII). Furthermore, berbamine inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice and downregulated the self-renewal abilities of liver cancer-initiating cells. Berbamine inhibits proliferation and induces apoptosis of KU812 leukaemia cells by increasing Smad3 activity (Kapoor, 2012).

Chronic Myeloid Leukemia, Leukopenia

During imatinib therapy, many patients with chronic myeloid leukemia (CML) develop severe neutropenia, leading to treatment interruptions, and potentially compromising response to imatinib. Berbamine (a bisbenzylisoquinoline alkaloid) has been widely used in Asian countries for managing leukopenia associated with chemotherapy. With berbamine support, the time to achieve complete cytogenetic response was significantly shorter (median, 6.5 vs. 10 months, p = 0.007). There were no severe adverse events associated with berbamine treatment. In conclusion, the present study reveals the potential clinical value of berbamine in the treatment of CML with imatinib-induced neutropenia (Zhao et al., 2011).

References

Kapoor S. (2012). Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. Zhejiang Univ Sci B, 13(9):761-2.


Meng Z, Li T, Ma X, et al. (2013). Berbamine Inhibits the Growth of Liver Cancer Cells and Cancer-Initiating Cells by Targeting Ca2+/Calmodulin-Dependent Protein Kinase II. Mol Cancer Ther.


Wang S, Liu Q, Zhang Y, et al. (2009). Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer, 8:81.


Xie J, Ma T, Gu Y, et al. (2009). Berbamine derivatives: A novel class of compounds for anti-leukemia activity. Eur J Med Chem, 44(8):3293-8. doi: 10.1016/j.ejmech.2009.02.018


Zhao Y, Tan Y, Wu G, et al. (2011). Berbamine overcomes imatinib-induced neutropenia and permits cytogenetic responses in Chinese patients with chronic-phase chronic myeloid leukemia. Int J Hematol, 94(2):156-62. doi: 10.1007/s12185-011-0887-7.

Angelicin

Cancer: Leukemia, colon, ER+ Ovarian

Action: Apoptotic, anti-cancer

Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa and is structurally related to psoralens, a well-known chemical class of photosensitizers used for its anti-proliferative activity in treatment of different skin diseases.

Induces Apoptosis

The cellular cytotoxicity of angelicin was examined by cell viability assay, DNA fragmentation by DNA ladder assay, and activation of caspases and Bcl-2 family proteins by Western blot analyzes. The results suggest that angelicin increased cellular cytotoxicity in a dose- and time-dependent manner with IC(50) of 49.56 µM at 48 hours of incubation.

In addition, angelicin dose-dependently downregulated the expression of anti-apoptotic proteins including Bcl-2, Bcl-xL, and Mcl-1 suggesting the involvement of the intrinsic mitochondria-mediated apoptotic pathway which did not participate in Fas/FasL-induced caspase-8-mediated extrinsic, MAP kinases, and PI3K/AKT/GSK-3β pathway.

Taken together, these data indicate that angelicin is an effective apoptosis-inducing natural compound of human SH-SY5Y neuroblastoma cells which suggests that this compound may have a role in future therapies for human neuroblastoma cancer (Rahman et al., 2012).

Anti-cancer

Three crude drugs Saussureae Radix, Psoraleae Semen and Aurantti Fructus Immaturus significantly inhibited the proliferation of temperature-sensitive rat lymphatic endothelial (TR-LE) cells in vitro. Angelicin isolated from Aurantti Fructus Immaturus showed selective inhibition of the proliferation of TR-LE cells (Jeong et al., 2013). Angelicin, isolated from Bituminaria morisiana was subjected to cytotoxicity screening against a panel of human cancer cells (Leonti et al., 2010).

References

Jeong D, Watari K, Shirouzu T, et al. (2013). Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biol Pharm Bull, 36(1):152-7.


Leonti M, Casu L, Gertsch J, et al. (2010). A pterocarpan from the seeds of Bituminaria morisiana. J Nat Med. 64(3):354-7. doi: 10.1007/s11418-010-0408-7.


Rahman MA, Kim NH, Yang H, Huh SO. (2012). Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol Cell Biochem, 369(1-2):95-104. doi: 10.1007/s11010-012-1372-1.

Acetyl-keto-beta-boswellic acid (AKBA)

Cancer: Colorectal, prostate, gastric

Action: Anti-cancer

Apoptotic

Acetyl-keto-beta-boswellic acid (AKBA), a triterpenoid isolated from Boswellia carterri Birdw and Boswellia serrata, has been found to inhibit tumor cell growth and to induce apoptosis. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation, and independent of Fas/Fas ligand interaction in colon cancer HT-29 cells (Liu et al., 2002).

Colon Cancer

Although there is increasing evidence showing that boswellic acid might be a potential anti-cancer agent, the mechanisms involved in its action are unclear. It has been shown that acetyl-keto-beta-boswellic acid (AKBA) inhibits cellular growth in several colon cancer cell lines. Cell cycle analysis by flow cytometry showed that cells were arrested at the G1 phase after AKBA treatment.

These results demonstrate that AKBA inhibits cellular growth in colon cancer cells. These findings may have implications for the use of boswellic acids as potential anti-cancer agents in colon cancer (Liu et al., 2006).

AKBA significantly inhibited human colon adenocarcinoma growth, showing arrest of the cell-cycle in G1-phase and induction of apoptosis. AKBA administration in mice effectively delayed the growth of HT-29 xenografts without signs of toxicity (Yuan et al., 2013).

Gastric Cancer

AKBA exhibited anti-cancer activity in vitro and in vivo. With oral application in mice, AKBA significantly inhibited gastric cancer cells line SGC-7901 and MKN-45 xenografts without toxicity.

This effect might be associated with its roles in cell-cycle arrest and apoptosis induction. The results also showed activation of p21(Waf1/Cip1) and p53 in mitochondria and increased cleaved caspase-9, caspase-3, and PARP and Bax/Bcl-2 ratio after AKBA treatment. Upon AKBA treatment, β-catenin expression in nuclei was inhibited, and membrane β-catenin was activated (Zhang et al., 2013).

Prostate

The apoptotic effects and the mechanisms of action of AKBA were studied in LNCaP and PC-3 human prostate cancer cells. AKBA induced apoptosis in both cell lines at concentrations above 10 microg/mL. AKBA-induced apoptosis was correlated with the activation of caspase-3 and caspase-8 as well as with poly(ADP)ribose polymerase (PARP) cleavage.

AKBA treatment increased the levels of CAAT/enhancer binding protein homologous protein (CHOP) and activated a DR5 promoter reporter but did not activate a DR5 promoter reporter with the mutant CHOP binding site. These results suggest that AKBA induces apoptosis in prostate cancer cells through a DR5-mediated pathway, which probably involves the induced expression of CHOP (Lu et al., 2008).

References

Liu J-J, Nilsson A, Oredsson S, et al. (2002). Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 23(12): 2087–2093. doi:10.1093/carcin/23.12.2087.

 

 

Liu JJ, Huang B, Hooi SC. (2006). Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol, 148(8):1099-107.

 

Lu M, Xia L, Hua H, Jing Y. (2008). Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res, 68(4):1180-6. doi: 10.1158/0008-5472.CAN-07-2978.

 

Yuan Y, Cui SX, Wang Y, et al. (2013). Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta, 1830(10):4907-16. doi: 10.1016/j.bbagen.2013.06.039.

 

Zhang YS, Xie JZ, Zhong JL, et al. (2013) Acetyl-11-keto-β-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/β -catenin signaling pathway. Biochim Biophys Acta, 1830(6):3604-15. doi: 10.1016/j.bbagen.2013.03.003.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.

Thymoquinone

Cancer: Osteosarcoma, pancreatic, colorectal., lung, liver, melanoma, breast

Action: Anti-inflammatory

For centuries, the black seed (Nigella sativa (L.)) herb and oil have been used in Asia, Middle East and Africa to promote health and fight disease. Thymoquinone (TQ) is the major phytochemical constituent of Nigella sativa (L.) oil extract. Phytochemical compounds are emerging as a new generation of anti-cancer agents with limited toxicity in cancer patients.

Osteosarcoma

The anti-proliferative and pro-apoptotic effects of TQ were evaluated in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts.

It was therefore suggested that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell-cycle arrest and allows repair of DNA damage.

Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, these data suggest the potential clinical usefulness of TQ for the treatment of these malignancies (Roepke et al., 2007).

Pancreatic Ductal Adenocarcinoma

Inflammation has been identified as a significant factor in the development of solid tumor malignancies. It has recently been shown that thymoquinone (Tq) induces apoptosis and inhibited proliferation in PDA cells. The effect of Tq on the expression of different pro-inflammatory cytokines and chemokines was analyzed by real-time polymerase chain reaction (PCR). Tq dose- and time-dependently significantly reduced PDA cell synthesis of MCP-1, TNF-alpha, interleukin (IL)-1beta and Cox-2. Tq also inhibited the constitutive and TNF-alpha-mediated activation of NF-kappaB in PDA cells and reduced the transport of NF-kappaB from the cytosol to the nucleus. Our data demonstrate previously undescribed anti-inflammatory activities of Tq in PDA cells, which are paralleled by inhibition of NF-kappaB. Tq as a novel inhibitor of pro-inflammatory pathways provides a promising strategy that combines anti-inflammatory and pro-apoptotic modes of action (Chehl et al., 2009).

Lung cancer, Hepatoma, Melanoma, Colon Cancer, Breast Cancer

The potential impact of thymoquinone (TQ) was investigated on the survival., invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling pro-apoptotic pathway. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. In this context, it has been demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, it is contended that thymoquinone and/or its analogues may have clinical potential as an anti-cancer agent alone or in combination with chemotherapeutic drugs such as cisplatin (Attoub et al., 2012).

Colon Cancer

It was reported that TQ inhibits the growth of colon cancer cells which was correlated with G1 phase arrest of the cell-cycle. Furthermore, TUNEL staining and flow cytometry analysis indicate that TQ triggers apoptosis in a dose- and time-dependent manner. These results indicate that TQ is anti-neoplastic and pro-apoptotic against colon cancer cell line HCT116. The apoptotic effects of TQ are modulated by Bcl-2 protein and are linked to and dependent on p53. Our data support the potential for using the agent TQ for the treatment of colon cancer (Gali-Muhtasib et al., 2004).

References

Attoub S, Sperandio O, Raza H, et al. (2012). Thymoquinone as an anti-cancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol, 27(5):557-569. doi: 10.1111/j.1472-8206.2012.01056.x


Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11(5):373-81. doi: 10.1111/j.1477-2574.2009.00059.x.


Gali-Muhtasib H, Diab-Assaf M, Boltze C, et al. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4):857-66


Roepke M, Diestel A, Bajbouj K, et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther, 6(2):160-9.

Oridonin

Cancer: Prostate

Action: Growth arrest, autophagy

To investigate the mechanism of oridonin (ORI)-induced autophagy in prostate cancer PC-3 cells, PC-3 cells cultured in vitro were treated with ORI, and the inhibitory ratio of ORI on PC-3 cells was assayed by 3-4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. After ORI treatment, the proliferation of PC-3 cells was inhibited significantly in a concentration and time-dependent manner. SEM examination revealed cellular shrinkage and disappearance of surface microvilli in ORI-treated cells. Under TEM examination, the nuclei exhibited chromatin condensation and the appearance of a large number of autophagosomes with double-membrane structure in cytoplasm. AO staining showed the existence of AVOs. The expression of LC3 and the mRNA level of beclin 1 was increased by ORI. Furthermore, autophagy inhibitor 3-methyladenine reversed the increase of beclin 1 mRNA. The growth of PC-3 cells was inhibited, and autophagy was induced by ORI, indicating ORI may have a potential antitumor effect.

Source
Ye LH, Li WJ, Jiang XQ, et al. Study on the autophagy of prostate cancer PC-3 cells induced by oridonin. Anat Rec (Hoboken). 2012 Mar;295(3):417-22. doi: 10.1002/ar.21528.

 

Cancer: Multiple myeloma

Action: Inhibits proliferation and induces apoptosis

This study was purposed to investigate the antitumor effect of oridonin on human multiple myeloma cell line U266 The results showed that the oridonin obviously inhibited the growth of U266 cell in dose-and time-dependent manners. As for morphological changes, characteristic apoptotic cells presented in U266 cells treated with 10 µmol/L oridonin for 24 hours. The apoptotic rate of U266 cells increased in dose and time dependent manners; after treatment of U266 cells with oridonin the mRNA levels of FGFR3, BCL2, CCND1 and MYC as well as the their protein levels decreased. Occasionally, the oridonin up-regulated the protein levels of P53 in the same manner. It is concluded that the oridonin can exert its anti-tumor effect by inhibiting proliferation and inducing apoptosis of U266 cell in dose dependent and time dependent manners, that maybe give the clues about new program of target therapy for multiple myeloma.

Source:

Duan HQ, Li MY, Gao L, et al. Mechanism concerning antitumor effect of oridonin on multiple myeloma cell line U266. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014 Apr;22(2):364-9. doi: 10.7534/j.issn.1009-2137.2014.02.018.

Cancer: Multiple myeloma

Action: Induces apoptosis and autophagy

Exposure to oridonin (1-64 μmol/L) inhibited the proliferation of RPMI8266 cells in a concentration-dependent manner with an IC(50) value of 6.74 μmol/L. Exposure to oridonin (7 μmol/L) simultaneously induced caspase 3-mediated apoptosis and Beclin 1-dependent autophagy of RPMI8266 cells. Both the apoptosis and autophagy were time-dependent, and apoptosis was the main effector pathway of cell death. Exposure to oridonin (7 μmol/L) increased intracellular ROS and reduced SIRT1 nuclear protein in a time-dependent manner.

Oridonin simultaneously induces apoptosis and autophagy of human multiple myeloma RPMI8266 cells via regulation of intracellular ROS generation and SIRT1 nuclear protein. The cytotoxicity of oridonin is mainly mediated through the apoptotic pathway, whereas the autophagy protects the cells from apoptosis.

Source

Zeng R, Chen Y, Zhao S, Cui GH.Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin. 2012 Jan;33(1):91-100. doi: 10.1038/aps.2011.143.

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Chemoresistance, Ara-C, VP-16 

Cancer cell arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. Weng et al., (2014) compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S–mediated apoptosis.

Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.

Reference

Weng Hy, Huang Hl, Dong B, et al. Inhibition of miR-17 and miR-20a by Oridonin Triggers Apoptosis and Reverses Chemoresistance by Derepressing BIM-S. Cancer Res; 74(16); 1–11. doi: 10.1158/0008-5472.CAN-13-1748

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.

 

Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.

 

Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681

 

Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.

 

Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.

 

Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.

 

Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.

 

Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.

 

Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.

 

Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.

 

Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.

 

Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.

 

Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.

 

Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.

 

Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.

Cinobufacini Injection

Cancer: Liver, lung

Action: Chemo-sensitizer, chemotherapy support, cytostatic

Ingredients: chan su (Dried toad skin/Bufo bufo gargarizans)

TCM functions: Removing Toxin, reducing swelling, relieving pain.

Indications: Anti-tumor, immune enhancing and anti-viral effects, and can be used in middle and late-stage tumors, chronic hepatitis B.

Dosage and usage:

Intramuscular injection: 2-4 ml once, twice daily, 2-3 months as a course of treatment.

Cervical Cancer; Radiotherapy

Sixty patients with early cervical cancer were randomly divided into two groups. Twenty eight cases in treatment group were treated by intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection. Thirty two cases in control group were treated only by intensity modulated radiation therapy. There was no significant difference between the two groups on the short-term  effect and lesion local control rate (P > 0.05). The 3-year overall survival rate in the treatment group was higher than that in control group (P<0.05). There was significant difference between the two groups on radiation proctitis (P<0.05).

Intensity modulated radiation therapy combined with Brucea javanica oil emulsion injection can improve efficacy and reduce adverse reactions in early cervical cancer, worthy of clinical application. 10-20 ml mixed with 500 ml of 5% glucose for slow intravenous drip. Four weeks as a course of treatment, and 1-2 days interval after each week”s treatment.

Cinobufacini Injection (CI) showed better tumor inhibition effects on tumor-bearing rats of with a “heat syndrome” constitution, indicating CI was of a “cold property”. It may potentially be used in tumor-bearing rats of a “heat syndrome” constitution (Wang et al., 2011).

Induces Apoptosis

Chan Su is a traditional Chinese medicine prepared from the dried white secretion of the auricular and skin glands of toads, and has been used as an oriental drug for the treatment of a number of diseases, including cancer. In lung carcinoma A549 cells, treatment with the skin of Venenum Bufonis (SVB) resulted in the inhibition of cell growth and viability, and the induction of apoptosis.

SBV treatment induced the proteolytic activation of caspases and the concomitant degradation of poly(ADP-ribose)-polymerase and beta-catenin protein. Cleavage of Bid and a down-regulation of the inhibitor of apoptosis family proteins were also observed in SBV-treated A549 cells. Data from this study indicates that SVB induces the apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic and mitochondria-mediated intrinsic caspase pathways (Yun et al., 2009).

Blocks Metastasis

The effect of Cinobufacini injection on proliferation, heterogeneous adhesion, and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells (HLEC) was studied.

A co-culture system of human hepatoma HepG-2 cells and HLEC was established by means of Transwell chamber. Cell proliferation was analyzed by Trypan blue stain assay. MTT assay was used to observe the heterogeneous adhesion capacity of HepG-2 cells co-cultured with HLEC. Transwell invasion chamber was used to observe the invasiveness capacity of HepG-2 cells co-cultured with HLEC.

Cinobufacini Injection significantly inhibits proliferation, heterogeneous adhesion and invasiveness of hepG-2 cells co-cultured with HLEC in dose-dependent ways (all P0.05). Cinobufacini injection can inhibit the capability of proliferation, invasiveness and heterogeneous adhesion of HepG-2 cells, which might contribute to the inhibiting mechanisms of Cinobufacini injection on tumor metastasis (Fu, Gao, Tian, Chen, & Cui, 2013).

Inhibits Human Lymphatic Endothelial Cells (HLEC)

The effect of Cinobufacini injection on proliferation, migration and tubulin formation of human lymphatic endothelial cells (HLEC) was investigated.

Cell growth curve was used to observe the effect of Cinobufacini injection on the proliferation of HLEC; migration assay was used to observe the effect of Cinobufacini injection on the migration of HLEC; Matrigel assay was used to observe the effect of Cinobufacini injection on the tubulin formation of HLEC; Western blot was used to analyze the expression of VEGFR-3 and HGF in HLEC.

As the dosage of Cinobufacini injection increased (0.105, 0.21 and 0.42 µg/mL), so did the inhibition of HLCE. Cinobufacini injection demonstrated significant inhibition of HLEC proliferation (P < 0.05), migration (P < 0.05) and tubulin formation, in a dose-dependent manner (P < 0.05). Cinobufacini injection significantly decreased the expression of VEGFR-3 and HGF in HLEC, in a dose-dependent manner (P < 0.05).

Cinobufacini injection significantly inhibits HLEC proliferation, migration, and tubulin formation. The down-regulation of VEGFR-3 and HGF may contribute to the inhibitory effect of Cinobufacini injection on HLEC (Gao, Chen, Xiu, Fu, & Cui, 2013).

NSCLC; Chemotherapy

The efficacy and safety of Cinobufacini injection, combined with chemotherapy, as a treatment for advanced non-small-cell lung cancer (NSCLC) was investigated. Based on existing clinical information, a search of databases, such as Medline (1966-2011), Cochrane Library (2011, Issue 11), CNKI (1978-2011), VIP (1989-2011), Wanfang Data (1988-2011), CBMdisc (1978-2011) was done.

A total of seven RCTs of 498 patients were included. Meta-analysis results show that the experimental group and control group have significant differences in the response rate [RR=1.29, 95% CI (1.07, 1.56)], Karnofsky score [RR=1.86, 95% CI (1.14, 3.05)], weight change [RR=1.56, 95% CI (1.20, 2.03)], gastrointestinal side-effects [RR=0.72, 95% CI (0.53, 0.99)], neutropenia [RR=0.70, 95%CI(0.54, 0.91)], thrombocytopenia [RR=0.53, 95% CI (0.38, 0.75)], and renal function [RR=0.37, 95% CI (0.17, 0.79).

Cinobufacini, combined with chemotherapy, is suitable for advanced NSCLC by improving the response rate, increasing Karnofsky score, gaining weight and reducing major side-effects (Tu, Yin, & He, 2012).

Liver Cancer

The clinical effect of Cinobufacini injection, combined with transcatheter arterial chemoembolization (TACE), on treating primary liver cancer was investigated.

Seventy-eight patients with moderate and advanced primary liver cancer were randomly divided. The treatment group (n=38) was treated by Cinobufacini injection combined with TACE, and the control group (n=40), was treated by TACE only.

Quality of life of patients in the treatment group was significantly higher than that in control group. The 12 months survival rate of the treatment group was significantly higher than that of control group. There was no statistical difference in the rate of effectiveness between the two groups. Laboratory tests, after three cycles, in the treatment group were better than that of the control group, and the difference between the two groups was statistically significant.

Cinobufacini injection, combined with TACE, can decrease TACE induced liver damage, prolong survival time, and improve body immunity (Ke, Lu, & Li, 2011).

Hepatoma

Cinobufacini injection significantly inhibited HepG-2 cells proliferation in a dose and time-dependent manner. FCM analysis showed Cinobufacini injection induced cell-cycle arrest at the S phase. RT-PCR assay showed Cinobufacini injection down-regulated Cyclin A, and CDK2 expression at mRNA levels. Quantitative colorimetric assay showed Cinobufacini injection deceased Cyclin A/CDK2 activity in HepG-2 cells.

Cinobufacini injection can inhibit human hepatoma HepG-2 cells growth, induce cell apoptosis and induce cell-cycle arrest at the S phase. Its mechanism might be partly related to the down-regulation of Cyclin A, CDK2 mRNA expression, and inhibition of Cyclin A/CDK2 activity (Sun, Lu, Liang, & Cui, 2011).

Cell-cycle Arrest

Studies in China by Sun et al., (2011), Ke et al., (2011) and Tu et al., (2012) demonstrated that Cinobufacini Injection induced cell-cycle arrest, and could be used in the treatment of primary liver cancer, as well as in conjunction with chemotherapy in the treatment of non-small-cell lung cancer.

Caution

Resibufogenin (RBG), one of the major components in chan su, significantly affected all parameters of transmembrane action potential., induced delayed response after depolarization, and triggered arrhythmias in sheep and canine Purkinje fibers. Chan su toxicity carries a high mortality rate in the United States and this study focused upon the cardiac electrophysiological and electro-toxicity effects of RBG (Xie et al., 2000).

References

Fu, H.Y., Gao, S., Tian, L.L., Chen, X.Y., & Cui, X.N. (2013). Effect of Cinobufacini injection on proliferation and invasiveness of human hepatoma HepG-2 cells co-cultured with human lymphatic endothelial cells. The Chinese Journal of Clinical Pharmacology, 29(3), 199-201.


Gao, S., Chen, X.Y., Fu, H.Y., & Cui, X.Z. (2013). The effect of Cinobufacini injection on proliferation and tube-like structure formation of human lymphatic endothelial cells. China Oncology, 23(1), 36-41.


Ke, J, Lu, K., & Li, Y. (2011). Clinical observation of patients with primary liver cancer treated by Cinobufagin Injection combined with transcatheter arterial chemoembolization. Chinese Journal of Clinical Hepatology.


Sun, Y., Lu, X.X., Liang, X.M., & Cui, X.N. (2011). Impact of Cinobufacini injection on proliferation and cell-cycle of human hepatoma HepG-2 cells. The Chinese-German Journal of Clinical Oncology, 10(6), 321-324.


Tu, C., Yin, J., & He, J. Meta-analysis of Cinobufacini injection plus chemotherapy in the treatment of non-small-cell lung cancer. Anti-tumor Pharmacy, 2(1), 67-72.


Wang, S.S., Zhai, X.F., Li, B. (2011) Effect of cinobufacini injection on the tumor growth of tumor-bearing rats of different constitutions. Zhongguo Zhong Xi Yi Jie He Za Zhi, 31(8):1101-3.


Xie, J-T., Wang, Hs., Attele A.S., Yuan, C-S. (2000). Effects of Resibufogenin from Toad Venom on Isolated Purkinje Fibers. American Journal of Chinese Medicine, 28(2):187-196.


Yun, H.R., Yoo, H.S., Shin, D.Y., et al. (2009). Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum Bufonis) through activation of caspases. J Acupunct Meridian Stud, 2(3):210-7. doi: 10.1016/S2005-2901(09)60057-1.

Artesunate

Cancer: Colon, esophageal., pancreatic, ovarian, multiple myeloma and diffuse large B-cell lymphoma, osteosarcoma, lung, breast, skin, leukemia/lymphoma

Action: Anti-metastatic, MDR, radio-sensitizer

Pulmonary Adenocarcinomas

Artesunate exerts anti-proliferative effects in pulmonary adenocarcinomas. It mediates these anti-neoplastic effects by virtue of activating Bak (Zhou et al., 2012). At the same time, it down-regulates epidermal growth factor receptor expression. This results in augmented non-caspase dependent apoptosis in the adenocarcinoma cells. Artesunate mediated apoptosis is time as well as dose-dependent. Interestingly, AIF and Bim play significant roles in this Bak-dependent accentuated apoptosis (Ma et al., 2011). Adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) expression is also attenuated while transcription of matrix metallopeptidase 7 (MMP-7) is also down-regulated (Zhao et al., 2011). In addition, arsenuate enhances the radio-sensitization of lung carcinoma cells. It mediates this effect by down-regulating cyclin B1 expression, resulting in augmented G2/M phase arrest (Rasheed et al., 2010).

Breast Cancer

Similarly, artesunate exhibits anti-neoplastic effects in breast carcinomas. Artesunate administration is typically accompanied by attenuated turnover as well as accentuated peri-nuclear localization of autophagosomes in the breast carcinoma cells. Mitochondrial outer membrane permeability is typically augmented. As a result, artesunate augments programmed cellular decline in breast carcinoma cells (Hamacher-Brady et al., 2011).

Skin Cancer

Artesunate also exerts anti-neoplastic effects in skin malignancies. It mediates these effects by up-regulating p21. At the same time it down-regulates cyclin D1 (Jiang et al., 2012).

Colon Cancer

Artemisunate significantly inhibited both the invasiveness and anchorage independence of colon cancer SW620 cells in a dose-dependent manner. The protein level of intercellular adhesion molecule 1 (ICAM-1) was down-regulated as relative to the control group.

Artemisunate could potentially inhibit invasion of the colon carcinoma cell line SW620 by down-regulating ICAM-1 expression (Fan, Zhang, Yao & Li, 2008).

Multi-drug resistance; Colon Cancer

A profound cytotoxic action of the antimalarial., artesunate (ART), was identified against 55 cancer cell lines of the U.S. National Cancer Institute (NCI). The 50% inhibition concentrations (IC50 values) for ART correlated significantly to the cell doubling times (P = 0.00132) and the portion of cells in the G0/G1 (P = 0.02244) or S cell-cycle phases (P = 0.03567).

Efferth et al., (2003) selected mRNA expression data of 465 genes obtained by microarray hybridization from the NCI data-base. These genes belong to different biological categories (drug resistance genes, DNA damage response and repair genes, oncogenes and tumor suppressor genes, apoptosis-regulating genes, proliferation-associated genes, and cytokines and cytokine-associated genes). The constitutive expression of 54 of 465 (=12%) genes correlated significantly to the IC50 values for ART. Hierarchical cluster analysis of these 12 genes allowed the differentiation of clusters with ART-sensitive or ART-resistant cell lines (P = 0.00017).

Multi-drug-resistant cells differentially expressing the MDR1, MRP1, or BCRP genes were not cross-resistant to ART. ART acts via p53-dependent and- independent pathways in isogenic p53+/+ p21WAF1/CIP1+/+, p53-/- p21WAF1/CIP1+/+, and p53+/+ p21WAF1/CIP1-/- colon carcinoma cells.

Multi-drug resistance; Esophageal Cancer

The present study aimed to investigate the correlation between ABCG2 expression and the MDR of esophageal cancer and to estimate the therapeutic benefit of down-regulating ABCG2 expression and reversing chemoresistance in esophageal cells using artesunate (ART).

ART is a noteworthy antimalarial agent, particularly in severe and drug-resistant cancer cases, as ART is able to reverse drug resistance. ART exerted profound anti-cancer activity. The mechanism for the reversal of multi-drug resistance by ART in esophageal carcinoma was analyzed using cellular experiments, but still remains largely unknown (Liu, Zuo, & Guo, 2013).

Pancreatic Cancer

The combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Results indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications (Liu & Cui, 2013).

Ovarian Cancer

Advanced-stage ovarian cancer (OVCA) has a unifocal origin in the pelvis. Molecular pathways associated with extrapelvic OVCA spread are also associated with metastasis from other human cancers and with overall patient survival. Such pathways represent appealing therapeutic targets for patients with metastatic disease.

Pelvic and extrapelvic OVCA implants demonstrated similar patterns of signaling pathway expression and identical p53 mutations.

However, Marchion et al. (2013) identified 3 molecular pathways/cellular processes that were differentially expressed between pelvic and extrapelvic OVCA samples and between primary/early-stage and metastatic/advanced or recurrent ovarian, oral., and prostate cancers. Furthermore, their expression was associated with overall survival from ovarian cancer (P = .006), colon cancer (1 pathway at P = .005), and leukemia (P = .05). Artesunate-induced TGF-WNT pathway inhibition impaired OVCA cell migration.

Multiple Myeloma, B-cell Lymphoma

Findings indicate that artesunate is a potential drug for treatment of multiple myeloma and diffuse large B-cell lymphoma (DLBCL) at doses of the same order as currently in use for treatment of malaria without serious adverse effects. Artesunate treatment efficiently inhibited cell growth and induced apoptosis in cell lines. Apoptosis was induced concomitantly with down-regulation of MYC and anti-apoptotic Bcl-2 family proteins, as well as with cleavage of caspase-3. The IC50 values of artesunate in cell lines varied between 0.3 and 16.6 µm. Furthermore, some primary myeloma cells were also sensitive to artesunate at doses around 10 µm. Concentrations of this order are pharmacologically relevant as they can be obtained in plasma after intravenous administration of artesunate for malaria treatment (Holien et al., 2013).

Osteosarcoma, Leukemia/Lymphoma

Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo (Xu et al. 2011). ART alone or combined with chemotherapy drugs could inhibit the proliferation of B/T lymphocytic tumor cell lines as well ALL primary cells in vitro, probably through the mechanism of apoptosis, which suggest that ART is likely to be a potential drug in the treatment of leukemia/lymphoma (Zeng et al., 2009).

References

Efferth, T., Sauerbrey, A., Olbrich, A., et al. (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol, 64(2):382-94.


Fan, Y., Zhang, Y.L., Yao, G.T., & Li, Y.K. (2008). Inhibition of Artemisunate on the invasion of human colon cancer line SW620. Lishizzhen Medicine and Materia Medica Research, 19(7), 1740-1741.


Hamacher-Brady, A., Stein, H.A., Turschner, S., et al. (2011). Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. 2011;286(8):6587–6601. doi: 10.1074/jbc.M110.210047.


Holien, T., Olsen, O.E., Misund, K., et al. (2013). Lymphoma and myeloma cells are highly sensitive to growth arrest and apoptosis induced by artesunate. Eur J Haematol, 91(4):339-46. doi: 10.1111/ejh.12176.


Jiang, Z., Chai, J., Chuang, H.H., et al. (2012). Artesunate induces G0/G1 cell-cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anti-cancer Drugs, 23(6):606–613. doi: 10.1097/CAD.0b013e328350e8ac.


Liu, L., Zuo, L.F., Guo, J.W. (2013). Reversal of Multi-drug resistance by the anti-malaria drug artesunate in the esophageal cancer Eca109/ABCG2 cell line. Oncol Lett, 6(5):1475-1481.


Liu, Y. & Cui, Y.F. (2013). Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pac J Cancer Prev, 14(9):5243-8.


Ma, H., Yaom Q., Zhang, A.M., et al. (2011). The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules, 16(12):10556–10569. doi: 10.3390/molecules161210556.


Marchion, D.C., Xiong, Y., Chon, H.S., et al. (2013). Gene expression data reveal common pathways that characterize the unifocal nature of ovarian cancer. Am J Obstet Gynecol, S0002-9378(13)00827-2. doi: 10.1016/j.ajog.2013.08.004.


Rasheed, S.A., Efferth, T., Asangani, I.A., Allgayer, H. (2010). First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer, 127(6):1475–1485. doi: 10.1002/ijc.25315.


Xu, Q., Li, Z.X., Peng, H.Q., et al. (2011). Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 12(4):247–255. doi: 10.1631/jzus.B1000373.


Zhao, Y., Jiang, W., Li, B., et al. (2011). Artesunate enhances radiosensitivity of human non-small-cell lung cancer A549 cells via increasing no production to induce cell-cycle arrest at G2/M phase. Int Immunopharmacol, 11(12):2039–2046. doi: 10.1016/j.intimp.2011.08.017.


Zeng, Y., Ni, X., Meng, W.T., Wen, Q., Jia, Y.Q. (2009). Inhibitive effect of artesunate on human lymphoblastic leukemia/lymphoma cells. Sichuan Da Xue Xue Bao Yi Xue Ban, 40(6):1038-43.


Zhou, C., Pan, W., Wang, X.P., Chen, T.S. (2012). Artesunate induces apoptosis via a bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol, 227(12):3778–3786. doi: 10.1002/jcp.24086.

Emodin (See also Aloe-Emodin)

Cancer:
Breast, colon, liver, chemotherapy, myeloma, oral., pancreatic, hepatocellular carcinoma, lung, leukemia

Action: MDR-1, cell-cycle arrest

Emodin is an active natural anthraquinone derivative component of a traditional Chinese and Japanese medicine isolated from the root and rhizomes of Rheum palmatum L., Senna obtusifolia [(L.) H.S.Irwin & Barneby], Fallopia japonica [Houtt. (Ronse Decr.)], Kalimeris indica (L.) Sch.Bip., Ventilago madraspatana (Gaertn.), Rumex nepalensis (Spreng.), Fallopia multiflora [(Thunb.) Haraldson], Cassia occidentalis [(L.) Link], Senna siamea [(Lam.) Irwin et Barneby] and Acalypha australis (L.).

Aloe-emodin is an active natural anthraquinone derivative, and is found in the roots and rhizomes of numerous Chinese medicinal herbs (including Rheum palmatum L) and exhibits anti-cancer effects on many types of human cancer cell lines.

Administration of rhubarb (Emodin) can effectively reverse severe acute pancreatitis (SAP) by regulating the levels of IL-15 and IL-18 (Yu & Yang, 2013).

Pancreatic Cancer

Emodin is a tyrosine kinase inhibitor that has an inhibitory effect on mammalian cell-cycle modulation in specific oncogene-overexpressing cells. Recently, there has been great progress in the preclinical study of the anti-cancer mechanisms of emodin. A recent study revealed that emodin has therapeutic effects on pancreatic cancer through various anti-tumor mechanisms. Notably, the therapeutic efficacy of emodin in combination with chemotherapy was found to be higher than the comparable single chemotherapeutic regime, and the combination therapy also exhibited fewer side-effects (Wei et al., 2013).

Hepatocellular Carcinoma, Pancreatic, Breast, Colorectal and Lung Cancers, and Leukemia

Emodin is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial., anti-viral., anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal., leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer (Shrimali et al., 2013).

Hepatocellular Carcinoma

It has been found that emodin induces apoptotic responses in the human hepatocellular carcinoma cell lines (HCC) Mahlavu, PLC/PRF/5 and HepG2. The addition of emodin to these three cell lines led to inhibition of growth in a time-and dose-dependent manner. Emodin generated reactive oxygen species (ROS) in these cells which brought about a reduction of the intracellular mitochondrial transmembrane potential (ΔΨ m), followed by the activation of caspase–9 and caspase–3, leading to DNA fragmentation and apoptosis.

Preincubation of hepatoma cell lines with the hydrogen peroxide-scavenging enzyme, catalase (CAT) and cyclosporin A (CsA), partially inhibited apoptosis. These results demonstrate that enhancement of generation of ROS, DeltaPsim disruption and caspase activation may be involved in the apoptotic pathway induced by emodin (Jing et al., 2002).

Colon Cancer

In in vitro study, emodin induced cell morphological changes, decreased the percentage of viability, induced G2/M phase arrest and increased ROS and Ca(2+) productions as well as loss of mitochondrial membrane potential (ΔΨ(m)) in LS1034 cells. Emodin-triggered apoptosis was also confirmed by DAPI staining and these effects are concentration-dependent.

In in vivo study, emodin effectively suppressed tumor growth in tumor nude mice xenografts bearing LS1034. Overall, the potent in vitro and in vivo anti-tumor activities of emodin suggest that it might be developed for treatment of colon cancer in the future (Ma et al., 2012).

Myeloid Leukemia

It has been shown that emodin significantly induces cytotoxicity in the human myeloma cells through the elimination of myeloid cell leukemia 1 (Mcl-1). Emodin inhibited interleukin-6–induced activation of Janus-activated kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3), followed by the decreased expression of Mcl-1. Activation of caspase-3 and caspase-9 was triggered by emodin, but the expression of other anti-apoptotic Bcl-2 family members, except Mcl-1, did not change in the presence of emodin. To clarify the importance of Mcl-1 in emodin-induced apoptosis, the Mcl-1 expression vector was introduced into the human myeloma cells by electroporation. Induction of apoptosis by emodin was almost abrogated in Mcl-1–overexpressing myeloma cells as the same level as in parental cells, which were not treated with emodin. Emodin therefore inhibits interleukin-6–induced JAK2/STAT3 pathway selectively and induces apoptosis in myeloma cells via down-regulation of Mcl-1, which is a good target for treating myeloma. Taken together, these results show emodin as a new potent anti-cancer agent for the treatment of multiple myeloma patients (Muto et al., 2007).

Breast Cancer; Block HER-2

The mechanism by which emodin prevents breast cancer is unknown; however the product of the HER-2/neu proto-oncogene, HER2 has been proposed to be involved. The product of the HER-2/neu proto-oncogene, HER2, is the second member of the human epidermal growth factor receptor (HER) family of tyrosine kinase receptors and has been suggested to be a ligand orphan receptor. Amplification of the HER2 gene and overexpression of the HER2 protein induces cell transformation and has been demonstrated in 10% to 40% of human breast cancer. HER2 overexpression has been suggested to associate with tumor aggressiveness, prognosis and responsiveness to hormonal and cytotoxic agents in breast cancer patients. These findings indicate that HER2 is an appropriate target for tumor-specific therapies.

A number of approaches have been investigated: (1) a humanized monoclonal antibody against HER2, rhuMAbHER2 (trastuzumab), which is already approved for clinical use in the treatment of patients with metastatic breast cancer; (2) tyrosine kinase inhibitors, such as emodin, which block HER2 phosphorylation and its intracellullar signaling; (3) active immunotherapy, such as vaccination; and (4) heat shock protein (Hsp) 90-associated signal inhibitors, such as radicicol derivatives, which induce degradation of tyrosine kinase receptors, such as HER2 (Kurebayashi, 2001).

MDR

The effects of emodin on the nucleoside transport and multi-drug resistance in cancer cells has also been investigated. Nucleoside transport inhibition was determined by thymidine incorporation assay. The cytotoxicity to cancer cells was determined by MTT assay. The pump efflux activity and the expression of P glycoprotein were examined by flow cytometric assay. Emodin was active in the inhibition of nucleoside transport, with an IC 50 value of 9 9 µmol·L -1. Emodin markedly enhanced the cytotoxicity of 5 FU, MMC and MTX against human hepatoma BEL 7402 cells and partly reversed the multi-drug resistance in human breast cancer MCF 7/Adr cells.

Emodin inhibited P-gp pump efflux activity and reduced the expression of P gp in MCF 7/Adr cells. These findings provide a biological basis for the application of emodin as a biochemical modulator to potentiate the effects of anti-tumor drugs and reverse the multi-drug resistance in cancer cells (Jiang et al., 2009).

Cell-cycle Arrest

Large quantities of emodin were isolated from the roots of Rheum emodi and a library of novel emodin derivatives 2–15 were prepared to evaluate their anti-proliferative activities against HepG2, MDA-MB-231 and NIH/3T3 cells lines. The derivatives 3 and 12 strongly inhibited the proliferation of HepG2 and MDA-MB-231 cancer cell line with an IC50 of 5.6, 13.03 and 10.44, 5.027, respectively, which is comparable to marketed drug epirubicin (III). The compounds 3 and 12 were also capable of inducing cell-cycle arrest and caspase dependent apoptosis in HepG2 cell lines and exhibit DNA intercalating activity. These emodin derivatives hold promise for developing safer alternatives to the marketed epirubicin (Narender et al., 2013).

Cell-cycle Arrest; MDR1 & AZT

3'-azido-3'-deoxythymidine (AZT) and emodin altered the cell-cycle distribution and led to an accumulation of cells in S phase. Meanwhile, the expression of MDR1 mRNA/p-gp protein was markedly decreased. These results show a synergistic growth-inhibitory effect of AZT and emodin in K562/ADM cells, which is achieved through S phase arrest. MDR1 might ultimately be responsible for these phenomena (Chen et al., 2013).

References

Chen P, Liu Y, Sun Y, et al. (2013). AZT and emodin exhibit synergistic growth-inhibitory effects on K562/ADM cells by inducing S phase cell-cycle arrest and suppressing MDR1 mRNA/p-gp protein expression. Pharm Biol.


Garg AK, Buchholz TA, Aggarwal BB. (2005). Chemo-sensitization and Radiosensitization of Tumors by Plant Polyphenols. Antioxid Redox Signal., 7(11-12):1630-47.


Jiang XF & Zhen YS. (1999). Reversal of Multi-drug resistance by emodin in cancer cells. Acta Pharmaceutica Sinica, 1999-03.


Jing X, Ueki N, Cheng J, Imanishi H, Hada T. (2002). Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Cancer Science, 93(8):874–882.


Kurebayashi J. (2001). Biological and clinical significance of HER2 overexpression in breast cancer. Breast Cancer, 8(1):45-51


Ma YS, Weng SW, Lin MW, et al. (2012). Anti-tumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: Roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol, 50(5): 1271–1278. doi: 10.1016/j.fct.2012.01.033.


Muto A, Hori M, Sasaki Y, et al. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-06-0605.


Narender T, Sukanya P, Sharma K, et al. (2013). Preparation of novel anti-proliferative emodin derivatives and studies on their cell-cycle arrest, caspase dependent apoptosis and DNA binding interaction. Phytomedicine, 20(10):890-896.


Shrimali D, Shanmugam MK, Kumar AP, et al. (2013). Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett:S0304-3835(13)00598-3. doi: 10.1016/j.canlet.2013.08.023.


Wei WT, Lin SZ, Liu DL, Wang ZH. (2013). The distinct mechanisms of the anti-tumor activity of emodin in different types of cancer (Review). Oncol Rep. doi: 10.3892/or.2013.2741.


Yu XW, Yang RZ. (2013). Effects of crude rhubarb on serum IL-15 and IL-18 levels in patients with severe acute pancreatitis. An Hui Yi Xue, 34(3): 285-287.

Chelerythrine, Chelidonine and Sanguinarine

Cancer:
Leukemia, oral squamous cell carcinoma, melanoma

Action: Cytotoxic, MDR, apoptosis-triggering, inhibits proliferation

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy. This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

MDR

Cancer cells often develop multi-drug resistance (MDR) which is a multidimensional problem involving several mechanisms and targets. This study demonstrates that chelidonine, an alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids, has the ability to overcome MDR of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects.

Chelidonine and the alkaloid extract inhibited P-gp/MDR1 activity in a concentration-dependent manner in Caco-2 and CEM/ADR5000 and reversed their doxorubicin resistance. In addition, chelidonine and the alkaloid extract inhibited the activity of the drug, modifying enzymes CYP3A4 and GST in a dose-dependent manner. The expression analysis identified a common set of regulated genes related to apoptosis, cell-cycle, and drug metabolism.

Results suggest that chelidonine is a promising compound for overcoming MDR and enhancing cytotoxicity of chemotherapeutics, especially against leukemia cells. Its efficacy needs to be confirmed in animal models (El-Readi, Eid, Ashour, Tahrani & Wink, 2013).

Induces Apoptosis, Leukemia

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), howerver chelidonine did not affect mitochondrial integrity. Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h.

Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy, & Stoika, 2008).

Induces Apoptosis

Chelerythrine, formerly identified as a protein kinase C inhibitor, has also been shown to inhibit the anti-apoptotic Bcl-2 family proteins. Chelerythrine initiates the rapid mitochondrial apoptotic death of H9c2 cardiomyoblastoma cells in a manner that is likely independent of the generation of ROS from mitochondria (Funakoshi et al., 2011).

Oral Cancer, Inhibits cell proliferation

The effects of benzo[c] phenanthridine alkaloids (QBA), known mainly as sanguinarine and chelerythrine, on the inhibition of some kinds of cancer cell proliferation have been established. Sanguinarine is a potential inhibitor of tumorigenesis which suggests that it may be valuable in the development of new anti-cancer drugs for the treatment of oral squamous cell carcinoma (OSCC) (Tsukamoto et al., 2011).

Apoptotic Effects; Melanoma

Mixtures of isoquinoline alkaloids containing protopine, chelidonine, sanguinarine, allocryptopine, and stylopine were applied to murine fibroblast NIH/3T3, mouse melanoma B16F10, and human breast cancer MCF7 cell cultures for 20 and 40 min, and the content of alkaloids in the cell media was measured by capillary electrophoresis (CE). CE separation of isoquinoline alkaloids was performed in 30 mM phosphate buffer (pH 2.5). As these alkaloids have native fluorescence, they were directly detected using the commercially available UV light-emitting diode without fluorescent derivatization. The results showed a differential ability of celandine alkaloids to penetrate into the normal and cancer cell interior, which was inversely proportional to their cytotoxic activity.

While the most effective transport of celandine alkaloids from the cell medium to the cell interior was observed for normal murine fibroblast NIH/3T3 cells (about 55% of total content), cytotoxicity tests demonstrated selective and profound apoptotic effects of a five-alkaloid combination in the mouse melanoma B16F10 cell line (Kulp & Bragina, 2013).

Leukemia

The methanol extract isolated from the greater celandine Chelidonium majus L. (CME) has a strong anti-oxidant potential and exerted the anti-proliferative activity via apoptosis on leukemia cells. CME, due to the presence of the isoquinoline alkaloids and the flavonoid components may play an important role in both cancer chemoprevention through its anti-oxidant activity and modern cancer chemotherapy as a cytotoxic and apoptosis-inducing agent (Nadova et al., 2008).

Apoptosis-inducing Activity

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus L. (Papaveraceae), were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukaemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells was accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells. CHE, in contrast to SAN, does not interact directly with DNA.

This fact is in line with DNA-damaging effects of the alkaloids detected in the COMET assay. Nevertheless, apoptosis-inducing activity of CHE even slightly exceeded that of SAN (Philchenkov et al., 2008).

Chelidonium majus L. alkaloids chelidonine, sanguinarine, chelerythrine, protopine and allocryptopine were identified as major components of Ukrain. Apart from sanguinarine and chelerythrine, chelidonine turned out to be a potent inducer of apoptosis, triggering cell death at concentrations of 0.001 mM, while protopine and allocryptopine were less effective. Similar to Ukrain, apoptosis signaling of chelidonine involved Bcl-2 controlled mitochondrial alterations and caspase-activation (Habermehl et al., 2006).

References

El-Readi MZ, Eid S, Ashour ML, Tahrani A, & Wink M. (2013). Modulation of Multi-drug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine, 20(3-4), 282-94. doi: 10.1016/j.phymed.2012.11.005.


Funakoshi T, Aki T, Nakayama H, et al. (2011). Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicol In Vitro, 25(8):1581-7. doi: 10.1016/j.tiv.2011.05.028.


Habermehl D, Kammerer B, Handrick R, et al. (2006). Pro-apoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer, 6:14.


Kaminskyy V, Lin KW, Filyak Y, & Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International., 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O,Stoika R. (2008). A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Kulp M, Bragina O. (2013). Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Analytical and Bioanalytical Chemistry, 405(10), 3391-7. doi: 10.1007/s00216-013-6755-y.


Nadova S, Miadokova E, Alfoldiova L, et al. (2008). Potential anti-oxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinol Lett, 29(5):649-52.


Philchenkov A., Kaminskyy V., Zavelevich M., Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.


Tsukamoto H, Kondo S, Mukudai Y, et al., (2011). Evaluation of anti-cancer activities of benzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cell line. Anti-cancer Res, 31(9):2841-6.


Zhe C, Li-Juan W, Ming Hui W, et al. (2011). Mechanism governing reversal of Multi-drug resistance in human breast carcinoma cells by chelerythrine. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 33(1):45-50. doi: 10.3881/j.issn.1000-503X.2011.01.010.

Apigenin

Cancer:
Breast, gastrointestinal., prostate, ovarian, pancreatic

Action: Anti-proliferative effect, induces apoptosis, chemo-sensitizer

Apigenin (4′,5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. There is evidence that the actions of apigenin might hinder the ability of gastrointestinal cancers to progress and spread.

Induces Apoptosis, Anti-metastatic

Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease (Lefort, 2013).

Chemo-sensitizer, Induces Apoptosis

Choi & Kim (2009) investigated the effects of combined treatment with 5-fluorouracil and apigenin on proliferation and apoptosis, as well as the underlying mechanism, in human breast cancer MDA-MB-453 cells. The MDA-MB-453 cells, which have been shown to overexpress ErbB2, were resistant to 5-fluorouracil; 5-fluorouracil exhibited a small dose-dependent anti-proliferative effect, with an IC50 of 90 microM. Interestingly, combined treatment with apigenin significantly decreased the resistance. Cellular proliferation was significantly inhibited in cells exposed to 5-fluorouracil at its IC50 and apigenin (5, 10, 50 and 100 microM), compared with proliferation in cells exposed to 5-fluorouracil alone.

This inhibition in turn led to apoptosis, as evidenced by an increased number of apoptotic cells and the activation of caspase-3. Moreover, compared with 5-fluorouracil alone, 5-fluorouracil in combination with apigenin at concentrations >10 microM exerted a pro-apoptotic effect via the inhibition of Akt expression.

Taken together, results suggest that 5-fluorouracil acts synergistically with apigenin inhibiting cell growth and inducing apoptosis via the down-regulation of ErbB2 expression and Akt signaling (Choi, 2009).

Breast Cancer, Prostate Cancer

Two flavonoids, genistein and apigenin, have been implicated as chemo-preventive agents against prostate and breast cancers; however, the mechanisms behind their respective cancer-protective effects may vary significantly. It was thought that the anti-proliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) β is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17β-estradiol, exhibited anti-proliferative effects and pro-apoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERβ transactivation, particularly at lower concentrations.

However, in mammalian assay, apigenin was found to be more ERβ-selective than genistein, which has equal potency in inducing transactivation through ERα and ERβ. Small interfering RNA-mediated down-regulation of ERβ abrogated the anti-proliferative effect of apigenin in both cancer cells but did not reverse that of genistein. These results unveil that the anti-cancer action of apigenin is mediated, in part, by ERβ. The differential use of ERα and ERβ signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anti-cancer properties (Mak, 2006).

Ovarian Cancer

Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. It has been demonstrated that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin has been found to suppress the expression of Id1 through activating transcription factor 3 (ATF3). These results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells (Li, 2009).

Pancreatic Cancer

Simultaneous treatment or pre-treatment (0, 6, 24 and 42 hours) of apigenin and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Simultaneous treatment with apigenin (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of apigenin, followed by Gem for 36 hours was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of apigenin for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of apigenin hence effectively aids in the anti-proliferative activity of chemotherapeutic drugs (Johnson, 2013).

Induces Apoptosis, Inhibits Angiogenesis and Metastasis.

Preclinical studies have also shown that Ocimum sanctum L. and some of the phytochemicals it contains (including apigenin) prevents chemical-induced skin, liver, oral., and lung cancers. These effects are thought to be mediated by increasing the anti-oxidant activity, altering gene expression, inducing apoptosis, and inhibiting angiogenesis and metastasis. The aqueous extract of Ocimum sanctum L. has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. In particular, important phytochemicals like apigenin have also been shown to prevent radiation-induced DNA damage. This warrants its future research to establish its activity and utility in cancer prevention and treatment (Baliga, 2013).

Lung Cancer

Apigenin has been found to induce apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 µM for 48 hours treatment. Target identification investigations using A549 cells and in cell-free systems demonstrate that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 µM. Interestingly, apigenin also showed synergistic anti-cancer effects with another natural anti-tubulin agent, curcumin. Apigenin and curcumin synergistically induce cell death and apoptosis and also block cell-cycle progression at G2/M phase of A549 cells.

Understanding the mechanism of the synergistic effect of apigenin and curcumin could help to develop anti-cancer combination drugs from cheap and readily available nutraceuticals (Choudhury, 2013).

Induces Apoptosis

It has been shown that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by up-regulation of DR5, making it a potential cancer therapeutic agent. Apigenin has been found to enhance Apo2L/TRAIL-induced apoptosis in cancer cells by inducing DR5 expression through binding ANT2. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by up-regulating DR5 expression at the post-transcriptional level.

Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin Up-regulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. ANT2 inhibitors like apigenin may hence contribute to Apo2L/TRAIL therapy (Oishi, 2013).

Colorectal Cancer

Apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumor growth and anti-metastasis effects. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression.

This research provides direct evidence that apigenin inhibits tumor growth and metastasis both in vitro and in vivo. Apigenin up-regulates TAGLN and down-regulates MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cancer cell proliferation and migration (Chunhua, 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum Sanctum L (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

 

 

Choi EJ, Kim GH. (2009). 5-Fluorouracil combined with apigenin enhances anti-cancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep, 22(6):1533-7.

 

Choudhury D, Ganguli A, Dastidar DG, et al. (2013). Apigenin shows synergistic anti-cancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6):1297-309. doi: 10.1016/j.biochi.2013.02.010.

 

Chunhua L, Donglan L, Xiuqiong F, et al. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. doi: 10.1016/j.jnutbio.2013.03.006.

 

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 20:83-91. doi: 10.1016/j.fct.2013.07.036.

 


Lefort ƒC, Blay J. (2013). Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res, 57(1):126-44. doi: 10.1002/mnfr.201200424.

 

Li ZD, Hu XW, Wang YT & Fang J. (2009). Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Letters, 583(12):1999-2003 doi:10.1016/j.febslet.2009.05.013.

 

Mak P, Leung YK, Tang WY, Harwood C & Ho SM. (2006). Apigenin suppresses cancer cell growth through ERβ. Neoplasia, 8(11):896–904.

 

Oishi M, Iizumi Y, Taniguchi T, et al. (2013). Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2. PLoS One, 8(2):e55922. doi: 10.1371/journal.pone.0055922.

Icariin

Cancer: Breast, gastric, Leydig cell, gall bladder

Action: Potentiates chemotherapy, restores T cell function, MDR, induces apoptosis

Estrogen Agonist

Icariin is a pure extract of the traditional Chinese medicine Herba epimedii. It is a flavonoid found in several species of the genus Epimedium (L.).

The estrogenic activities of icariin (ICA) and its derivatives were investigated, and their structure-estrogenic activity relationship determined. Icaritin (ICT) and desmethylicaritin (DICT) were derived from ICA. The estrogenic activities of ICA, ICT and DICT were examined by cell proliferation and progestogen receptor mRNA expression of estrogen-receptor-positive MCF-7 cells.

These studies indicated that ICT and DICT both markedly enhanced the proliferation of MCF-7 cells; as compared to estradiol (100%); their relative proliferative effects (RPE) were 90% and 94%, respectively. Those phenomena were not observed with ICA. Results demonstrate that ICT and DICT (nonconjugated forms) possess estrogen-like activity; however, ICA appears to have no estrogenicity in the MCF-7 cell line model in vitro (Ye et al., 2005).

Gastric Cancer

In an in vitro study, the inhibitory effect and underlying molecular mechanism of icariin was investigated on the invasive and migration properties of human gastric cancer cell line BGC-823. At 50% growth-inhibiting concentration, icariin significantly suppressed tumor cells migration and invasion, which were traceable to down-regulation of Rac1 and VASP.

Together with icariin, the selected siRNA targeting Rac1 or VASP reinforced these inhibitory effects. Moreover, transfection with Rac1 plasmids pcDNA3-EGFP-Rac1-Q61L led to the enhancement in expression level of both Rac1 and VASP.

These results indicate that icariin exerts negative effects on tumor cell invasion and migration via the Rac1-dependent VASP pathway and may be a potential anti-cancer drug (Wang et al., 2010).

Gallbladder Cancer; Gemcitabine

Icariin, by suppressing NF-κB activity, exerts anti-tumor activity, and potentiates the anti-tumor activity of gemcitabine in gallbladder cancer. Combined administration of gemcitabine and icariin may offer a better therapeutic option for patients with gallbladder cancer. Icariin (40-160 µg/mL) dose-dependently suppressed cell proliferation and induced apoptosis in both GBC-SD and SGC-996 cells, with SGC-996 cells being less sensitive to the drug. Icariin (40 µg/mL) significantly enhanced the anti-tumor activity of gemcitabine (0.5 µmol/L) in both GBC-SD and SGC-996 cells (Zhang et al., 2013).

Restores T cell function

Tumor-induced myeloid-derived suppressor cells (MDSCs) are a critical barrier to effective immunotherapy of cancer. We identified that Docetaxel and a natural compound, Icariin, can target MDSCs with preferential apoptosis of M2 cells and polarization of the surviving cells towards M1 cells. Such strategic targeting of MDSCs restored T cell function accompanied by tumor retardation in vivo (Djeu & Wei, 2012).

Leydig Cell (Testicle)

Findings suggest a novel anti-cancer effect of icariin in Leydig cell tumor, derived from interstitial cells (rare neoplasm) through activation of the mitochondrial pathway and down-regulation of the expression of piwil4 (Wang et al., 2011).

Induces Apoptosis

Icariin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 ratio, loss of mitochondrial membrane potential., cytochrome c release, and caspase cascade. Moreover, icariin induced a sustained activation of the phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 and ERK1/2, and SP600125 (an inhibitor of JNK) almost reversed icariin-induced apoptosis in SMMC-7721 cells. In addition, icariin provoked the generation of reactive oxygen species (ROS) in SMMC-7721 cells, while the anti-oxidant N-acetyl cysteine almost completely blocked icariin-induced JNK activation and apoptosis. Taken together, these findings suggest that icariin induces apoptosis through a ROS/JNK-dependent mitochondrial pathway (Li et al., 2010).

References

Djeu J, Wei S. (2012). Chemoimmunomodulation of MDSCs as a novel strategy for cancer therapy. Oncoimmunology, 1(1):121-122.


Li S, Dong P, Wang J, et al. (2010). Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Lett, 298(2):222-30. doi: 10.1016/j.canlet.2010.07.009.


Wang Y, Dong H, Zhu M, et al. (2010). Icariin exterts negative effects on human gastric cancer cell invasion and migration by vasodilator-stimulated phosphoprotein via Rac1 pathway. Eur J Pharmacol, 635(1-3):40-8. doi: 10.1016/j.ejphar.2010.03.017.


Wang Q, Hao J, Pu J, et al. (2011). Icariin induces apoptosis in mouse MLTC-10 Leydig tumor cells through activation of the mitochondrial pathway and down-regulation of the expression of piwil4. Int J Oncol, 39(4):973-80. doi: 10.3892/ijo.2011.1086.


Ye HY, Lou YJ. (2005). Estrogenic effects of two derivatives of icariin on human breast cancer MCF-7 cells. Phytomedicine, 12(10):735-41.


Zhang DC, Liu JL, Ding YB, Xia JG, Chen GY. (2013). Icariin potentiates the anti-tumor activity of gemcitabine in gallbladder cancer by suppressing NF-κ B. Acta Pharmacol Sin, 34(2):301-8. doi: 10.1038/aps.2012.162.

Andrographolide

Cancer: Leukemia, colorectal, lung

Action: Immunomodulatory,anti-inflammatory,anti-metastatic

Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata [(Burm. f.) Wall. Ex Nees], is known to possess multiple pharmacological activities. Andrographolide has been shown to exhibit antioxidative, anti-cancer, anti-inflammatory, anti-diabetes, and anti-aging properties (Trivedi et al., 2007; Chao et al., 2010).

Immunomodulatory Activity

The immunomodulatory activity of HN-02, an extract containing a mixture of andrographolides, was evaluated at 1.0, 1.5, and 2.5 mg/kg on different in vivo and in vitro experimental models. It was also found that HN-02 treatment stimulated phagocytosis in mice. A significant increase in total WBC count and relative weight of spleen and thymus was observed in mice during 30 days of treatment with HN-02.

The present experimental findings demonstrate that HN-02 has the ability to enhance immune function, possibly through modulation of immune responses altered during antigen interaction, and to reverse the immunosuppression induced by CYP (Naik, 2009).

The ethanol extract and purified diterpene andrographolides of Andrographis paniculata (Acanthaceae) induced significant stimulation of antibody and delayed type hypersensitivity (DTH) response to sheep red blood cells (SRBC) in mice. The plant preparations also stimulated non-specific immune response of the animals measured in terms of macrophage migration index (MMI) phagocytosis of Escherichia coli and proliferation of splenic lymphocytes. The stimulation of both antigen specific and non-specific immune response was, however, of lower order with andrographolide than with the ethanol extract, suggesting that substance(s) other than andrographolide present in the extract may also be contributing towards immunostimulation (Puri, 1993)

Anti-inflammatory and Leukemic Therapies

Andrographolide has been shown to attenuate MMP-9 expression, with its main mechanism likely involving the NF-κB signal pathway. These results provide new opportunities for the development of new anti-inflammatory and leukemic therapies. This activity was shown in a study in which andrographolide (1–50µM) exhibited concentration-dependent inhibition of MMP-9 activation, induced by either tumor necrosis factor-α (TNF-α), or lipopolysaccharide (LPS), in THP-1cells.

Anti-inflammatory

Lee et al (2012) found that andrographolide could significantly inhibit the degradation of inhibitor-κB-α (IκB-α) induced by TNF-α. They used electrophoretic mobility shift assay and reporter gene detection to show that andrographolide also markedly inhibited NF-signaling, anti-translocation and anti-activation. These results provide new opportunities for the development of new anti-inflammatory and leukemic therapies.

Lung Cancer Metastasis

Andrographolide is known to have the potential to be developed as a chemotherapeutic agent, in particular in the treatment of lung cancer. In order to understand the anti-cancer properties of andrographolide, its effect on migration and invasion in human lung cancer A549 cells was examined. The results of the wound-healing assay and the in vitro transwell assay revealed that andrographolide inhibited dose-dependently the migration and invasion of A549 cells under non-cytotoxic concentrations.

These results indicated that andrographolide exerted an inhibitory effect on the activity and the mRNA and protein levels of MMP-7, but not MMP-2 or MMP-9. The andrographolide-inhibited MMP-7 expression or activity appeared to occur via activator protein-1 (AP-1) because its DNA binding activity was suppressed by andrographolide. Additionally, the transfection of Akt over-expression vector (Akt1 cDNA) to A549 cells could result in an increase expression of MMP-7 concomitantly with a marked induction on cell invasion. These findings suggested that the inhibition on MMP-7 expression by andrographolide may be through suppression on PI3K/Akt/AP-1 signaling pathway, which in turn leads to the reduced invasiveness of the cancer cells (Lee, 2010).

Colorectal Cancer

Andrographolide has also been shown to have potent anti-cancer activity against human colorectal carcinoma Lovo cells by inhibiting cell-cycle progression. To further investigate the mechanism for the anti-cancer properties of andrographolide, it was used to examine the effect on migration and invasion of Lovo cells. The results of wound-healing assay and in vitro transwell assay revealed that andrographolide inhibited dose-dependently the migration and invasion of Lovo cells under non-cytotoxic concentrations.

The down-regulation of MMP-7 appeared to be via the inactivation of activator protein-1 (AP-1) since the treatment with andrographolide suppressed the nuclear protein level of AP-1, which was accompanied by a decrease in DNA-binding level of the factor. Taken together, these results indicate that andrographolide reduces the MMP-7-mediated cellular events in Lovo cells, and provide a new mechanism for its anti-cancer activity (Shi, 2009)

Anti-inflammatory, Induces Apoptosis

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor subfamily with great potential in cancer therapy; additionally andrographolide is known to possess potent anti-inflammatory and anti-cancer activities which may be attributed to its action on TRAIL. It has been shown that pre-treatment with andrographolide significantly enhances TRAIL-induced apoptosis in various human cancer cell lines, including those TRAIL-resistant cells.

Pre-treatment with an anti-oxidant (N-acetylcysteine) or a c-Jun NH(2)-terminal kinase inhibitor (SP600125) effectively prevented andrographolide-induced p53 activation and DR4 up-regulation and eventually blocked the andrographolide-induced sensitization on TRAIL-induced apoptosis. Taken together, these results present a novel anti-cancer effect of andrographolide and support its potential application in cancer therapy to overcome TRAIL resistance (Zhou, 2008).

References

Chao HP, Kuo CD, Chiu JH, Fu SL. (2010). Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Medica, 76(16):1827–1833. doi: 10.1055/s-0030-1250039.


Lee WR, Chung CL, Hsiao CJ, et al. (2012). Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF- κB activation. Phytomedicine, 19(3):270-277. doi: 10.1016/j.phymed.2011.11.012


Lee YC, Lin HH, Hsu CH, et al. (2010). Inhibitory effects of andrographolide on migration and invasion in human non-small-cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol, 632(1-3):23-32. doi: 10.1016/j.ejphar.2010.01.009.


Naik SR, Hule A. (2009). Evaluation of Immunomodulatory Activity of an Extract of Andrographolides from Andographis paniculata. Planta Med, 75(8):785-91. doi: 10.1055/s-0029-1185398.


Puri A, Saxena R, Saxena RP, et al. (1993). Immunostimulant agents from Andrographis paniculata. J Nat Prod, 56(7):995-9.


Shi MD, Lin HH, Chiang TA, et al. (2009). Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression. Chem Biol Interact, 180(3):344-52. doi: 10.1016/j.cbi.2009.04.011.


Trivedi NP, Rawal UM, Patel BP. (2007). Hepato-protective effect of andrographolide against hexachlorocyclohexane- induced oxidative injury. Integrative Cancer Therapies, 6(3):271–280. doi: 10.1177/1534735407305985.


Zhou J, Lu GD, Ong CS, Ong CN, Shen HM. (2008). Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol Cancer Ther, 7(7):2170-80. doi: 10.1158/1535-7163.MCT-08-0071.

Ellagic Acid

Cancer:
Pancreatic, prostate, ovarian, breast, bladder, lymphoma, oral., melanoma

Action: Anti-cancer, induces apoptosis, promoted ROS and Ca2+ productions

Ellagic acid (EA) is a polyphenol compound widely found in fruits such as berries, walnuts, pecans, pomegranate, cranberries, and longan. It is well known to have a free radical scavenging activity and has been approved in Japan as an 'existing food additive' for anti-oxidative purposes (HHLW, 1996). In vitro evidence revealed that 100µM EA represented little toxic effect on human normal cells (Losso et al., 2004; Larrosa et al., 2006). A subchronic toxicity study further demonstrated that orally feeding EA (9.4, 19.1, 39.1g/kg b.w., resp.) could not induce mortality or treatment-related clinical signs throughout the experimental period on F344 rats (Tasaki et al., 2008), indicating the low toxicity of EA to mammalians. Furthermore, EA exhibits potent anti-cancer and anti-carcinogenesis activities towards breast, colorectal., oral., prostate (Losso et al., 2004; Larrosa et al., 2006; Malik et al., 2011), pancreatic (Edderkaoui et al., 2008), bladder (Li et al., 2005), neuroblastoma (Fjaeraa et al., 2009), melanoma (Kim et al., 2009), and lymphoma cells (Mishra et al., 2011).

Pancreatic Cancer

Edderkaoui et al. (2008) show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kappa B binding activity.

Furthermore, inhibition of NF-kappa B activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.

Pancreatic Cancer (PANC-1) cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with ellagic acid (EA). Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth which was associated with suppression of cell proliferation and caspase-3 activation, and induction of PARP cleavage. EA also reversed epithelial to mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Snail, MMP-2 and MMP-9.

These data suggest that EA can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt, Shh and Notch pathways. In view of the fact that EA could effectively inhibit human pancreatic cancer growth by suppressing Akt, Shh and Notch pathways, our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer (Zhao et al., 2013).

Ovarian Cancer

Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100  µ M) and assessed for viability, cell-cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell-cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax :  Bcl-2 ratio and restored anoikis in both cell lines.

The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma Chung et al., 2013).

Prostate Cancer; AR+

In the present study, Pitchakarn et al. (2013) investigated anti-invasive effects of ellagic acid (EA) in androgen-independent human (PC-3) and rat (PLS10) prostate cancer cell lines in vitro. The results indicated that non-toxic concentrations of EA significantly inhibited the motility and invasion of cells examined in migration and invasion assays. They found that EA significantly reduced proteolytic activity of collagenase/gelatinase secreted from the PLS-10 cell line. Collagenase IV activity was also concentration-dependently inhibited by EA. These results demonstrated that EA has an ability to inhibit invasive potential of prostate cancer cells through action on protease activity.

Breast Cancer

The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as developing strategies for cancer chemoprevention.

In this study Munagala et al. (2013) used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3weeks until tumor time point. The effect of a chemo-preventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis is also established. These observations provide mechanistic insights into the new molecular events behind the chemo-preventive action of ellagic acid and treatment of breast cancer.

Bladder Cancer

To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase-9 and -3.

On the basis of these observations, Ho et al (2013) suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells.

Lymphoma

Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signaling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells.

Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. The role of ellagic acid was tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation.

The anti-carcinogenic action of ellagic acid was also confirmed by up-regulation of TGF-β1 and down-regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down- regulation of PKC signaling pathway leading to cell proliferation (Mishra et al., 2013).

References

Chung YC, Lu LC, Tsai MH, et al. (2013). The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells. Evid Based Complement Alternat Med, 2013(2013):306705. doi: 10.1155/2013/306705.


Edderkaoui M, Odinokova I, Ohno I, et al. (2008). Ellagic acid induces apoptosis through inhibition of nuclear factor κ B in pancreatic cancer cells. World Journal of Gastroenterology, 14(23):3672–3680.


Fjaeraa C, NŒnberg E. (2009). Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomedicine and Pharmacotherapy, 63(4):254–261.


HHLW (Ministry of Health, Labor and Welfare of Japan). (1996). List of Existing Food Additives, Notification No. 120 of the Ministry of Health and Welfare.


Ho CC, Huang AC, Yu CS, Lien JC, et al. (2013). Ellagic acid induces apoptosis in tsgh8301 human bladder cancer cells through the endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Environ Toxicol. doi: 10.1002/tox.21857.


Kim S, Liu Y, Gaber MW, Bumgardner JD, Haggard WO, Yang Y. (2009). Development of chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. Journal of Biomedical Materials Research, 90(1):145–155.


Larrosa M, Tomás-Barberán FA, Espín JC. (2006). The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry, 17(9):611–625.


Li TM, Chen GW, Su CC, et al. (2005). Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anti-cancer Research, 25(2 A):971–979.


Losso JN, Bansode RR, Trappey A, II, Bawadi HA, Truax R. (2004). In vitro anti-proliferative activities of ellagic acid. Journal of Nutritional Biochemistry, 15(11):672–678.


Mishra S, Vinayak M. (2013). Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep, 40(2):1417-28. doi: 10.1007/s11033-012-2185-8.


Malik A, Afaq S, Shahid M, Akhtar K, Assiri A. (2011). Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pacific Journal of Tropical Medicine, 4(7):550–555.


Mishra S, Vinayak M. (2011). Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leukemia and Lymphoma, 52(11):2155–2161.


Munagala R, Aqil F, Vadhanam MV, Gupta RC. (2013). MicroRNA 'signature' during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett, S0304-3835(13)00462-X. doi: 10.1016/j.canlet.2013.06.012.


Pitchakarn P, Chewonarin T, Ogawa K, et al. (2013). Ellagic Acid inhibits migration and invasion by prostate cancer cell lines. Asian Pac J Cancer Prev, 14(5):2859-63.


Tasaki M, Umemura T, Maeda M, et al. (2008). Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food and Chemical Toxicology, 46(3):1119–1124.


Zhao M, Tang SN, Marsh JL, et al. (2013). Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 337(2):210–217