Category Archives: Apoptotic

Lunasin

Cancer: Colon, breast, liver metastasis

Action: Induces apoptosis, MDR

Lunasin is a peptide found in soy, barley, wheat, and rye, including Glycine max [(L.) Merr.], Hordeum vulgare L., Triticum (L.) genus and Secale cereale L.

Colon Cancer; Metastasis

Lunasin bound with α(5)β(1) integrin and internalized into the nucleus of KM12L4 human colon cancer cells. Lunasin (10µM) inhibited the activation of focal adhesion kinase (FAK) by 28%, 39% and 60% in RKO, HCT-116 and KM12L4 human colon cancer cells, respectively. Lunasin caused an increase in the expression of the inhibitor of kappa B alpha (IκB-α), a decrease in nuclear p50 NF-κB and a reduction in the migration of cancer cells. Lunasin (4mg/kg bw) inhibited metastasis and potentiated the effect of oxaliplatin by reducing the expression of proliferating cell nuclear antigen.

Liver metastatic nodules were reduced from 28 (PBS) to 14 (lunasin, P=0.047) while combination of lunasin and oxaliplatin to 5 (P=0.004). The tumor burden was reduced from 0.13 (PBS) to 0.10 (lunasin, P=0.039) to 0.04 (lunasin+oxaliplatin, P<0.0001). Moreover, lunasin potentiated the effect of oxaliplatin in modifying expression of proteins involved in apoptosis and metastasis including Bax, Bcl-2, IKK-α and p-p65. Lunasin inhibited metastasis of human colon cancer cells by direct binding with α(5)β(1) integrin suppressing FAK/ERK/NF-κB signaling, and potentiated the effect of oxaliplatin in preventing the outgrowth of metastasis (Dia et al., 2011).

Induces Apoptosis

Galvez et al. (2001) demonstrated previously that transfection of mammalian cells with the lunasin gene arrests mitosis, leading to cell death. Here they show that exogenous application of the lunasin peptide inhibits chemical carcinogen-induced transformation of murine fibroblast cells to cancerous foci. The results suggest a mechanism whereby lunasin selectively induces apoptosis, mostly in cells undergoing transformation, by preventing histone acetylation. In support of this, lunasin selectively induces apoptosis in E1A-transfected cells but not in nontransformed cells. Finally, in the SENCAR mouse skin cancer model, dermal application of lunasin (250 microg/week) reduces skin tumor incidence by approximately 70%, decreases tumor yield/mouse, and delays the appearance of tumors by 2 weeks relative to the positive control. These results point to the role of lunasin as a new chemo-preventive agent that functions possibly via a chromatin modification mechanism.

Breast Cancer

Combinations of two or more chemo-preventive agents are currently being used to achieve greater inhibitory effects on breast cancer cells. This study reveals that both aspirin and lunasin inhibit, in a dose-dependent manner, human estrogen-independent breast cancer MDA-MB-231 cell proliferation.

These compounds arrest the cell-cycle in the S- and G1-phases, respectively, acting synergistically to induce apoptosis. The cell growth-inhibitory effect of a lunasin/aspirin combination is achieved, at least partially, by modulating the expression of genes encoding G1 and S-phase regulatory proteins. Lunasin/aspirin therapy exerts its potent pro-apoptotic effect, at least partially achieved through modulating the extrinsic-apoptosis dependent pathway.

Therefore, our results suggest that a combination of these two compounds is a promising strategy to prevent/treat breast cancer (Hsieh et al., 2010).

Colon Cancer; MDR

Various human colon cancer cell lines which underwent metastasis were evaluated in vitro using cell flow cytometry and fluorescence microscopy. Lunasin cytotoxicity to different colon cancer cells correlated with the expression of α5b1 integrin was investigated, being most potent to KM12L4 cells (IC50 = 13 µM). Lunasin arrested cell-cycle at G2/M phase with concomitant increase in the expression of cyclin-dependent kinase inhibitors p21 and p27. Lunasin (5–25 µM) activated the apoptotic mitochondrial pathway as evidenced by changes in the expressions of Bcl-2, Bax, nuclear clusterin, cytochrome c and caspase-3 in KM12L4 and KM12L4-OxR.

Lunasin increased the activity of initiator caspase-9 leading to the activation of caspase-3 and also modified the expression of human extracellular matrix and adhesion genes, down-regulating integrin α5, SELE, MMP10, integrin β2 and COL6A1 by 5.01-, 6.53-, 7.71-, 8.19- and 10.10-fold, respectively, while up-regulating COL12A1 by 11.61-fold. Lunasin can be used in cases where resistance to chemotherapy developed (Dia et al., 2011).

References

Dia VP, Gonzalez de Mejia E. (2011). Lunasin potentiates the effect of oxaliplatin preventing outgrowth of colon cancer metastasis, binds to α5β1 integrin and suppresses FAK/ERK/NF-κ B signaling, Cancer Lett, 313(2):167-80.


Dia VP, Gonzalez de Mejia E. (2011). Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Mol Nutr Food Res, 55(4):623-34. doi: 10.1002/mnfr.201000419.


Galvez AF, Chen N, Macasieb J, de Lumen BO. (2001). Chemo-preventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res, 61(20):7473-8.


Hsieh CC, Hern‡ndez-Ledesma B, de Lumen BO. (2010). Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell-cycle and induced apoptosis. Chem Biol Interact, 186(2):127-34. doi: 10.1016/j.cbi.2010.04.027.

Indirubin

Cancer:
Chronic myelogenous leukemia, lung, breast, head and neck, prostate, acute myeloid leukemia, prostate

Action: Aryl hydrocarbon Receptor (AhR) regulator, inhibits angiogenesis

Indirubin is the active component of many plants from the Isatis (L.) genus, including Isatis tinctoria (L.).

Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. Indirubin and its analogues are potent inhibitors of cyclin-dependent kinases (CDKs). The crystal structure of CDK2 in complex with indirubin derivatives shows that indirubin interacts with the kinase's ATP-binding site through van der Waals interactions and three hydrogen bonds. Indirubin-3'-monoxime inhibits the proliferation of a large range of cells, mainly through arresting the cells in the G2/M phase of the cell-cycle. These results have implications for therapeutic optimization of indigoids (Hoessel et al., 1999).

Formula; Huang Lian (Rhizoma Coptidis Recens), Huang Qin (Radix Scutellariae Baicalensis), Huang Bai (Cortex Phellodendri), Zhi Zi (Fructus Gardeniae Jasminoidis), Dang Gui (Radix Angelicae Sinensis), Lu Hui (Herba Aloes), Long Dan Cao (Radix Gentianae Longdancao), Da Huang (Radix et Rhizoma Rhei), Mu Xiang (Radix Aucklandiae Lappae), Qing Dai (Indigo Pulverata Levis), She Xiang (Secretio Moschus)

Leukemia

Indirubin, a 3, 2' bisindole isomer of indigo was originally identified as the active principle of a traditional Chinese preparation and has been proven to exhibit anti-leukemic effectiveness in chronic myelocytic leukemia. Indirubin was detected to represent a novel lead structure with potent inhibitory potential towards cyclin-dependent kinases (CDKs) resulting from high affinity binding into the enzymes ATP binding site. This seminal finding triggered research to improve the pharmacological activities of the parent molecule within comprehensive structure-activity studies. Molecular modifications made novel anti-cancer compounds accessible with strongly improved CDK inhibitory potential and with broad-spectrum anti-tumor activity.

This novel family of compounds holds strong promise for clinical anti-cancer activity and might be useful also in several important non-cancer indications, including Alzheimer's disease or diabetes (Eisenbrand et al., 2004).

Aryl Hydrocarbon Receptor (AhR) Regulator; Breast Cancer

The aryl hydrocarbon receptor (AhR), when activated by exogenous ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), regulates expression of several phase I and phase II enzymes and is also involved in the regulation of cell proliferation. One putative endogenous ligand is indirubin, which was recently identified in human urine and bovine serum. We determined the effect of indirubin in MCF-7 breast cancer cells on induction of the activities of cytochromes P450 (CYP) 1A1 and 1B1. With 4 hours exposure, the effects of indirubin and TCDD at 10nM on CYP activity were comparable, but the effects of indirubin, unlike those of TCDD, were transitory. Indirubin-induced ethoxyresorufin-O-deethylase activity was maximal by 6–9 hours post-exposure and had disappeared by 24 hours, whereas TCDD-induced activities remained elevated for at least 72 hours.

Thus, if indirubin is an endogenous AhR ligand, then AhR-mediated signaling by indirubin is likely to be transient and tightly controlled by the ability of indirubin to induce CYP1A1 and CYP1B1, and hence its own metabolism (Spink et al., 2003).

Chronic Myelogenous Leukemia (CML)

Indirubin is the major active anti-tumor component of a traditional Chinese herbal medicine used for treatment of chronic myelogenous leukemia (CML). In a study investigating its mechanism of action, indirubin derivatives (IRDs) were found to potently inhibit Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells.

Compound E804, which is the most potent in this series of IRDs, blocked Stat5 signaling in human K562 CML cells, imatinib-resistant human KCL-22 CML cells expressing the T315I mutant Bcr-Abl (KCL-22M), and CD34-positive primary CML cells from patients.

In sum, these findings identify IRDs as potent inhibitors of the SFK/Stat5 signaling pathway downstream of Bcr-Abl, leading to apoptosis of K562, KCL-22M and primary CML cells. IRDs represent a promising structural class for development of new therapeutics for wild type or T315I mutant Bcr-Abl-positive CML patients (Nam et al., 2012).

Lung Cancer

A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell-cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression (Yoon et al., 2012).

The control lung tissue showed a normal architecture with clear alveolar spaces. Interestingly, the indirubin-3-monoxime treated groups showed reduced adenocarcinoma with appearance of alveolar spaces. Transmission Electron Microscopic (TEM) studies of lung sections of [B(α)P]-induced lung cancer mice showed the presence of phaemorphic cells with dense granules and increased mitochondria.

The lung sections of mice treated with indirubin-3-monoxime showed the presence of shrunken, fragmented, and condensed nuclei implying apoptosis. The effects were dose-dependent and prominent in 10 mg/kg/5 d/week groups, suggesting the therapeutic role of indirubin analogue against this deadly human malignancy. These results indicate that indirubin-3-monoxime brings anti-tumor effect against [B(α)P]-induced lung cancer by its apoptotic action in A/J mice (Ravichandran et al., 2010).

Head and Neck Cancer

The effects of 5'-nitro-indirubinoxime (5'-NIO), an indirubin derivative, on metastasis of head and neck cancer cells were investigated and the underlying molecular mechanisms involved in this process explored.

After treatment of head and neck cancer cells with 5'-NIO, cell metastatic behaviors such as colony formation, invasion, and migration were inhibited in a concentration-dependent manner. 5'-NIO inhibited the beta1 Integrin/FAK/Akt pathway which can then facilitate invasion and/or migration of cancer cells through the extracellular matrix (ECM). Moreover, treatment of head and neck cancer cell with Integrin β1 siRNA or FAK inhibitor effectively inhibited the invasion and migration, suggesting their regulatory role in invasiveness and migration of head and neck cancer cells. It was concluded that 5'-NIO inhibits the metastatic ability of head and neck cancer cells by blocking the Integrin β1/FAK/Akt pathway (Kim et al., 2011).

Prostate Cancer; Inhibits Angiogenesis

Indirubin, the active component of a traditional Chinese herbal medicine, Banlangen, has been shown to exhibit anti-tumor and anti-inflammation effects; however, its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism is unknown.

To address this shortfall in the existing research, it was identified that indirubin inhibited prostate tumor growth through inhibiting tumor angiogenesis. It was found that indirubin inhibited angiogenesis in vivo. The inhibition activity of indirubin in endothelial cell migration, tube formation and cell survival in vitro has also been shown. Furthermore, indirubin suppressed vascular endothelial growth factor receptor 2-mediated Janus kinase (JAK)/STAT3 signaling pathway. This study provided the first evidence for anti-tumor angiogenesis activity of indirubin and the related molecular mechanism.

These investigations suggest that indirubin is a potential drug candidate for angiogenesis-related diseases (Zhang et al., 2011).

Acute Myeloid Leukemia

Indirubin derivatives were identified as potent FLT3 tyrosine kinase inhibitors with anti-proliferative activity at acute myeloid leukemic cell lines, RS4;11 and MV4;11 which express FLT3-WT and FLT3-ITD mutation, respectively. Among several 5 and 5'-substituted indirubin derivatives, 5-fluoro analog, 13 exhibited potent inhibitory activity at FLT3 (IC(50)=15 nM) with more than 100-fold selectivity versus 6 other kinases and potent anti-proliferative effect for MV4;11 cells (IC(50)=72 nM) with 30-fold selectivity versus RS4;11 cells.

Cell cycle analysis indicated that compound 13 induced cell-cycle arrest at G(0)/G(1) phase in MV4;11 cells (Choi et al., 2010).

References

Choi SJ, Moon MJ, Lee SD, et al. (2010). Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells. Bioorg Med Chem Lett, 20(6):2033-7.


Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. (2004). Molecular mechanisms of indirubin and its derivatives: novel anti-cancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol, 130(11):627-35


Hoessel R, Leclerc S, Endicott JA, et al. (1999). Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol, 1(1):60-7.


Kim SA, Kwon SM, Kim JA, et al. (2011). 5'-Nitro-indirubinoxime, an indirubin derivative, suppresses metastatic ability of human head and neck cancer cells through the inhibition of Integrin β 1/FAK/Akt signaling. Cancer Lett, 306(2):197-204.


Nam S, Scuto A, Yang F, et al. (2012). Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol Oncol, 6(3):276-83.


Ravichandran K, Pal A, Ravichandran R. (2010). Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microsc Res Tech, 73(11):1053-8.


Spink BC, Hussain MM, Katz BH, Eisele L, Spink DC. (2003). Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol, 66(12):2313-21.


Yoon HE, Kim SA, Choi HS, et al. (2012). Inhibition of Plk1 and Pin1 by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett, 316(1):97-104.


Zhang X, Song Y, Wu Y, et al. (2011). Indirubin inhibits tumor growth by anti-tumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer, 129(10):2502-11. doi: 10.1002/ijc.25909.

Icaritin

Cancer:
Endometrial., chronic myeloid leukemia, prostate, breast

Action: Radio-sensitizer, cell-cycle arrest, ER modulator

Icaritin is a compound in several species of the genus Epimedium (L.).

Cell-cycle Arrest

Icariin and icaritin with prenyl group have been demonstrated to have selective estrogen receptor modulating activities. Icaritin-induced growth inhibition was associated with G(1) arrest (P<0.05), and G(2)-M arrest depending upon doses. Consistent with G(1) arrest, icaritin increased protein expressions of pRb, p27(Kip1) and p16(Ink4a), while showing decrease in phosphorylated pRb, Cyclin D1 and CDK4.

Comparatively, icariin has much lower effects on PC-3 cells and showed only weak G(1) arrest, suggesting a possible structure-activity relationship. These findings suggested a novel anti-cancer efficacy of icaritin mediated selectively via induction of cell-cycle arrest but not associated with estrogen receptors in PC-3 cells (Huang et al., 2007).

Estrogen Receptor (ER) Modulator; Endometrial Cancer

Icaritin has selective estrogen receptor (ER) modulating activities, and posseses anti-tumor activity. The effect of icaritin on cell growth of human endometrial cancer Hec1A cells was investigated and it was found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin also induced cell apoptosis accompanied by activation of caspases. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression.

These results demonstrate that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rationale for preclinical and clinical evaluation of icaritin for endometrial cancer therapy (Tong et al., 2011).

Breast cancer

In research carried out to probe breast cancer cell growth mechanisms, icaritin has been found to strongly inhibit the growth of breast cancer MDA-MB-453 and MCF7 cells. At concentrations of 2–3 µM, icaritin induced cell-cycle arrest at the G2/M phase accompanied by a down-regulation of the expression levels of the G2/M regulatory proteins such as cyclinB, cdc2 and cdc25C.

Icaritin at concentrations of 4–5 µM, however, induced apoptotic cell death. In addition, icaritin also induced a sustained phosphorylation of extracellular signal-regulated kinase (ERK) in these breast cancer cells.

Icaritin more potently inhibited growth of the breast cancer stem/progenitor cells compared to anti-estrogen tamoxifen. These results indicate that icaritin is a potent growth inhibitor for breast cancer cells and provides a rationale for preclinical and clinical evaluations of icaritin for breast cancer therapy (Guo et al., 2011).

Radio-sensitizer

The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These findings strongly suggest that Icaritin exerted a synergistic killing effect with radiation on the tumor cells. It suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. These results, taken together, indicate Icaritin is a new radio-sensitizer and can enhance anti-cancer effect of IR or other therapies (Hong et al., 2013).

Chronic Myeloid Leukemia (CML)

The mechanism of anti-leukemia for Icaritin is involved in the regulation of Bcr/Abl downstream signaling. Icaritin may be useful for an alternative therapeutic choice of Imatinib-resistant forms of CML. Icaritin potently inhibited proliferation of K562 cells (IC50 was 8 µM) and primary CML cells (IC50 was 13.4 µM for CML-CP and 18 µM for CML-BC), induced CML cells apoptosis, and promoted the erythroid differentiation of K562 cells in a time-dependent manner. Furthermore, Icaritin was able to suppress the growth of primary CD34+ leukemia cells (CML) and Imatinib-resistant cells, and to induce apoptosis (Zhu et al., 2011).

References

Guo YM, Zhang XT, Meng J, Wang ZY. (2011). An anti-cancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. European Journal of Pharmacology, 658(2–3):114–122. doi:10.1016/j.ejphar.2011.02.005.


Hong J, Zhang Z, Lv W, et al. (2013). Icaritin Synergistically Enhances the Radiosensitivity of 4T1 Breast Cancer Cells. PLoS One, 8(8):e71347. doi: 10.1371/journal.pone.0071347.


Huang X, Zhu D, Lou Y. (2007). A novel anti-cancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol, 564(1-3):26-36.


Tong JS, Zhang QH, Huang X, et al. (2011). Icaritin Causes Sustained ERK1/2 Activation and Induces Apoptosis in Human Endometrial Cancer Cells. PLoS ONE, 6(3): e16781. doi:10.1371/journal.pone.0016781.


Zhu JF, Li ZJ, Zhang GS, et al. (2011). Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One, 6(8):e23720. doi: 10.1371/journal.pone.0023720.

Hispolon

Cancer: Bladder, breast, liver, gastric

Action: Anti-inflammatory, cytostatic, cytotoxic, pro-oxidative, anti-proliferative

Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have anti-oxidant, anti-inflammatory, and anti-cancer activities.

Liver Cancer

Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell-cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells.

These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell-cycle arrest and apoptosis in Hep3B cells (Huang et al., 2011).

Gastric Cancer, Breast Cancer, Bladder Cancer

Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. Hispolon has also been found to inhibit breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment.

Lu et al. (2009) also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126.

In conclusion, hispolon ubiquitinates and down-regulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.

Gastric Cancer

The efficacy of hispolon in human gastric cancer cells and cell death mechanism was explored. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells.

The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione anti-oxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer.

These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anti-cancer agents (Chen et al., 2008).

Anti-proliferative Activity

Hispolon, which lacks one aromatic unit in relation to curcumin, exhibits enhanced anti-inflammatory and anti-proliferative activities. Dehydroxy hispolon was least potent for all three activities. Overall the results indicate that the substitution of a hydroxyl group for a methoxy group at the meta positions of the phenyl rings in curcumin significantly enhanced the anti-inflammatory activity, and the removal of phenyl ring at the 7(th) position of the heptadiene back bone and addition of hydroxyl group significantly increased the anti-proliferative activity of curcumin and hispolon (Ravindran et al., 2010).

References

Chen W, Zhao Z, Li L, et al. (2008). Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med, 45(1):60-72. doi: 10.1016/j.freeradbiomed.2008.03.013.


Huang GJ, Deng JS, Huang SS, Hu ML. (2011). Hispolon induces apoptosis and cell-cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem, 59(13):7104-13. doi: 10.1021/jf201289e.


Lu TL, Huang GJ, Lu TJ, et al. (2009). Hispolon from Phellinus linteus has anti-proliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol, 47(8):2013-21. doi: 10.1016/j.fct.2009.05.023.


Ravindran J, Subbaraju GV, Ramani MV, et al. (2010). Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol, 79(11):1658-66. doi: 10.1016/j.bcp.2010.01.033.

Gypenosides

Cancer: Leukemia, colorectal., oral., esophageal

Action: Apoptosis,inhibits cell proliferation and migration

Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino [(Thunb) Makino], have been used as folk medicine for centuries and have exhibited diverse pharmacological effects, including anti-leukemia effects in vitro and in vivo.

Gyp have been used to examine effects on cell viability, cell-cycle, and induction of apoptosis in vitro. They were administered in the diet to mice injected with WEHI-3 cells in vivo. Gyp inhibited the growth of WEHI-3 cells. These effects were associated with the induction of G0/G1 arrest, morphological changes, DNA fragmentation, and increased sub-G1 phase. Gyp promoted the production of reactive oxygen species, increased Ca2+ levels, and induced the depolarization of the mitochondrial membrane potential.

The effects of Gyp were dose- and time-dependent. Moreover, Gyp increased levels of the pro-apoptotic protein Bax, reduced levels of the anti-apoptotic proteins Bcl-2, and stimulated release of cytochrome c, AIF (apoptosis-inducing factor), and Endo G (endonuclease G) from mitochondria. The levels of GADD153, GRP78, ATF6-α, and ATF4-α were increased by Gyp, resulting in ER (endoplasmic reticular) stress in WEHI-3 cells. Oral consumption of Gyp increased the survival rate of mice injected with WEHI-3 cells used as a mouse model of leukemia.

Results of these experiments provide new information on understanding mechanisms of Gyp-induced effects on cell-cycle arrest and apoptosis in vitro and in an in vivo animal model (Hsu et al., 2011).

Inhibits Cell Proliferation and Migration

Results indicated that Gypenosides (Gyp) inhibited cell proliferation and migration in SW620 and Eca-109 cells in dose- and time-dependent manner. Gyp elevated intracellular ROS level, decreased the Δψ m, and induced apoptotic morphology such as cell shrinkage and chromatin condensation, suggesting oxidative stress and mitochondria-dependent cell apoptosis that might be involved in Gyp-induced cell viability loss in SW620 and Eca-109 cells. The findings indicate Gyp may have valuable application in clinical colon cancer and esophageal cancer treatments (Yan et al., 2013).

Gyp-induced cell death occurs through caspase-dependent and caspase-independent apoptotic signaling pathways, and the compound reduced tumor size in a xenograft nu/nu mouse model of oral cancer.

Gyp induced morphological changes, decreased the percentage of viable cells, caused G0/G1 phase arrest, and triggered apoptotic cell death in SAS cells. Cell-cycle arrest induced by Gyp was associated with apoptosis. The production of ROS, increased intracellular Ca(2+) levels, and the depolarization of ΔΨ(m) were observed. Gyp increased levels of the pro-apoptotic protein Bax but inhibited the levels of the anti-apoptotic proteins Bcl-2 and Bcl-xl. Gyp also stimulated the release of cytochrome c and Endo G. Translocation of GADD153 to the nucleus was stimulated by Gyp. Gyp in vivo attenuated the size and volume of solid tumors in a murine xenograft model of oral cancer (Lu et al., 2012).

Cell-cycle Arrest

Lin et al. (2011) have shown that gypenosides (Gyp) induced cell-cycle arrest and apoptosis in many human cancer cell lines. In the present study the effects of Gyp on cell morphological changes and viability, cell-cycle arrest and induction of apoptosis in vitro and effects on Gyp in an in vivo murine xenograft model were demonstrated. Results indicated that Gyp induced morphological changes, decreased cell viability, induced G0/G1 arrest, DNA fragmentation and apoptosis (sub-G1 phase) in HL-60 cells. Gyp increased reactive oxygen species production and Ca(2+) levels but reduced mitochondrial membrane potential in a dose- and time-dependent manner.

Oral consumption of Gyp reduced tumor size of HL-60 cell xenograft mode mice in vivo. These results provide new information on understanding mechanisms by which Gyp induces cell-cycle arrest and apoptosis in vitro and in vivo (Lin et al., 2011).

References

Hsu HY, Yang JS, Lu KW, et al. (2011). An Experimental Study on the Anti-leukemia Effects of Gypenosides In Vitro and In Vivo. Integr Cancer Ther, 10(1):101-12. doi: 10.1177/1534735410377198.


Lin JJ, Hsu HY, Yang JS, et al. (2011). Molecular evidence of anti-leukemia activity of gypenosides on human myeloid leukemia HL-60 cells in vitro and in vivo using a HL-60 cells murine xenograft model. Phytomedicine,18(12):1075-85. doi: 10.1016/j.phymed.2011.03.009.


Lu KW, Chen JC, Lai TY, et al. (2012). Gypenosides suppress growth of human oral cancer SAS cells in vitro and in a murine xenograft model: the role of apoptosis mediated by caspase-dependent and caspase-independent pathways. Integr Cancer Ther, 11(2):129-40. doi: 10.1177/1534735411403306.


Yan H, Wang X, Wang Y, Wang P, Xiao Y. (2013). Antiproliferation and anti-migration induced by gypenosides in human colon cancer SW620 and esophageal cancer Eca-109 cells. Hum Exp Toxicol.

Geniposide –Penta-acetyl Geniposide (Ac)5GP

Cancers:
Glioma, melanoma, liver, hepatocarcinogenesis, hepatoma, prostate, cervical

Action: Cytostatic, induces apoptosis

Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia fructus , exhibits anti-tumor effect.

Hepatocarcinogenesis, Glioma

It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis, induced by aflatoxin B1 (AFB1), by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells, especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest.

Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. It arrested the cell-cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F.

Data from in vivo experiments indicated that (Ac)5GP is not harmful to the liver, heart and kidney. (Ac)5GP is strongly suggested to be an anti-tumor agent for development in the future (Peng, Huang, & Wang, 2005).

Induces Apoptosis

Previous studies have demonstrated the apoptotic cascades protein kinase C (PKC) delta/c-Jun NH2-terminal kinase (JNK)/Fas/caspases induced by penta-acetyl geniposide [(Ac)5GP]. However, the upstream signals mediating PKCdelta activation have not yet been clarified. Ceramide, mainly generated from the degradation of sphingomyelin, was hypothesized upstream above PKCdelta in (Ac)5GP-transduced apoptosis.

After investigation, (Ac)5GP was shown to activate neutral sphingomyelinase (N-SMase) immediately, with its maximum at 15 min. The NGF and p75 enhanced by (Ac)5GP was inhibited when combined with GW4869, the N-SMase inhibitor, indicating NGF/p75 as the downstream signals of N-SMase/ceramide. To evaluate whether N-SMase is involved in (Ac)5GP-transduced apoptotic pathway, cells were treated with (Ac)5GP, alone or combined with GW4869. It was demonstrated that N-SMase inhibition blocked FasL expression and caspase 3 activation. Similarly, p75 antagonist peptide attenuated the FasL/caspase 3 expression. It indicated that N-SMase activation is pivotal in (Ac)5GP-mediated apoptosis.

SMase and NGF/p75 are suggested to mediate upstream above PKCdelta, thus transducing FasL/caspase cascades in (Ac)5GP-induced apoptosis (Peng, Huang, Hsu, & Wang, 2006).

Glioma

Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepato-protective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. The anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line C6 glioma cells were investigated.

Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun.

Findings suggest (Ac)(5)GP is highly likely to be an inhibiting cancer migration agent to be further developed in the future (Huang et al., 2009).

Melanoma

A new iridoid glycoside, 10-O-(4'-O-methylsuccinoyl) geniposide, and two new pyronane glycosides, jasminosides Q and R, along with nine known iridoid glycosides, and two known pyronane glycosides, were isolated from a MeOH extract of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides (Rubiaceae).

The structures of new compounds were elucidated on the basis of extensive spectroscopic analyzes and comparison with literature. Upon evaluation of these compounds on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., 6-O-p-coumaroylgeniposide (3), 7, and 6'-O-sinapoyljasminoside (12), exhibited inhibitory effects with 21.6-41.0 and 37.5-47.7% reduction of melanin content at 30 and 50 µM, respectively, with almost no toxicity to the cells (83.7-106.1% of cell viability at 50 µM) (Akisha et al., 2012).

Hepatoma, Prostate Cancer, Cervical Cancer

Genipin is a metabolite of geniposide isolated from an extract of Gardenia fructus. Some observations suggested that genipin could induce cell apoptosis in hepatoma cells and PC3 human prostate cancer cells. Genipin could remarkably induce cytotoxicity in HeLa cells and inhibit its proliferation. Induction of the apoptosis by genipin was confirmed by analysis of DNA fragmentation and induction of sub-G(1) peak through flow cytometry.

The results also showed that genipin-treated HeLa cells cycle was arrested at G(1) phase. Western blot analysis revealed that the phosphorylated c-Jun NH(2)-terminal kinase (JNK) protein, phospho-Jun protein, p53 protein and bax protein significantly increased in a dose-dependent manner after treatment of genipin for 24 hours; the activation of JNK may result in the increase of the p53 protein level; the increase of the p53 protein led to the accumulation of bax protein; and bax protein further induced cell apoptotic death eventually (Cao et al., 2010).

References

Akihisa T, Watanabe K, Yamamoto A, et al. (2012). Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chemistry & Biodiversity, 9(8), 1490-9. doi: 10.1002/cbdv.201200030.


Cao H, Feng Q, Xu W, et al. (2010). Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells. Biol Pharm Bull, 33(8):1343-8.


Huang HP, Shih YW, Wu CH, et al. (2009). Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways. Chemico-biological Interactions, 181(1), 8-14. doi: 10.1016/j.cbi.2009.05.009.


Peng CH, Huang CN, Hsu SP, Wang CJ. (2006). Penta-acetyl geniposide induce apoptosis in C6 glioma cells by modulating the activation of neutral sphingomyelinase-induced p75 nerve growth factor receptor and protein kinase Cdelta pathway. Molecular Pharmacology, 70(3), 997-1004.


Peng CH, Huang CN, Wang CJ. (2005). The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Current Cancer Drug Targets, 5(4), 299-305.

Eugenol

Cancer:
Melanoma, osteosarcoma, leukemia, gastric, colon, liver, oral., lung

Action: Radio-protective

Eugenol is a natural compound available in honey and various plants extracts; in particular, cloves (Syzygium aromaticum (L.) Merrill & Perry).

Melanoma, Skin Tumors, Osteosarcoma, Leukemia, Gastric Cancer

Eugenol (4-allyl-2-methoxyphenol), a phenolic phytochemicals, is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature show eugenol possesses anti-oxidant, anti-mutagenic, anti-genotoxic, anti-inflammatory and anti-cancer properties.

The molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented and highlights the anti-proliferative activity and molecular mechanism of eugenol-induced apoptosis against the cancer cells and animal model (Jaganathan et al., 2012).

Colon Cancer

Since most of the drugs used in cancer are apoptosis-inducers, the apoptotic effect and anti-cancer mechanism of eugenol were investigated against colon cancer cells. MTT assay signified the anti-proliferative nature of eugenol against the tested colon cancer cells. PI staining indicated increasing accumulation of cells at sub-G1-phase. Eugenol treatment resulted in reduction of intracellular non-protein thiols and increase in the earlier lipid layer break. Further events like dissipation of MMP and generation of ROS (reactive oxygen species) were accompanied in the eugenol-induced apoptosis. Augmented ROS generation resulted in the DNA fragmentation of treated cells as shown by DNA fragmentation and TUNEL assay. Further activation of PARP (polyadenosine diphosphate-ribose polymerase), p53 and caspase-3 were observed in Western blot analyzes.

These results demonstrate the molecular mechanism of eugenol-induced apoptosis in human colon cancer cells. This research will further enhance eugenol as a potential chemo-preventive agent against colon cancer (Jaganathan et al., 2011).

Radio-protective, Skin Cancer, Liver Cancer, Oral Cancer, Lung Cancer

Ocimum sanctum L. or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in the various Indian languages, is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia, and another plant from which eugenol is extracted. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. Preclinical studies have also shown that Ocimum and some of its phytochemicals including eugenol prevented chemical-induced skin, liver, oral., and lung cancers and to mediate these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

The aqueous extract of Ocimum and its flavanoids, orintin and vicenin, are shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. This action is related to the important phytochemicals it contains like eugenol, which are also shown to prevent radiation-induced DNA damage.

References

Baliga MS, Jimmy R, Thilakchan KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.


Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. (2011). Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int, 35(6):607-15. doi: 10.1042/CBI20100118.


Jaganathan SK, Supriyanto E. (2012). Anti-proliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells. Molecules, 17(6):6290-6304. doi:10.3390/molecules17066290.

EGCG, ECG, CG, EC

Cancer: Breast, pancreatic, lung, colorectal

Action: Chemo-preventive effects, metastasis

(-)-Epigallocatechin gallate (EGCG) is isolated from Camellia sinensis [(L.) Kuntze].

Epidemiological evidence suggests tea (Camellia sinensis L.) has chemo-preventive effects against various tumors. (-)-Epigallocatechin gallate (EGCG), a catechin polyphenol compound, represents the main ingredient of green tea extract and is chemo-preventive and an anti-oxidant. EGCG shows growth inhibition of various cancer cell lines, such as lung, mammary, and stomach.

Breast Cancer, Colorectal Cancer

Although EGCG has been shown to be growth-inhibitory in a number of tumor cell lines, it is not clear whether the effect is cancer-specific. The effect of EGCG on the growth of SV40 virally transformed WI38 human fibroblasts (WI38VA) was compared with that of normal WI38 cells. The IC50 value of EGCG was estimated to be 120 and 10 microM for WI38 and WI38VA cells, respectively. Similar differential growth inhibition was also observed between a human colorectal cancer cell line (Caco-2), a breast cancer cell line (Hs578T) and their respective normal counterparts.

EGCG at a concentration range of 40-200 microM induced a significant amount of apoptosis in WI38VA cultures, but not in WI38 cultures, as determined by terminal deoxynucleotidyl transferase assay. It is possible that differential modulation of certain genes, such as c-fos and c-myc, may cause differential effects of EGCG on the growth and death of cancer cells (Chen et al., 1998).

Breast Cancer

Green tea contains many polyphenols, including epigallocatechin-3 gallate (EGCG), which possess anti-oxidant qualities. Reduction of chemically-induced mammary gland carcinogenesis by green tea in a carcinogen-induced rat model has been suggested previously, but the results reported were not statistically significant. Green tea significantly increased mean latency to the first tumor, and reduced tumor burden and number of invasive tumors per tumor-bearing animal; however, it did not affect tumor number in female rats.

Furthermore, we show that proliferation and/or viability of cultured Hs578T and MDA-MB-231 estrogen receptor-negative breast cancer cell lines was reduced by EGCG treatment. Similar negative effects on proliferation were observed with the DMBA-transformed D3-1 cell line. Growth inhibition of Hs578T cells correlated with induction of p27Kip1 cyclin-dependent kinase inhibitor (CKI) expression.

Thus, green tea had significant chemo-preventive effects on carcinogen-induced mammary tumorigenesis in female S-D rats. In culture, inhibition of human breast cancer cell proliferation by EGCG was mediated in part via induction of the p27Kip1 (Kavanagh et al., 2001).

Pancreatic Cancer

The in vitro anti-tumoral properties of EGCG were investigated in human PDAC (pancreatic ductal adenocarcinoma) cells PancTu-I, Panc1, Panc89 and BxPC3 in comparison with the effects of two minor components of green tea catechins, catechin gallate (CG) and epicatechin gallate (ECG). It was found that all three catechins inhibited proliferation of PDAC cells in a dose- and time-dependent manner.

Interestingly, CG and ECG exerted much stronger anti-proliferative effects than EGCG. Importantly, catechins, in particular ECG, inhibited TNFα-induced activation of NF-κB and consequently secretion of pro-inflammatory and invasion promoting proteins like IL-8 and uPA.

Overall, these data show that green tea catechins ECG and CG exhibit potent and much stronger anti-proliferative and anti-inflammatory activities on PDAC cells than the most studied catechin EGCG (KŸrbitz et al., 2011).

Okabe et al. (1997) assessed the ability of EGCG to inhibit HGF signaling in the immortalized, nontumorigenic breast cell line, MCF10A, and the invasive breast carcinoma cell line, MDA-MB-231. The ability of alternative green tea catechins to inhibit HGF-induced signaling and motility was investigated. (-)-Epicatechin-3-gallate (ECG) functioned similarly to EGCG by completely blocking HGF-induced signaling as low as 0.6 muM and motility at 5 muM in MCF10A cells; whereas, (-)-epicatechin (EC) was unable to inhibit HGF-induced events at any concentration tested. (-)-Epigallocatechin (EGC), however, completely repressed HGF-induced AKT and ERK phosphorylation at concentrations of 10 and 20 muM, but was incapable of blocking Met activation. Despite these observations, EGC did inhibit HGF-induced motility in MCF10A cells at 10 muM.

Metastsis Inhibition

These observations suggest that the R1 galloyl and the R2 hydroxyl groups are important in mediating the green tea catechins' inhibitory effect towards HGF/Met signaling. These combined in vitro studies reveal the possible benefits of green tea polyphenols as cancer therapeutic agents to inhibit Met signaling and potentially block invasive cancer growth (Bigelow et al., 2006).

Colorectal Cancer

Panaxadiol (PD) is a purified sapogenin of ginseng saponins, which exhibits anti-cancer activity. Epigallocatechin gallate (EGCG), a major catechin in green tea, is a strong botanical anti-oxidant. Effects of selected compounds on HCT-116 and SW-480 human colorectal cancer cells were evaluated by a modified trichrome stain cell proliferation analysis. Cell-cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or annexin V/PI. Cell growth was suppressed after treatment with PD (10 and 20  µm) for 48 h. When PD (10 and 20  µm) was combined with EGCG (10, 20, and 30  µm), significantly enhanced anti-proliferative effects were observed in both cell lines.

Combining 20  µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p  < 0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Action: Anti-inflammatory, antioxidant

Green tea catechins, especially epigallocatechin-3-gallate (EGCG), have been associated with cancer prevention and treatment. This has resulted in an increased number of studies evaluating the effects derived from the use of this compound in combination with chemo/radiotherapy. Most of the studies on this subject up to date are preclinical. Relevance of the findings, impact factor, and date of publication were critical parameters for the studies to be included in the review.

Additive and synergistic effects of EGCG when combined with conventional cancer therapies have been proposed, and its anti-inflammatory and antioxidant activities have been related to amelioration of cancer therapy side effects. However, antagonistic interactions with certain anticancer drugs might limit its clinical use.

The use of EGCG could enhance the effect of conventional cancer therapies through additive or synergistic effects as well as through amelioration of deleterious side effects. Further research, especially at the clinical level, is needed to ascertain the potential role of EGCG as adjuvant in cancer therapy.

Cancer: Pancreatic ductal adenocarcinoma

Action: Anti-proliferative and anti-inflammatory

In the present study, Kürbitz et al., (2011) investigated the in vitro anti-tumoral properties of EGCG on human PDAC (pancreatic ductal adenocarcinoma) cells PancTu-I, Panc1, Panc89 and BxPC3 in comparison with the effects of two minor components of green tea catechins catechin gallate (CG) and epicatechin gallate (ECG). We found that all three catechins inhibited proliferation of PDAC cells in a dose- and time-dependent manner. Interestingly, CG and ECG exerted much stronger anti-proliferative effects than EGCG. Western blot analyses performed with PancTu-I cells revealed catechin-mediated modulation of cell cycle regulatory proteins (cyclins, cyclin-dependent kinases [CDK], CDK inhibitors). Again, these effects were clearly more pronounced in CG or ECG than in EGCG treated cells. Importantly, catechins, in particular ECG, inhibited TNFα-induced activation of NF-κB and consequently secretion of pro-inflammatory and invasion promoting proteins like IL-8 and uPA. Overall, our data show that green tea catechins ECG and CG exhibit potent and much stronger anti-proliferative and anti-inflammatory activities on PDAC cells than the most studied catechin EGCG.

References

Bigelow RLH, & Cardelli JA. (2006). The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene, 25:1922–1930. doi:10.1038/sj.onc.1209227

Chen ZP, Schell JB, Ho CT, Chen KY. (1998). Green tea epigallocatechin gallate shows a pronounced growth-inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett,129(2):173-9.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Kavanagh KT, Hafer LJ, Kim DW, et al. (2001). Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. Journal of Cellular Biochemistry, 82(3):387-98. doi:10.1002/jcb.1164


KŸrbitz C, Heise D, Redmer T, et al. (2011). Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells. Cancer Science, 102(4):728-734. doi: 10.1111/j.1349-7006.2011.01870.x


Okabe S, Suganuma M, Hayashi M, et al. (1997). Mechanisms of Growth Inhibition of Human Lung Cancer Cell Line, PC-9, by Tea Polyphenols. Cancer Science, 88(7):639–643. doi: 10.1111/j.1349-7006.1997.tb00431.x

Lecumberri E, Dupertuis YM, Miralbell R, Pichard C. (2013) Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clinical Nutrition. Volume 32, Issue 6, December 2013, Pages 894–903.

Kürbitz C, Heise D, Redmer T, Goumas F, et al. Cancer Science. Online publication Jan 2011. DOI: 10.1111/j.1349-7006.2011.01870.x

Diosgenin

Cancer: Breast, colon, prostate, leukemia, stomach

Action: HER-2, apoptosis, chemo-enhancing

Diosgenin is a plant-derived steroid isolated from Trigonella foenum-graecum (L.).

Breast Cancer; Chemo-enhancing

Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK.

The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, it was shown that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemo-preventive or chemotherapeutic agent for cancers that overexpress HER2 (Chiang et al., 2007).

Colon Cancer

On 24 hours exposure to diosgenin, MTT cytotoxicity activity reduced by ³50% was achieved at the higher concentrations (i.e., ³80 µmol/L). However, compared with the control, 20 to 60 µmol/L diosgenin reduced the MTT activity only by 5% to 30%. Diosgenin caused a significant time-dependent and dose-dependent decrease in the proliferation of HT-29 cells. Twenty four hours exposure to diosgenin (20 to 100 µmol/L) inhibited cell proliferation compared with untreated cell growth. The in vitro experiment results indicated that diosgenin inhibits cell growth and induces apoptosis in the HT-29 human colon cancer cell line in a dose-dependent manner.

Furthermore, diosgenin induces apoptosis in HT-29 cells at least in part by inhibition of bcl-2 and by induction of caspase-3 protein expression (Raju et al., 2004).

Breast Cancer

The electrochemical behavior of breast cancer cells was studied on a graphite electrode by cyclic voltammetry (CV) and potentiometric stripping analysis (PSA) in unexposed and diosgenin exposed cells. In both cases, only one oxidative peak at approximately +0.75 V was observed. The peak area in PSA was used to study the growth of the cells and the effect of diosgenin on MCF-7 cells. The results showed that diosgenin can effectively inhibit the viability and proliferation of the breast cancer cells (Li et al., 2005).

Leukemia

Cell viability was assessed via an MTT assay. Apoptosis was investigated in terms of nuclear morphology, DNA fragmentation, and phosphatidylserine externalization. Cell cycle analysis was performed via PI staining and flow cytometry (FCM). Western blotting and immunofluorescence methods were used to determine the levels of p53, cell-cycle-related proteins and Bcl-2 family members. Cell cycle analysis showed that diosgenin caused G2/M arrest independently of p53. The levels of cyclin B1 and p21Cip1/Waf1 were decreased, whereas cdc2 levels were increased. The anti-apoptotic Bcl-2 and Bcl-xL proteins were down-regulated, whereas the pro-apoptotic Bax was upregulated.

Diosgenin was hence found to inhibit K562 cell proliferation via cell-cycle G2/M arrest and apoptosis, with disruption of Ca2+ homeostasis and mitochondrial dysfunction playing vital roles (Liu et al., 2005).

In recent years, Akt signaling has gained recognition for its functional role in more aggressive, therapy-resistant malignancies. As it is frequently constitutively active in cancer cells, several drugs are being investigated for their ability to inhibit Akt signaling. Diosgenin (fenugreek), a dietary compound, was examined for its action on Akt signaling and its downstream targets on estrogen receptor positive (ER+) and estrogen receptor negative (ER-) breast cancer (BCa) cells. Additionally, in vivo tumor studies indicate diosgenin significantly inhibits tumor growth in both MCF-7 and MDA-231 xenografts in nude mice. Thus, these results suggest that diosgenin might prove to be a potential chemotherapeutic agent for the treatment of BCa (Srinivasan et al., 2009).

Leukemia, Stomach Cancer

Protodioscin (PD) was purified from fenugreek (Trigonella foenumgraecum L.) and identified by mass spectrometry, and 1H- and 13C-NMR. The effects of PD on cell viability in human leukemia HL-60 and human stomach cancer KATO III cells were investigated. PD displayed strong growth-inhibitory effect against HL-60 cells, but weak growth-inhibitory effect on KATO III cells.

These findings suggest that growth inhibition by PD of HL-60 cells results from the induction of apoptosis by this compound in HL-60 cells (Hibasami et al., 2003).

References

Chiang CT, Way TD, Tsai SJ, Lin JK. (2007). Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS letters, 581(30), 5735-42. doi:     10.1016/j.febslet.2007.11.021.


Hibasami H, Moteki H, Ishikawa K, et al. (2003). Protodioscin isolated from fenugreek (Trigonella foenumgraecum L.) induces cell death and morphological change indicative of apoptosis in leukemic cell line H-60, but not in gastric cancer cell line KATO III. Int J Mol Med, 11(1):23-6.


Li J, Liu X, Guo M, et al. (2005). Electrochemical Study of Breast Cancer Cells MCF-7 and Its Application in Evaluating the Effect of Diosgenin. Analytical Sciences, 21(5), 561. doi:10.2116/analsci.21.561


Liu MJ, Wang Z, Ju Y, Wong RNS, Wu QY. (2005). Diosgenin induces cell-cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis. Cancer Chemotherapy and Pharmacology, 55(1), 79-90, doi: 10.1007/s00280-004-0849-3


Raju J, Patlolla JMR, Swamy MV, Rao CV. (2004). Diosgenin, a Steroid Saponin of Trigonella foenum graecum (Fenugreek), Inhibits Azoxymethane-Induced Aberrant Crypt Foci Formation in F344 Rats and Induces Apoptosis in HT-29 Human Colon Cancer Cells. Cancer Epidemiol Biomarkers Prev, 13; 1392.


Srinivasan S, Koduru S, Kumar R, et al. (2009). Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. International Journal of Cancer, 125(4), 961–967. doi: 10.1002/ijc.24419

Dietary Flavones

Cancer:
Prostate, colorectal., breast, pancreatic, bladder, ovarian, leukemia, liver, glioma, osteosarcoma, melanoma

Action: Anti-inflammatory, TAM resistance, cancer stem cells, down-regulate COX-2, apoptosis, cell-cycle arrest, anti-angiogenic, chemo-sensitzer, adramycin (ADM) resistance

Sulforaphane, Phenethyl isothiocyanate (PEITC), quercetin, epicatechin, catechin, Luteolin, apigenin

Anti-inflammatory

The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects.

Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5% or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases (Hostetler et al., 2012).

Colorectal Cancer

Association between the 6 main classes of flavonoids and the risk of colorectal cancer was examined using data from a national prospective case-control study in Scotland, including 1,456 incident cases and 1,456 population-based controls matched on age, sex, and residence area.

Dietary, including flavonoid, data were obtained from a validated, self-administered food frequency questionnaire. Risk of colorectal cancer was estimated using conditional logistic regression models in the whole sample and stratified by sex, smoking status, and cancer site and adjusted for established and putative risk factors.

The significant dose-dependent reductions in colorectal cancer risk that were associated with increased consumption of the flavonols quercetin, catechin, and epicatechin, remained robust after controlling for overall fruit and vegetable consumption or for other flavonoid intake. The risk reductions were greater among nonsmokers, but no interaction beyond a multiplicative effect was present.

This was the first of several a priori hypotheses to be tested in this large study and showed strong and linear inverse associations of flavonoids with colorectal cancer risk (Theodoratou et al., 2007).

Anti-angiogenic, Prostate Cancer

Luteolin is a common dietary flavonoid found in fruits and vegetables. The anti-angiogenic activity of luteolin was examined using in vitro, ex vivo, and in vivo models. Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis; hence, examination of this mechanism of tumor growth is essential to understanding new chemo-preventive targets. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay.

Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the down-regulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions.

Taken together, these findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis (Pratheeshkumar et al., 2012).

Pancreatic Cancer; Chemo-sensitizer

The potential of dietary flavonoids apigenin (Api) and luteolin (Lut) were assessed in their ability to enhance the anti-proliferative effects of chemotherapeutic drugs on BxPC-3 human pancreatic cancer cells; additionally, the molecular mechanism of the action was probed.

Simultaneous treatment with either flavonoid (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of either Api or Lut, followed by Gem for 36 hours was optimal to inhibit cell proliferation. Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Lut (15µM, 24h) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Api or Lut hence effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Breast Cancer; Chemo-sensitizer, Tamoxifen

The oncogenic molecules in human breast cancer cells are inhibited by luteolin treatment and it was found that the level of cyclin E2 (CCNE2) mRNA was higher in tumor cells than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257).

Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. These results suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

Breast Cancer

Consumers of higher levels of Brassica vegetables, particularly those of the genus Brassica (broccoli, Brussels sprouts and cabbage), reduce their susceptibility to cancer at a variety of organ sites. Brassica vegetables contain high concentrations of glucosinolates that can be hydrolyzed by the plant enzyme, myrosinase, or intestinal microflora to isothiocyanates, potent inducers of cytoprotective enzymes and inhibitors of carcinogenesis. Oral administration of either the isothiocyanate, sulforaphane, or its glucosinolate precursor, glucoraphanin, inhibits mammary carcinogenesis in rats treated with 7,12-dimethylbenz[a]anthracene. To determine whether sulforaphane exerts a direct chemo-preventive action on animal and human mammary tissue, the pharmacokinetics and pharmacodynamics of a single 150 µmol oral dose of sulforaphane were evaluated in the rat mammary gland.

Sulforaphane metabolites were detected at concentrations known to alter gene expression in cell culture. Elevated cytoprotective NAD(P)H:quinone oxidoreductase (NQO1) and heme oxygenase-1 (HO-1) gene transcripts were measured using quantitative real-time polymerase chain reaction. An observed 3-fold increase in NQO1 enzymatic activity, as well as 4-fold elevated immunostaining of HO-1 in rat mammary epithelium, provide strong evidence of a pronounced pharmacodynamic action of sulforaphane. In a subsequent pilot study, eight healthy women undergoing reduction mammoplasty were given a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Following oral dosing, sulforaphane metabolites were readily measurable in human breast tissue enriched for epithelial cells. These findings provide a strong rationale for evaluating the protective effects of a broccoli sprout preparation in clinical trials of women at risk for breast cancer (Cornblatt et al., 2007).

In a proof of principle clinical study, the presence of disseminated tumor cells (DTCs) was demonstrated in human breast tissue after a single dose of a broccoli sprout preparation containing 200 µmol of sulforaphane. Together, these studies demonstrate that sulforaphane distributes to the breast epithelial cells in vivo and exerts a pharmacodynamic action in these target cells consistent with its mechanism of chemo-protective efficacy.

Such efficacy, coupled with earlier randomized clinical trials revealing the safety of repeated doses of broccoli sprout preparations , supports further evaluation of broccoli sprouts in the chemoprevention of breast and other cancers (Cornblatt et al., 2007).

CSCs

Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn a great deal of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF- κB, SHH, epithelial-mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results (Li et al., 2013).

Anti-inflammatory

Sulforaphane has been found to down-regulate COX-2 expression in human bladder transitional cancer T24 cells at both transcriptional- and translational levels. Cyclooxygenase-2 (COX-2) overexpression has been associated with the grade, prognosis and recurrence of transitional cell carcinoma (TCC) of the bladder. Sulforaphane (5-20 microM) induced nuclear translocation of NF-kappaB and reduced its binding to the COX-2 promoter, a key mechanism for suppressing COX-2 expression by sulforaphane. Moreover, sulforaphane increased expression of p38 and phosphorylated-p38 protein. Taken together, these data suggest that p38 is essential in sulforaphane-mediated COX-2 suppression and provide new insights into the molecular mechanisms of sulforaphane in the chemoprevention of bladder cancer (Shan et al., 2009).

Bladder Cancer

An aqueous extract of broccoli sprouts potently inhibits the growth of human bladder carcinoma cells in culture and this inhibition is almost exclusively due to the isothiocyanates. Isothiocyanates are present in broccoli sprouts as their glucosinolate precursors and blocking their conversion to isothiocyanates abolishes the anti-proliferative activity of the extract.

Moreover, the potency of isothiocyanates in the extract in inhibiting cancer cell growth was almost identical to that of synthetic sulforaphane, as judged by their IC50 values (6.6 versus 6.8 micromol/L), suggesting that other isothiocyanates in the extract may be biologically similar to sulforaphane and that nonisothiocyanate substances in the extract may not interfere with the anti-proliferative activity of the isothiocyanates. These data show that broccoli sprout isothiocyanate extract is a highly promising substance for cancer prevention/treatment and that its anti-proliferative activity is exclusively derived from isothiocyanates (Tang et al., 2006).

Ovarian Cancer

Sulforaphane is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. The cell-cycle arrest in G2/M by sulforaphane and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using Western blotting and co-IP Western blotting. The anti-cancer effects of dietary isothiocyanate sulforaphane on ovarian cancer were investigated using cancer cells line PA-1.

Sulforaphane -treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex.

These findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may also provide anti-tumor activity in established ovarian cancer (Chang et al., 2013).

Leukemia Stem Cells

Isolated leukemia stem cells (LSCs) showed high expression of Oct4, CD133, β-catenin, and Sox2 and imatinib (IM) resistance. Differentially, CD34(+)/CD38(-) LSCs demonstrated higher BCR-ABL and β-catenin expression and IM resistance than CD34(+)/CD38(+) counterparts. IM and sulforaphane (SFN) combined treatment sensitized CD34(+)/CD38(-) LSCs and induced apoptosis, shown by increased caspase 3, PARP, and Bax while decreased Bcl-2 expression. Mechanistically, imatinib (IM) and sulforaphane (SFN) combined treatment resensitized LSCs by inducing intracellular reactive oxygen species (ROS). Importantly, β-catenin-silenced LSCs exhibited reduced glutathione S-transferase pi 1 (GSTP1) expression and intracellular GSH level, which led to increased sensitivity toward IM and sulforaphane.

It was hence demonstrated that IM and sulforaphane combined treatment effectively eliminated CD34(+)/CD38(-) LSCs. Since SFN has been shown to be well tolerated in both animals and human, this regimen could be considered for clinical trials (Lin et al., 2012).

DCIS Stem Cells

A miR-140/ALDH1/SOX9 axis has been found to be critical to basal cancer stem cell self-renewal and tumor formation in vivo, suggesting that the miR-140 pathway may be a promising target for preventive strategies in patients with basal-like Ductal Carcinoma in Situ (DCIS). The dietary compound sulforaphane has been found to decrease Transcription factor SOX-9 and Acetaldehyde dehydrogenases (ALDH1), and thereby reduced tumor growth in vivo (Li et al., 2013).

Glioma, Prostate Cancer, Colon Cancer, Breast Cancer, Liver Cancer

Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, inhibits angiogenesis. The effects of PEITC were examined under hypoxic conditions on the intracellular level of the hypoxia inducible factor (HIF-1α) and extracellular level of the vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Gupta et al., (2013) observed that PEITC suppressed the HIF-1α accumulation during hypoxia in human glioma U87, human prostate cancer DU145, colon cancer HCT116, liver cancer HepG2, and breast cancer SkBr3 cells. PEITC treatment also significantly reduced the hypoxia-induced secretion of VEGF.

Suppression of HIF-1α accumulation during treatment with PEITC in hypoxia was related to PI3K and MAPK pathways.

Taken together, these results suggest that PEITC inhibits the HIF-1α expression through inhibiting the PI3K and MAPK signaling pathway and provide a new insight into a potential mechanism of the anti-cancer properties of PEITC.

Breast Cancer Metastasis

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system.

Results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir's curve, median survival of tumor-bearing mice treated with PEITC was prolonged by 20.5%. Furthermore, as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. These results demonstrate the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation (Gupta et al., 2013).

Osteosarcoma, Melanoma

Phenethyl isothiocyanate (PEITC) has been found to induce apoptosis in human osteosarcoma U-2 OS cells. The following end points were determined in regard to human malignant melanoma cancer A375.S2 cells: cell morphological changes, cell-cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca2+ generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC

It was therefore concluded that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways (Huang et al., 2013).

Prostate Cancer

The glucosinolate-derived phenethyl isothiocyanate (PEITC) has recently been demonstrated to reduce the risk of prostate cancer (PCa) and inhibit PCa cell growth. It has been shown that p300/CBP-associated factor (PCAF), a co-regulator for the androgen receptor (AR), is upregulated in PCa cells through suppression of the mir-17 gene. Using AR-responsive LNCaP cells, the inhibitory effects of PEITC were observed on the dihydrotestosterone-stimulated AR transcriptional activity and cell growth of PCa cells.

Expression of PCAF was upregulated in PCa cells through suppression of miR-17. PEITC treatment significantly decreased PCAF expression and promoted transcription of miR-17 in LNCaP cells. Functional inhibition of miR-17 attenuated the suppression of PCAF in cells treated by PEITC. Results indicate that PEITC inhibits AR-regulated transcriptional activity and cell growth of PCa cells through miR-17-mediated suppression of PCAF, suggesting a new mechanism by which PEITC modulates PCa cell growth (Yu et al., 2013).

Bladder Cancer; Adramycin (ADM) Resistance

The role of PEITC on ADM resistance reversal of human bladder carcinoma T24/ADM cells has been examined, including an increased drug sensitivity to ADM, cell apoptosis rates, intracellular accumulation of Rhodamine-123 (Rh-123), an increased expression of DNA topoisomerase II (Topo-II), and a decreased expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), bcl-2 and glutathione s transferase π (GST-π). The results indicated that PEITC might be used as a potential therapeutic strategy to ADM resistance through blocking Akt and activating MAPK pathway in human bladder carcinoma (Tang et al., 2013).

Breast Cancer; Chemo-enhancing

The synergistic effect between paclitaxel (taxol) and phenethyl isothiocyanate (PEITC) on the inhibition of breast cancer cells has been examined. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell-cycle, and apoptosis were examined.

The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than 2-fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. Taken together, these results indicated that the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo (Liu et al., 2013).

References

Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC. (2013). Sulforaphane induced cell-cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res, 6(1):41. doi: 10.1186/1757-2215-6-41


Cornblatt BS, Ye LX, Dinkova-Kostova AT, et al. (2007). Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 28(7):1485-1490. doi: 10.1093/carcin/bgm049


Gupta B, Chiang L, Chae K, Lee DH. (2013). Phenethyl isothiocyanate inhibits hypoxia-induced accumulation of HIF-1 α and VEGF expression in human glioma cells. Food Chem, 141(3):1841-6. doi: 10.1016/j.foodchem.2013.05.006.


Gupta P, Adkins C, Lockman P, Srivastava SK. (2013). Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model. PLoS One, 8(6):e67278. doi:10.1371/journal.pone.0067278


Hostetler G, Riedl K, Cardenas H, et al. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Molecular Nutrition & Food Research, 56(4):558-569. doi: 10.1002/mnfr.201100596


Huang SH, Hsu MH, Hsu SC, et al. (2013). Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. doi: 10.1177/0960327113491508


Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 60:83-91. doi: 10.1016/j.fct.2013.07.036.


Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. (2013). Down-regulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. doi: 10.1038/onc.2013.226.


Li Y, Zhang T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol, 9(8):1097-103. doi: 10.2217/fon.13.108.


Lin LC, Yeh CT, Kuo CC, et al. (2012). Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/ β-catenin function. J Agric Food Chem, 60(28):7031-9. doi: 10.1021/jf301981n.


Liu K, Cang S, Ma Y, Chiao JW. (2013). Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell-cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int, 13(1):10. doi: 10.1186/1475-2867-13-10.


Pratheeshkumar P, Son YO, Budhraja A, et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 7(12):52279. doi: 10.1371/journal.pone.0052279.


Tang K, Lin Y, Li LM. (2013). The role of phenethyl isothiocyanate on bladder cancer ADM resistance reversal and its molecular mechanism. Anat Rec (Hoboken), 296(6):899-906. doi: 10.1002/ar.22677.


Tang L, Zhang Y, Jobson HE, et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther, 5(4):935-44. doi: 10.1158/1535-7163.MCT-05-0476


Theodoratou E, Kyle J, Cetnarskyj R, et al. (2007). Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev,16(4):684-93.


Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.


Shan Y, Wu K, Wang W, et al. (2009). Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol, 34(4):1129-34.


Yu C, Gong AY, Chen D, et al. (2013). Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. doi: 10.1002/mnfr.201200810.

Dauricine

Cancer: Prostate, urinary system, breast, lung

Action: MDR

Lung Cancer

Menispermum dauricum DC (Moonseed) contains several alkaloids, of which dauricine can account for as much as 50% of the alkaloids present. In human lung adenocarcinoma A549 cells, these alkaloids activate caspase-3 by activating caspases-8 and -9. Accordingly, these alkaloids induce apoptosis through the apoptosis death receptor and mitochondrial pathways (Wang et al., 2011).

Prostate Cancer

The anti-tumor effects of asiatic moonseed rhizome extraction-dauricine were explored on bladder cancer EJ cell strain, prostate cancer PC-3Mcell strain and primary cell culture system. The main effective component, phenolic alkaloids of Menispermum dauricum, was extracted and separated from asiatic moonseed rhizome by chemical method.

Dauricine had an obvious proliferation inhibition effect on the main tumor cells in urinary system. The minimum drug sensitivity concentration was between 3.81-5.15 µg/mL, and the inhibition ratio increased with the increased concentration. Dauricine, the main effective component extracted from asiatic moonseed rhizome, had good inhibition effect on tumor cells in the urinary system. At the same time, Dauricine has certain inhibition effects on the primary cultured tumor cell (Wang et al., 2012).

Breast Cancer

Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of dauricine (Dau), followed by incubation with IGF-I for 6 h. Dau significantly inhibited IGF-I-induced HIF-1alpha protein expression but had no effect on HIF-1alpha mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-I. Mechanistically, Dau suppressed IGF-I-induced HIF-1alpha and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway.

Dau inhibits human breast cancer angiogenesis by suppressing HIF-1alpha protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anti-cancer activities of Dau in human breast cancer (Tang et al., 2009).

Breast Cancer; MDR

The potentiation of vincristine-induced apoptosis by tetrandrine, neferine and dauricine isolated from Chinese medicinal plants in the human mammary MCF-7 Multi-drug-resistant cells was investigated. The apoptotic cells induced by vincristine alone accounted for about 10% of all the cancer cells, while the percentage of apoptotic cells induced by a combination of vincristine with tetrandrine, neferine, or dauricine was found to be significantly higher than that by vincristine alone, and their reversal effects were positively correlated with the drug concentration and the exposure time.

In addition, tetrandrine was shown to be the most potent in the reversal efficacy among the three compounds to be tested for apoptosis in vitro. Tetrandrine, neferine and dauricine showed obvious potentiation of vincristine-induced apoptosis in the human mammary MCF-7 multi-drug-resistant cells (Ye et al., 2001).

MDR

Bisbenzylisoquinoline alkaloids are a large family of natural phytochemicals with great potential for clinical use. The interaction between breast cancer resistant protein (BCRP), sometimes called ATP binding cassette protein G2 (ABCG2), and 5 bisbenzylisoquinoline alkaloids (neferine, isoliensinine, liensinine, dauricine and tetrandrine) was evaluated using LLC-PK1/BCRP cell model.

The intracellular accumulation and bi-directional transport studies were conducted, and then molecular docking analysis was carried out employing a homology model of BCRP. This data indicates that BCRP could mediate the excretion of liensinine and dauricine, and thus influence their pharmacological activity and disposition (Tian et al., 2013).

References

Tang XD, Zhou X, Zhou KY. (2009). Dauricine inhibits insulin-like growth factor-I-induced hypoxia inducible factor 1alpha protein accumulation and vascular endothelial growth factor expression in human breast cancer cells. Acta Pharmacol Sin, 30(5):605-16. doi: 10.1038/aps.2009.8.

Tian Y, Qian S, Jiang Y, et al. (2013). The interaction between human breast cancer resistance protein (BCRP) and five bisbenzylisoquinoline alkaloids. Int J Pharm, 453(2):371-9. doi: 10.1016/j.ijpharm.2013.05.053.

Wang J, Li Y, Zu XB, Chen MF, Qi L. (2012). Dauricine can inhibit the activity of proliferation of urinary tract tumor cells. Asian Pac J Trop Med, 5(12):973-6. doi: 10.1016/S1995-7645(12)60185-0.

Wang YG, Sun S, Yang WS, Sun FD, Liu Q. (2011). Extract of Menispermum Dauricum induces apoptosis of human lung cancer cell line A549. J Pract Oncol (Chin), 26:343-346.

Ye ZG, Wang JH, Sun AX, et al. (2001). Potentiation of vincristine-induced apoptosis by tetrandrine, neferine and dauricine in the human mammary MCF-7 Multi-drug-resistant cells. Yao Xue Xue Bao, 36(2):96-9.

Cv-AP

Cancer: Cervical

Action: Pro-apoptotic, anti-proliferative, anti-migratory activity

Cervical

Clerodendrum viscosum (CV) has been employed for the treatment of cervical cancer. A water extract fraction (Cv-AP) from the root of CV was evaluated for its anti-cervical cancer cell bioactivity. Results indicate that Cv-AP possesses pro-apoptotic, anti-proliferative, and anti-migratory activity in a dose-dependent fashion against cervical cancer cell lines (Sun et al., 2013).

Reference

Sun C, Nirmalananda S, Jenkins CE, et al. (2013). First Ayurvedic Approach towards Green Drugs: Anti Cervical Cancer-Cell Properties of Clerodendrum viscosum Root Extract. Anti-cancer Agents Med Chem.

Cryptotanshinone (See also Tanshinone)

Cancer:
Prostate, breast, cervical., leukemia, hepatocellular carcinoma

Action: Anti-inflammatory, cell-cycle arrest, inhibits dihydrotestosterone (DHT), anti-proliferative, hepato-protective

Cryptotanshinone is a major constituent of tanshinones from Salvia miltiorrhiza (Bunge).

Tanshinone IIA and cryptotanshinone could induce CYP3A activity (Qiu et al., 2103).

Anti-proliferative Agent

Cryptotanshinone (CPT), a natural compound, is a potential anti-cancer agent. Chen et al., (2010) have shown that CPT inhibited cancer cell proliferation by arresting cells in G(1)-G(0) phase of the cell-cycle. This is associated with the inhibition of cyclin D1 expression and retinoblastoma (Rb) protein phosphorylation.

Furthermore, they found that CPT inhibited the signaling pathway of the mammalian target of rapamycin (mTOR), a central regulator of cell proliferation. This is evidenced by the findings that CPT inhibited type I insulin-like growth factor I- or 10% fetal bovine serum-stimulated phosphorylation of mTOR, p70 S6 kinase 1, and eukaryotic initiation factor 4E binding protein 1 in a concentration- and time-dependent manner. Expression of constitutively active mTOR conferred resistance to CPT inhibition of cyclin D1 expression and Rb phosphorylation, as well as cell growth. The results suggest that CPT is a novel anti-proliferative agent.

Anti-inflammatory; COX-2, PGE2

Cyclooxygenase-2 (COX-2) is a key enzyme that catalyzes the biosynthesis of prostaglandins from arachidonic acid and plays a critical role in some pathologies including inflammation, neurodegenerative diseases and cancer. Cryptotanshinone is a major constituent of tanshinones and has well-documented anti-oxidative and anti-inflammatory effects.

This study confirmed the remarkable anti-inflammatory effect of cryptotanshinone in the carrageenan-induced rat paw edema model. Since the action of cryptotanshinone on COX-2 has not been previously described, in this study, Jin et al. (2006) examined the effect of cryptotanshinone on cyclooxygenase activity in the exogenous arachidonic acid-stimulated insect sf-9 cells, which highly express human COX-2 or human COX-1, and on cyclooxygenases expression in human U937 promonocytes stimulated by lipopolysaccharide (LPS) plus phorbolmyristate acetate (PMA).

Cryptotanshinone reduced prostaglandin E2 synthesis and reactive oxygen species generation catalyzed by COX-2, without influencing COX-1 activity in cloned sf-9 cells. In PMA plus LPS-stimulated U937 cells, cryptotanshinone had negligible effects on the expression of COX-1 and COX-2, at either a mRNA or protein level. These results demonstrate that the anti-inflammatory effect of cryptotanshinone is directed against enzymatic activity of COX-2, not against the transcription or translation of the enzyme.

Prostate Cancer

Cryptotanshinone was identified as a potent STAT3 inhibitor. Cryptotanshinone rapidly inhibited STAT3 Tyr705 phosphorylation in DU145 prostate cancer cells and the growth of the cells through 96 hours of the treatment. Inhibition of STAT3 Tyr705 phosphorylation in DU145 cells decreased the expression of STAT3 downstream target proteins such as cyclin D1, survivin, and Bcl-xL.

Cryptotanshinone can suppress Bcl-2 expression and augment Fas sensitivity in DU145 prostate cancer cells. Park et al. (2010) show that JNK and p38 MAPK act upstream of Bcl-2 expression in Fas-treated DU145 cells, and that cryptotanshinone significantly blocked activation of these kinases. Moreover, cryptotanshinone sensitized several tumor cells to a broad range of anti-cancer agents. Collectively, the data suggest that cryptotanshinone has therapeutic potential in the treatment of human prostate cancer (Park et al., 2010).

Cryptotanshinone was colocalized with STAT3 molecules in the cytoplasm and inhibited the formation of STAT3 dimers. Computational modeling showed that cryptotanshinone could bind to the SH2 domain of STAT3. These results suggest that cryptotanshinone is a potent anti-cancer agent targeting the activation STAT3 protein. It is the first report that cryptotanshinone has anti-tumor activity through the inhibition of STAT3 (Shin et al., 2009).

Prostate Cancer; Androgen Receptor Positive

Anti-androgens to reduce or prevent androgens binding to androgen receptor (AR) are widely used to suppress AR-mediated PCa growth; however, the androgen depletion therapy is only effective for a short period of time. Xu et al., (2012) found that cryptotanshinone (CTS), with a structure similar to dihydrotestosterone (DHT), can effectively inhibit the DHT-induced AR transactivation and prostate cancer cell growth. Their results indicated that 0.5 µM CTS effectively suppresses the growth of AR-positive PCa cells, but has little effect on AR negative PC-3 cells and non-malignant prostate epithelial cells.

Furthermore, data indicated that CTS could modulate AR transactivation and suppress the DHT-mediated AR target genes expression in both androgen responsive PCa LNCaP cells and castration resistant CWR22rv1 cells. The mechanistic studies indicate that CTS functions as an AR inhibitor to suppress androgen/AR-mediated cell growth and PSA expression by blocking AR dimerization and the AR-coregulator complex formation.

Furthermore, they showed that CTS effectively inhibits CWR22Rv1 cell growth and expressions of AR target genes in the xenograft animal model. The previously un-described mechanisms of CTS may explain how CTS inhibits the growth of PCa cells and help us to establish new therapeutic concepts for the treatment of PCa.

Breast Cancer, Cervical Cancer, Leukemia, Hepatocellular Carcinoma

The three tanshinone derivatives, tanshinone I, tanshinone IIA, and cryptotanshinone, exhibited significant in vitro cytotoxicity against several human carcinoma cell lines (Wang et al., 2007).

Tanshinone I was found to inhibit the growth and invasion of breast cancer cells both in vitro and in vivo through regulation of adhesion molecules including ICAM-1 and VCAM-1 (Nizamutdinova et al., 2008), and induce apoptosis of leukemia cells by interfering with the mitochondrial transmembrane potential (ΔΨm), increasing the expression of Bax, as well as activating caspase-3 (Liu et al., 2010). Tanshinone IIA has been reported to inhibit the growth of cervical cancer cells through disrupting the assembly of microtubules, and induces G2/M phase arrest and apoptosis (Pan et al., 2010).

This compound can also inhibit invasion and metastasis of hepatocellular carcinoma (HCC) cells both in vitro and in vivo, by suppressing the expression of the metalloproteinases, MMP2 and MMP9 and interfering with the NFκB signaling pathway (Xu et al., 2009).

Breast Cancer

Cryptotanshione was reported to induce cell-cycle arrest at the G1-G0 phase, which was accompanied by the inhibition of cyclin D1 expression, retinoblastoma (Rb) protein phosphorylation, and of the rapamycin (mTOR) signaling pathway (Chen et al., 2010).

Hepato-protective Effect

Cryptotanshinone (20 or 40mg/kg) was orally administered 12 and 1h prior to GalN (700mg/kg)/LPS (10µg/kg) injection. The increased mortality and TNF- α levels by GalN/LPS were declined by cryptotanshinone pre-treatment. In addition, cryptotanshinone attenuated GalN/LPS-induced apoptosis, characterized by the blockade of caspase-3, -8, and -9 activation, as well as the release of cytochrome c from the mitochondria. Furthermore, cryptotanshinone significantly inhibited the activation of NF-κB and suppressed the production of pro-inflammatory cytokines.

These findings suggest that the hepato-protective effect of cryptotanshinone is likely to be associated with its anti-apoptotic activity and the down-regulation of MAPKs and NF-κB associated at least in part with suppressing TAK1 phosphorylation (Jin et al., 2013).

References

Chen W, Luo Y, Liu L, Zhou H, Xu B, Han X, Shen T, Liu Z, Lu Y, Huang S. (2010). Cryptotanshinone Inhibits Cancer Cell Proliferation by Suppressing Mammalian Target of Rapamycin–Mediated Cyclin D1 Expression and Rb Phosphorylation. Cancer Prev Res (Phila), 3(8):1015-25. doi: 10.1158/1940-6207.CAPR-10-0020. Epub 2010 Jul 13.

Jin DZ, Yina LL, Jia XQ, Zhu XZ. (2006). Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. European Journal of Pharmacology, 549(1-3):166-72. doi:10.1016/j.ejphar.2006.07.055

Jin VQ, Jiang S, Wu YL, et al. (2013). Hepato-protective effect of cryptotanshinone from Salvia miltiorrhiza in d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Phytomedicine. doi:10.1016/j.phymed.2013.07.016

Liu JJ, Liu WD, Yang HZ, et al. (2010). Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol, 89:1089–1097. doi: 10.1007/s00277-010-0996-z.

Nizamutdinova IT, Lee GW, Lee JS, et al. (2008). Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 29(10):1885-1892. doi:10.1093/carcin/bgn151

Pan TL, Hung YC, Wang PW, et al. (2010). Functional proteomic and structural insights into molecular targets related to the growth-inhibitory effect of tanshinone IIA on HeLa cells. Proteomics,10:914–929.

Park IJ, Kim MJ, Park OJ, et al. (2010). Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett, 298:88–98. doi: 10.1016/j.canlet.2010.06.006.

Qiu F, Jiang J, Ma Ym, et al. (2013). Opposite Effects of Single-Dose and Multidose Administration of the Ethanol Extract of Danshen on CYP3A in Healthy Volunteers. Evidence-Based Complementary and Alternative Medicine, 2013(2013) http://dx.doi.org/10.1155/2013/730734

Shin DS, Kim HN, Shin KD, et al. (2009). Cryptotanshinone Inhibits Constitutive Signal Transducer and Activator of Transcription 3 Function through Blocking the Dimerization in DU145 Prostate Cancer Cells. Cancer Research, 69:193. doi: 10.1158/0008-5472.CAN-08-2575

Wang X, Morris-Natschke SL, Lee KH. (2007). New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev, 27:133–148. doi: 10.1002/med.20077.

Xu D, Lin TH, Li S, Da J, et al. (2012). Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett, 316(1):11-22. doi: 10.1016/j.canlet.2011.10.006.

Xu YX, Feng T, Li R, Liu ZC. (2009). Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo. Tumori, 95:789–795.

Corosolic acid

Cancer:
Myeloid leukemia, cervical., glioblastoma, gastric, sarcoma

Action: Immunosuppressive activity

Corosolic Acid is isolated from Lagerstroemia speciosa [(L.) Pers.] and Crataegus pinnatifida var. psilosa (C. K. Schneider).

Sarcoma; Immunosuppressive Activity

The results from an in vivo study showed that Corosolic acid (CA) administration did not suppress the tumor proliferation index, but significantly impaired subcutaneous tumor development and lung metastasis.

CA administration inhibited signal transducer and activator of transcription-3 (Stat3) activation and increased in the number of infiltrating lymphocytes in tumor tissues. Ex vivo analysis demonstrated that a significant immunosuppressive effect of MDSC in tumor-bearing mice was abrogated and the mRNA expressions of cyclooxygenase-2 and CCL2 in MDSC were significantly decreased by CA administration.

Furthermore, CA enhanced the anti-tumor effects of adriamycin and cisplatin in vitro. Since Stat3 is associated with tumor progression not only in osteosarcoma, but also in other malignant tumors, these findings indicate that CA might be widely useful in anti-cancer therapy by targeting the immunosuppressive activity of MDSC and through its synergistic effects with anti-cancer agents (Horlad et al., 2013).

Cervical Cancer

Xu et al. (2009) investigated the response of human cervix adenocarcinoma HeLa cells to Corosolic acid (CRA) treatment. These results showed that CRA significantly inhibited cell viability in both a dose- and a time-dependent manner. CRA treatment induced S cell-cycle arrest and caused apoptotic death in HeLa cells. It was found that CRA increased in Bax/Bcl-2 ratios by up-regulating Bax expression, disrupted mitochondrial membrane potential and triggered the release of cytochrome c from mitochondria into the cytoplasm.

These results, taken together, indicate CRA could have strong potentials for clinical application in treating human cervix adenocarcinoma and improving cancer chemotherapy.

Glioblastoma

Tumor-associated macrophages (TAMs) of M2 phenotype promote tumor proliferation and are associated with a poor prognosis in patients with glioblastoma.

The natural compounds possessing inhibitory effects on M2 polarisation in human monocyte-derived macrophages were investigated. Among 130 purified natural compounds examined, corosolic acid significantly inhibited the expression of CD163, one of the phenotype markers of M2 macrophages, as well as suppressed the secretion of IL-10, one of the anti-inflammatory cytokines preferentially produced by M2 macrophages, thus suggesting that corosolic acid suppresses M2 polarisation of macrophages.

Furthermore, corosolic acid inhibited the proliferation of glioblastoma cells, U373 and T98G, and the activation of Signal transducer and activator of transcription-3 (STAT3) and Nuclear Factor-kappa B (NF-κB), in both human macrophages and glioblastoma cells. These results indicate that corosolic acid suppresses the M2 polarisation of macrophages and tumor cell proliferation by inhibiting both STAT3 and NF-κB activation. Therefore, corosolic acid may be a new tool for tumor prevention and therapy (Fujiwara et al., 2010).

Gastric Cancer

Corosolic acid (CRA) suppresses HER2 expression, which in turn promotes cell-cycle arrest and apoptotic cell death of gastric cancer cells, providing a rationale for future clinical trials of CRA in the treatment of HER2-positive gastric cancers. CRA combined with adriamycin and 5-fluorouracil enhanced this growth inhibition, but not with docetaxel and paclitaxel (Lee et al., 2010).

Leukemia

Corosolic acid displayed about the same potent cytotoxic activity as ursolic acid against several human cancer cell lines. In addition, the compound displayed antagonistic activity against the phorbol ester-induced morphological modification of K-562 leukemic cells, indicating the suppression of protein kinase C (PKC) activity by the cytotoxic compound (Ahn et al., 1998).

References

Ahn KS, Hahm MS, Park EJ, Lee HK, Kim IH. (1998). Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med, 64(5):468-70.


Fujiwara Y, Komohara Y, Ikeda T, Takeya M. (2010). Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Science. doi: 10.1111/j.1349-7006.2010.01772.x


Horlad H, Fujiwara Y, Takemura K, et al. (2013). Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Molecular Nutrition & Food Research, 57(6):1046-1054. doi: 10.1002/mnfr.201200610


Lee MS, Cha EY, Thuong PT, et al. (2010). Down-regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell-cycle arrest and apoptosis in NCI-N87 human gastric cancer cells. Biol Pharm Bull, 33(6):931-7.


Xu YF, Ge RL, Du J, et al. (2009). Corosolic acid induces apoptosis through mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells. Cancer Letters, 284(2):229-237. doi:10.1016/j.canlet.2009.04.028.

Concanavalin A

Cancer: Melanoma

Action: Autophagy

Concanavalin A (ConA) is isolated from Canavalia ensiformis [(L.) DC.].

Autophagy

Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumor cells using mechanisms implicated in autophagy. Plant lectins concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins can target autophagy by modulating BNIP-3, ROS-p38-p53, Ras-Raf and PI3KCI-Akt pathways, as well as Beclin-1, in many types of cancer cells (Liu et al., 2013).

Melanoma

Con A possesses a remarkable anti-proliferative effect on human melanoma A375 cells, and there is a link between the anti-proliferative activity of Con A and its sugar-binding activity. Subsequently, Con A can induce human melanoma A375 cell apoptosis in a caspase-dependent manner. It has been demonstrated that there may be a close correlation between the anti-proliferative activity of Con A and its sugar-binding activity. More importantly, Con A can induce human melanoma A375 cell death in a caspase-dependent manner as well as via a mitochondrial apoptotic pathway (Liu et al.,2009).

References

Liu B, Min MW, Bao JK. (2009). Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells. Autophagy, 5(3):432-3. doi: 10.1016/j.abb.2008.12.003


Liu Z, Luo Y, Zhou TT, Zhang WZ. (2013). Could plant lectins become promising anti-tumor drugs for causing autophagic cell death? Cell Prolif, 46(5):509-15. doi: 10.1111/cpr.12054.

Camptothecin

Cancer: Breast, colon

Action: Cytostatic

Breast Cancer

Recently, natural product DNA topoisomerase I inhibitors 10-hydroxycamptothecin (HCPT) and camptothecin (CPT) have been shown to have therapeutic effects in both in vitro and in vivo models of human breast cancer. After evaluation, the apoptotic pathways were characterized in vitro and in vivo in the human breast cancer cell lines MCF-7 and MDA-MB-468.

The elevation of p53 protein levels in MCF-7 cells treated with CPT was significantly inhibited by preincubation with DNA breaks inhibitor aphidicolin, while the elevation of p21WAF1/CIP1 protein levels was not inhibited. The elevation of p21WAF1/CIP1 in MDA-MB-468 cells treated with CPT was not inhibited by aphidicolin. Using Northern blot analysis, the transcription of p21WAF1/CIP1 was shown to increase in a dose-dependent manner in MCF-7 and MDA-MB-468 cells treated with HCPT or CPT.

Results suggest that treatment with HCPT and CPT results in increased levels of p21WAF1/CIP1 protein and mRNA, and that they induce apoptosis in human breast cancer cells through both p53-dependent and -independent pathways. Findings may be significant in further understanding the mechanisms of actions of camptothecins in the treatment of human cancers (Liu & Zhang, 1998).

Colon Cancer

10-Hydroxycamptothecin (10-HCPT), an indole alkaloid isolated from a Chinese tree, Camptotheca acuminate , inhibits the activity of topoisomerase I and has a broad spectrum of anti-cancer activity in vitro and in vivo. 10-HCPT significantly repressed the proliferation of Colo 205 cells at a relatively low concentration (5-20 nM). Flow cytometry analysis and Western blot and apoptosis assays demonstrated that low-dose 10-HCPT arrested Colo 205 cells in the G2 phase of the cell-cycle and triggered apoptosis through a caspase-3-dependent pathway. No acute toxicity was observed after an oral challenge of 10-HCPT in BALB/c-nude mice every 2 days.

Results suggest that a relatively low dose of 10-HCPT (p.o.) is able to inhibit the growth of colon cancer, facilitating the development of a new protocol of human trials with this anti-cancer drug (Ping et al., 2006).

References

Liu W, & Zhang R (1998). Up-regulation of p21WAF1/CIP1 in human breast cancer cell lines MCF-7 and MDA-MB-468 undergoing apoptosis induced by natural product anti-cancer drugs 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. International Journal of Oncology, 12(4), 793-804.


Ping YH, Lee HC, Lee JY, et al. (2006). Anti-cancer effects of low-dose 10-hydroxycamptothecin in human colon cancer. Oncology Reports, 15(5), 1273-9.

Caffeic acid phenethyl ester (CAPE)

Cancer:
Breast, prostate, leukemia, cervical., oral., melanoma

Action: EMT, anti-mitogenic, anti-carcinogenic, anti-inflammatory, immunomodulatory

Anti-mitogenic, Anti-carcinogenic, Anti-inflammatory, Immunomodulatory Properties

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory properties. A variety of in vitro pharmacology for CAPE has been reported. A study using CAPE showed a positive effect on reducing carcinogenic incidence. It is known to have anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory properties in vitro (Orban et al., 2000) Another study also showed that CAPE suppresses acute immune and inflammatory responses and holds promise for therapeutic uses to reduce inflammation (Huang et al., 1996).

Caffeic acid phenethyl ester (CAPE) specifically inhibits NF-κB at µM concentrations and shows ability to stop 5-lipoxygenase-catalyzed oxygenation of linoleic acid and arachidonic acid. Previous studies have demonstrated that CAPE exhibits anti-oxidant, anti-inflammatory, anti-proliferative, cytostatic, anti-viral., anti-bacterial., anti-fungal., and, most importantly, anti-neoplastic properties (Akyol et al., 2013).

Multiple Immunomodulatory and Anti-inflammatory Activities

The results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active.

Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and anti-inflammatory activities (Natarajan et al., 1996).

Breast Cancer

Aqueous extracts from Thymus serpyllum (ExTs), Thymus vulgaris (ExTv), Majorana hortensis (ExMh), and Mentha piperita (ExMp), and the phenolic compounds caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), luteolin-7-O-glucuronide (Lgr), luteolin-7-O-rutinoside (Lr), eriodictiol-7-O-rutinoside (Er), and arbutin (Ab), were tested on two human breast cancer cell lines: Adriamycin-resistant MCF-7/Adr and wild-type MCF-7/wt.

ExMh showed the highest cytotoxicity, especially against MCF-7/Adr, whereas ExMp was the least toxic; particularly against MCF-7/wt cells. RA and LA exhibited the strongest cytotoxicity against both MCF-7 cell lines, over 2-fold greater than CA and Lgr, around 3-fold greater than Er, and around 4- to 7-fold in comparison with Lr and Ab. Except for Lr and Ab, all other phytochemicals were more toxic against MCF-7/wt, and all extracts exhibited higher toxicity against MCF-7/Adr. It might be concluded that the tested phenolics exhibited more beneficial properties when they were applied in the form of extracts comprising their mixtures (Berdowska et al., 2013).

Prostate Cancer

Evidence is growing for the beneficial role of selective estrogen receptor modulators (SERM) in prostate diseases. Caffeic acid phenethyl ester (CAPE) is a promising component of propolis that possesses SERM activity. CAPE-induced inhibition of AKT phosphorylation was more prominent (1.7-folds higher) in cells expressing ER-α such as PC-3 compared to LNCaP. In conclusion, CAPE enhances the anti-proliferative and cytotoxic effects of DOC and PTX in prostate cancer cells (Tolba et al., 2013).

EMT, Prostate Cancer

CAPE suppressed the expression of Twist 2 and growth of PANC-1 xenografts without significant toxicity. CAPE could inhibit the orthotopic growth and EMT of pancreatic cancer PANC-1 cells accompanied by down-regulation of vimentin and Twist 2 expression (Chen et al., 2013).

CAPE is a well-known NF-κB inhibitor. CAPE has been used in folk medicine as a potent anti-inflammatory agent. Recent studies indicate that CAPE treatment suppresses tumor growth and Akt signaling in human prostate cancer cells (Lin et al., 2013). Combined treatments of CAPE with chemotherapeutic drugs exhibit synergistic suppression effects. Pharmacokinetic studies suggest that intraperitoneal injection of CAPE at concentration of 10mg/kg is not toxic. CAPE treatment sensitizes cancer cells to chemotherapy and radiation treatments. In addition, CAPE treatment protects therapy-associated toxicities (Liu et al., 2013).

Cervical Cancer

CAPE preferentially induced S- and G2 /M-phase cell-cycle arrests and initiated apoptosis in human cervical cancer lines. The effect was found to be associated with increased expression of E2F-1, as there is no CAPE-mediated induction of E2F-1 in the pre-cancerous cervical Z172 cells. CAPE also up-regulated the E2F-1 target genes cyclin A, cyclin E and apoptotic protease activating of factor 1 (Apaf-1) but down-regulated cyclin B and induced myeloid leukemia cell differentiation protein (Mcl-1) (Hsu et al., 2013).

Oral Cancer

CAPE attenuated SCC-9 oral cancer cells migration and invasion at noncytotoxic concentrations (0  µM to 40 µM). CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and potently decreased migration by reducing focal adhesion kinase (FAK) phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK (Peng et al., 2012).

Melanoma

CAPE is suggested to suppress reactive-oxygen species (ROS)-induced DNA strand breakage in human melanoma A2058 cells when compared to other potential protective agents. CAPE can be applied not only as a chemo-preventive agent but also as an anti-metastatic therapeutic agent in lung cancer and because CAPE is a nuclear factor-κB (NF-κB) inhibitor and 5α reductase inhibitor, it has potential for the treatment of prostate cancer (Ozturk et al., 2012).

References

Akyol S, Ozturk G, Ginis Z, et al. (2013). In vivo and in vitro antõneoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives. Nutr Cancer, 65(4):515-26. doi: 10.1080/01635581.2013.776693.


Berdowska I, Ziel iński B, Fecka I, et al. (2013). Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem, 15;141(2):1313-21. doi: 10.1016/j.foodchem.2013.03.090.


Chen MJ, Shih SC, Wang HY, et al. (2013). Caffeic Acid phenethyl ester inhibits epithelial-mesenchymal transition of human pancreatic cancer cells. Evid Based Complement Alternat Med, 2013:270906. doi: 10.1155/2013/270906.


Hsu TH, Chu CC, Hung MW, et al. (2013). Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J, 280(11):2581-93. doi: 10.1111/febs.12242.


Huang MT, Ma W, Yen P, et al. (1996). Inhibitory effects of caffeic acid phenethyl ester (CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA, RNA and protein in HeLa cells. Carcinogenesis, 17(4):761–5. doi:10.1093/carcin/17.4.761.


Lin HP, Lin CY, Liu CC, et al. (2013). Caffeic Acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int J Mol Sci, 14(3):5264-83. doi: 10.3390/ijms14035264.


Liu CC, Hsu JM, Kuo LK, et al. (2013). Caffeic acid phenethyl ester as an adjuvant therapy for advanced prostate cancer. Med Hypotheses, 80(5):617-9. doi: 10.1016/j.mehy.2013.02.003.


Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA, 93(17):9090-5.


Orban Z, Mitsiades N, Burke TR, Tsokos M, Chrousos GP. (2000). Caffeic acid phenethyl ester induces leukocyte apoptosis, modulates nuclear factor-kappa B and suppresses acute inflammation. Neuroimmunomodulation, 7(2): 99–105. doi:10.1159/000026427.


Ozturk G, Ginis Z, Akyol S, et al. (2012). The anti-cancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci, 16(15):2064-8.


Peng CY, Yang HW, Chu YH, et al. (2012). Caffeic Acid phenethyl ester inhibits oral cancer cell metastasis by regulating matrix metalloproteinase-2 and the mitogen-activated protein kinase pathway. Evid Based Complement Alternat Med, 2012:732578. doi: 10.1155/2012/732578.


Tolba MF, Esmat A, Al-Abd AM, et al. (2013). Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life, 65(8):716-29. doi: 10.1002/iub.1188.

Betulin and Betulinic acid

Cancer:
Neuroblastoma, medulloblastoma, glioblastoma, colon, lung, oesophageal, leukemia, melanoma, pancreatic, prostate, breast, head & neck, myeloma, nasopharyngeal, cervical, ovarian, esophageal squamous carcinoma

Action: Anti-angiogenic effects, induces apoptosis, anti-oxidant, cytotoxic and immunomodifying activities

Betulin is a naturally occurring pentacyclic triterpene found in many plant species including, among others, in Betula platyphylla (white birch tree), Betula X caerulea [Blanch. (pro sp.)], Betula cordifolia (Regel), Betula papyrifera (Marsh.), Betula populifolia (Marsh.) and Dillenia indica L . It has anti-retroviral., anti-malarial., and anti-inflammatory properties, as well as a more recently discovered potential as an anti-cancer agent, by inhibition of topoisomerase (Chowdhury et al., 2002).

Betulin is found in the bark of several species of plants, principally the white birch (Betula pubescens ) (Tan et al., 2003) from which it gets its name, but also the ber tree (Ziziphus mauritiana ), selfheal (Prunella vulgaris ), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas , a member of the persimmon family, Tetracera boiviniana , the jambul (Syzygium formosanum ) (Zuco et al., 2002), flowering quince (Chaenomeles sinensis ) (Gao et al., 2003), rosemary (Abe et al., 2002) and Pulsatilla chinensis (Ji et al., 2002).

Anti-cancer, Induces Apoptosis

The in vitro characterization of the anti-cancer activity of betulin in a range of human tumor cell lines (neuroblastoma, rhabdomyosarcoma-medulloblastoma, glioma, thyroid, breast, lung and colon carcinoma, leukaemia and multiple myeloma), and in primary tumor cultures isolated from patients (ovarian carcinoma, cervical carcinoma and glioblastoma multiforme) was carried out to probe its anti-cancer effect. The remarkable anti-proliferative effect of betulin in all tested tumor cell cultures was demonstrated. Furthermore, betulin altered tumor cell morphology, decreased their motility and induced apoptotic cell death. These findings demonstrate the anti-cancer potential of betulin and suggest that it may be applied as an adjunctive measure in cancer treatment (Rzeski, 2009).

Lung Cancer

Betulin has also shown anti-cancer activity on human lung cancer A549 cells by inducing apoptosis and changes in protein expression profiles. Differentially expressed proteins explained the cytotoxicity of betulin against human lung cancer A549 cells, and the proteomic approach was thus shown to be a potential tool for understanding the pharmacological activities of pharmacophores (Pyo, 2009).

Esophageal Squamous Carcinoma

The anti-tumor activity of betulin was investigated in EC109 cells. With the increasing doses of betulin, the inhibition rate of EC109 cell growth was increased, and their morphological characteristics were changed significantly. The inhibition rate showed dose-dependent relation.

Leukemia

Betulin hence showed potent inhibiting effects on EC109 cells growth in vitro (Cai, 2006).

A major compound of the methanolic extract of Dillenia indica L. fruits, betulinic acid, showed significant anti-leukaemic activity in human leukaemic cell lines U937, HL60 and K562 (Kumar, 2009).

Betulinic acid effectively induces apoptosis in neuroectodermal and epithelial tumor cells and exerts little toxicity in animal trials. It has been shown that betulinic acid induced marked apoptosis in 65% of primary pediatric acute leukemia cells and all leukemia cell lines tested. When compared for in vitro efficiency with conventionally used cytotoxic drugs, betulinic acid was more potent than nine out of 10 standard therapeutics and especially efficient in tumor relapse. In isolated mitochondria, betulinic acid induced release of both cytochrome c and Smac. Taken together, these results indicated that betulinic acid potently induces apoptosis in leukemia cells and should be further evaluated as a future drug to treat leukemia (Ehrhardt, 2009).

Multiple Myeloma

The effect of betulinic acid on the induction apoptosis of human multiple myeloma RPMI-8226 cell line was investigated. The results showed that within a certain concentration range (0, 5, 10, 15, 20 microg/ml), IC50 of betulinic acid to RPMI-8226 at 24 hours was 10.156+/-0.659 microg/ml, while the IC50 at 48 hours was 5.434+/-0.212 microg/ml, and its inhibiting effect on proliferation of RPMI-8226 showed both a time-and dose-dependent manner.

It is therefore concluded that betulinic acid can induce apoptosis of RPMI-8226 within a certain range of concentration in a time- and dose-dependent manner. This phenomenon may be related to the transcriptional level increase of caspase 3 gene and decrease of bcl-xl. Betulinic acid also affects G1/S in cell-cycle which arrests cells at phase G0/G1 (Cheng, 2009).

Anti-angiogenic Effects, Colorectal Cancer

Betulinic acid isolated from Syzygium campanulatum Korth (Myrtaceae) was found to have anti-angiogenic effects on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). The anti-tumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. Anti-angiogenesis studies showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect.

In vivo anti-angiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo anti-tumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. Collectively, these results indicate betulinic acid as an anti-angiogenic and anti-tumor candidate (Aisha, 2013).

Nasopharyngeal Carcinoma Melanoma, Leukemia, Lung, Colon, Breast,Prostate, Ovarian Cancer

Betulinic acid is an effective and potential anti-cancer chemical derived from plants. Betulinic acid can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of betulinic acid on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia.

In a study, Liu & Luo (2012) showed that betulinic acid can effectively kill CNE2 cells, a cell line derived from NPC. Betulinic acid-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release.

These observations suggest that betulinic acid may serve as a potent and effective anti-cancer agent in NPC treatment. Further exploration of the mechanism of action of betulinic acid could yield novel breakthroughs in anti-cancer drug discovery.

Cervical Carcinoma

Betulinic acid has shown anti-tumor activity in some cell lines in previous studies. Its anti-tumor effect and possible mechanisms were investigated in cervical carcinoma U14 tumor-bearing mice. The results showed that betulinic acid (100 mg/kg and 200 mg/kg) effectively suppressed tumor growth in vivo. Compared with the control group, betulinic acid significantly improved the levels of IL-2 and TNF-alpha in tumor-bearing mice and increased the number of CD4+ lymphocytes subsets, as well as the ratio of CD4+/CD8+ at a dose of 200 mg/kg.

Furthermore, treatment with betulinic acid induced cell apoptosis in a dose-dependent manner in tumor-bearing mice, and inhibited the expression of Bcl-2 and Ki-67 protein while upregulating the expression of caspase-8 protein. The mechanisms by which BetA exerted anti-tumor effects might involve the induction of tumor cell apoptosis. This process is also related to improvement in the body's immune response (Wang, 2012).

Anti-oxidant, Cytotoxic and Immunomodifying Activities

Betulinic acid exerted cytotoxic activity through dose-dependent impairment of viability and mitochondrial activity of rat insulinoma m5F (RINm5F) cells. Decrease of RINm5F viability was mediated by nitric oxide (NO)-induced apoptosis. Betulinic acid also potentiated NO and TNF-α release from macrophages therefore enhancing their cytocidal action. The rosemary extract developed more pronounced anti-oxidant, cytotoxic and immunomodifying activities, probably due to the presence of betulinic acid (Kontogianni, 2013).

Pancreatic Cancer

Lamin B1 is a novel therapeutic target of Betulinic Acid in pancreatic cancer. The role and regulation of lamin B1 (LMNB1) expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy was investigated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Elevation of circulating LMNB1 marker in plasma could detect early stages of HCC patients, with 76% sensitivity and 82% specificity. Lamin B1 is a clinically useful biomarker for early stages of HCC in tumor tissues and plasma (Sun, 2010).

It was found that lamin B1 was significantly down-regulated by BA treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer and increased lamin B1 expression was directly associated with low grade differentiation, increased incidence of distant metastasis and poor prognosis of pancreatic cancer patients.

Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion and tumorigenicity of pancreatic cancer cells. Lamin B1 hence plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment (Li, 2013).

Multiple Myeloma, Prostate Cancer

The inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent.

Results in prostate cancer suggest that BA inhibits multiple deubiquitinases (DUBs), which results in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein.

BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, this data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy (Reiner, 2013).

Melanoma

Betulinic acid was recently described as a melanoma-specific inducer of apoptosis, and it was investigated for its comparable efficacy against metastatic tumors and those in which metastatic ability and 92-kD gelatinase activity had been decreased by introduction of a normal chromosome 6. Human metastatic C8161 melanoma cells showed greater DNA fragmentation and growth arrest and earlier loss of viability in response to betulinic acid than their non-metastatic C8161/neo 6.3 counterpart.

These effects involved induction of p53 without activation of p21WAF1 and were synergized by bromodeoxyuridine in metastatic Mel Juso, with no comparable responses in non-metastatic Mel Juso/neo 6 cells. These data suggest that betulinic acid exerts its inhibitory effect partly by increasing p53 without a comparable effect on p21WAF1 (Rieber, 1998).

As a result of bioassay–guided fractionation, betulinic acid has been identified as a melanoma-specific cytotoxic agent. In follow-up studies conducted with athymic mice carrying human melanomas, tumor growth was completely inhibited without toxicity. As judged by a variety of cellular responses, anti-tumor activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preclinical development for the treatment or prevention of malignant melanoma (Pisha, 1995).

Betulinic acid strongly and consistently suppressed the growth and colony-forming ability of all human melanoma cell lines investigated. In combination with ionizing radiation the effect of betulinic acid on growth inhibition was additive in colony-forming assays.

Betulinic acid also induced apoptosis in human melanoma cells as demonstrated by Annexin V binding and by the emergence of cells with apoptotic morphology. The growth-inhibitory action of betulinic acid was more pronounced in human melanoma cell lines than in normal human melanocytes.

The properties of betulinic acid make it an interesting candidate, not only as a single agent but also in combination with radiotherapy. It is therefore concluded that the strictly additive mode of growth inhibition in combination with irradiation suggests that the two treatment modalities may function by inducing different cell death pathways or by affecting different target cell populations (Selzer, 2000).

Betulinic acid has been demonstrated to induce programmed cell death with melanoma and certain neuroectodermal tumor cells. It has been demonstrated currently that the treatment of cultured UISO-Mel-1 (human melanoma cells) with betulinic acid leads to the activation of p38 and stress activated protein kinase/c-Jun NH2-terminal kinase (a widely accepted pro-apoptotic mitogen-activated protein kinases (MAPKs)) with no change in the phosphorylation of extracellular signal-regulated kinases (anti-apoptotic MAPK). Moreover, these results support a link between the MAPKs and reactive oxygen species (ROS).

These data provide additional insight in regard to the mechanism by which betulinic acid induces programmed cell death in cultured human melanoma cells, and it likely that similar responses contribute to the anti-tumor effect mediated with human melanoma carried in athymic mice (Tan, 2003).

Glioma

Betulinic acid triggers apoptosis in five human glioma cell lines. Betulinic acid-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell-cycle arrest. Betulinic acid-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase.

Betulinic acid induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that betulinic acid toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases (Wolfgang, 1999).

Head and Neck Carcinoma

In two head and neck squamous carcinoma (HNSCC) cell lines betulinic acid induced apoptosis, which was characterized by a dose-dependent reduction in cell numbers, emergence of apoptotic cells, and an increase in caspase activity. Western blot analysis of the expression of various Bcl-2 family members in betulinic acid–treated cells showed, surprisingly, a suppression of the expression of the pro-apoptotic protein Bax but no changes in Mcl-1 or Bcl-2 expression.

These data clearly demonstrate for the first time that betulinic acid has apoptotic activity against HNSCC cells (Thurnher et al., 2003).

References

Abe F, Yamauchi T, Nagao T, et al. (2002). Ursolic acid as a trypanocidal constituent in rosemary. Biological & Pharmaceutical Bulletin, 25(11):1485–7. doi:10.1248/bpb.25.1485. PMID 12419966.


Aisha AF, Ismail Z, Abu-Salah KM, et al. (2013). Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement Altern Med,13:168. doi: 10.1186/1472-6882-13-168.


Cai WJ, Ma YQ, Qi YM et al. (2006). Ai bian ji bian tu bian can kao wen xian ge shi    Carcinogenesis,Teratogenesis & Mutagenesis,18(1):16-8.


Cheng YQ, Chen Y, Wu QL, Fang J, Yang LJ. (2009). Zhongguo Shi Yan Xue Ye Xue Za Zhi, 17(5):1224-9.


Chowdhury AR, Mandal S, Mittra B, et al. (2002). Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Medical Science Monitor, 8(7): BR254–65. PMID 12118187.


Ehrhardt H, Fulda S, FŸhrer M, Debatin KM & Jeremias I. (2004). Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 18:1406–1412. doi:10.1038/sj.leu.2403406


Gao H, Wu L, Kuroyanagi M, et al. (2003). Anti-tumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chemical & Pharmaceutical Bulletin, 51(11):1318–21. doi:10.1248/cpb.51.1318. PMID 14600382.


Ji ZN, Ye WC, Liu GG, Hsiao WL. (2002). 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sciences, 72(1):1–9. doi:10.1016/S0024-3205(02)02176-8. PMID 12409140.


Kontogianni VG, Tomic G, Nikolic I, et al. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their anti-oxidant and anti-proliferative activity. Food Chem,136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.


Kumar D, Mallick S, Vedasiromoni JR, Pal BC. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17(6):431-5.


Li L, Du Y, Kong X, et al. (2013). Lamin B1 Is a Novel Therapeutic Target of Betulinic Acid in Pancreatic Cancer. Clin Cancer Res, Epub July 9. doi: 10.1158/1078-0432.CCR-12-3630


Liu Y, Luo W. (2012). Betulinic acid induces Bax/Bak-independent cytochrome c release in human nasopharyngeal carcinoma cells. Molecules and cells, 33(5):517-524. doi: 10.1007/s10059-012-0022-5


Pisha E, Chai H, Lee I-S, et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine, 1:1046 – 1051. doi: 10.1038/nm1095-1046


Pyo JS, Roh SH, Kim DK, et al. (2009). Anti-Cancer Effect of Betulin on a Human Lung Cancer Cell Line: A Pharmacoproteomic Approach Using 2 D SDS PAGE Coupled with Nano-HPLC Tandem Mass Spectrometry. Planta Med, 75(2): 127-131. doi: 10.1055/s-0028-1088366


Reiner T, Parrondo R, de Las Pozas A, Palenzuela D, Perez-Stable C. (2013). Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity. PLoS One, 8(2):e56234. doi: 10.1371/journal.pone.0056234.


Rieber M & Strasberg-Rieber M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5):399–406. doi:10.1089/dna.1998.17.399.


Rzeski W, Stepulak A, Szymanski M, et al. (2009). Betulin Elicits Anti-Cancer Effects in Tumor Primary Cultures and Cell Lines In Vitro. Basic and Clinical Pharmacology and Toxicology, 105(6):425–432. doi: 10.1111/j.1742-7843.2009.00471.x


Selzer E, Pimentel E, Wacheck V, et al. (2000). Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. Journal of Investigative Dermatology, 114:935–940; doi:10.1046/j.1523-1747.2000.00972.x


Sun S, Xu MZ, Poon RT, Day PJ, Luk JM. (2010). Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res, 9(1):70-8. doi: 10.1021/pr9002118.


Tan YM, Yu R, Pezzuto JM. (2003). Betulinic Acid-induced Programmed Cell Death in Human Melanoma Cells Involves Mitogen-activated Protein Kinase Activation. Clin Cancer Res, 9:2866.


Thurnher D, Turhani D, Pelzmann M, et al. (2003). Betulinic acid: A new cytotoxic compound against malignant head and neck cancer cells. Head & Neck. 25(9):732–740. doi: 10.1002/hed.10231


Wang P, Li Q, Li K, Zhang X, et al. (2012). Betulinic acid exerts immunoregulation and anti-tumor effect on cervical carcinoma (U14) tumor-bearing mice. Pharmazie, 67(8):733-9.


Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. (1999). Betulinic Acid-Induced Apoptosis in Glioma Cells: A Sequential Requirement for New Protein Synthesis, Formation of Reactive Oxygen Species, and Caspase Processing. JPET, 289(3):1306-1312.


Zuco V, Supino R, Righetti SC, et al. (2002). Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Letters, 175(1): 17–25. doi:10.1016/S0304-3835(01)00718-2. PMID 11734332.

Berberine

Cancer:
Liver,leukemia, breast, prostate, epidermoid (squamous-cell carcinoma), cervical.,testicular, melanoma, lymphoma, hepatoma

Action: Radio-sensitizer, anti-inflammatory, cell-cycle arrest, angiogenesis, chemo-enhancing, anti-metastatic, anti-oxidative

Berberine is a major phytochemical component of the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. It has been implicated in the cytotoxic effects on multiple cancer cell lines.

Anti-inflammatory

Berberine is an isoquinoline alkaloid widely distributed in natural herbs, including Rhizoma Coptidis chinensis and Epimedium sagittatum (Sieb. et Zucc.), a widely prescribed Chinese herb (Chen et al., 2008). It has a broad range of bioactivities, such as anti-inflammatory, anti-bacterial., anti-diabetes, anti-ulcer, sedation, protection of myocardial ischemia-reperfusion injury, expansion of blood vessels, inhibition of platelet aggregation, hepato-protective, and neuroprotective effects (Lau et al., 2001; Yu et al., 2005; Kulkarni & Dhir, 2010; Han et al., 2011; Ji, 2011). Berberine has been used in the treatment of diarrhea, neurasthenia, arrhythmia, diabetes, and so forth (Ji, 2011).

Angiogenesis, Chemo-enhancing

Inhibition of tumor invasion and metastasis is an important aspect of berberine's anti-cancer activities (Tang et al., 2009; Ho et al., 2009). A few studies have reported berberine's inhibition of tumor angiogenesis (Jie et al., 2011; Hamsa & Kuttan, 2012). In addition, its combination with chemotherapeutic drugs or irradiation could enhance the therapeutic effects (Youn et al., 2008; Hur et al., 2009).

Cell-cycle Arrest

The potential molecular targets and mechanisms of berberine are rather complicated. Berberine interacts with DNA or RNA to form a berberine-DNA or a berberine-RNA complex, respectively (Islam & Kumar. 2009; Li et al., 2012). Berberine is also identified as an inhibitor of several enzymes, such as N-acetyltransferase (NAT), cyclooxygenase-2 (COX-2), and telomerase (Sun et al., 2009).

Other mechanisms of berberine are mainly related to its effect on cell-cycle arrest and apoptosis, including regulation of cyclin-dependent kinase (CDK) family of proteins (Sun et al., 2009; Mantena, Sharma, & Katiyar, 2006) and expression regulation of B-cell lymphoma 2 (Bcl-2) family of proteins (such as Bax, Bcl-2, and Bcl-xL) (Sun et al., 2009), and caspases (Eom et al., 2010; Mantena, Sharma, & Katiyar, 2006). Furthermore, berberine inhibits the activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and induces the formation of intracellular reactive oxygen species (ROS) in cancer cells (Sun et al., 2009; Eom et al., 2010). Interestingly, these effects might be specific for cancer cells (Sun et al., 2009).

Several studies have shown that berberine has anti-cancer potential by interfering with the multiple aspects of tumorigenesis and tumor progression in both in vitro and in vivo experiments. These observations have been well summarized in recent reports (Sun et al., 2009; Tan et al., 2011). Berberine inhibits the proliferation of multiple cancer cell lines by inducing cell-cycle arrest at the G1 or G 2 / M phases and by apoptosis (Sun et al., 2009; Eom et al., 2010; Burgeiro et al., 2011). In addition, berberine induces endoplasmic reticulum stress (Chang et al., 1990; Eom et al., 2010) and autophagy (Wang et al., 2010) in cancer cells.

However, compared with clinically prescribed anti-cancer drugs, the cytotoxic potency of berberine is much lower, with an IC50 generally at 10 µM to 100 µM depending on the cell type and treatment duration in vitro (Sun et al., 2009). Besides, berberine also induces morphologic differentiation in human teratocarcinoma (testes) cells (Chang et al., 1990).

Anti-metastatic

The effect of berberine on invasion, migration, metastasis, and angiogenesis is mediated through the inhibition of focal adhesion kinase (FAK), NF-κB, urokinase-type plasminogen-activator (u-PA), matrix metalloproteinase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) (Ho et al., 2009; Hamsa & Kuttan. (2011); reduction of Rho kinase-mediated Ezrin phosphorylation (Tang et al., 2009); reduction of the expression of COX-2, prostaglandin E, and prostaglandin E receptors (Singh et al., 2011); down-regulation of hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), pro-inflammatory mediators (Jie et al., 2011; Hamsa & Kuttan, 2012).

Hepatoma, Leukaemia

The cytotoxic effects of Coptis chinensis extracts and their major constituents on hepatoma and leukaemia cells in vitro have been investigated. Four human liver cancer cell lines, namely HepG2, Hep3B, SK-Hep1 and PLC/PRF/5, and four leukaemia cell lines, namely K562, U937, P3H1 and Raji, were investigated. C. chinensis exhibited strong activity against SK-Hep1 (IC50 = 7 microg/mL) and Raji (IC50 = 4 microg/mL) cell lines. Interestingly, the two major compounds of C. chinensis, berberine and coptisine, showed a strong inhibition on the proliferation of both hepatoma and leukaemia cell lines. These results suggest that the C. chinensis extract and its major constituents berberine and coptisine possess active anti-hepatoma and anti-leukaemia activities (Lin, 2004).

Leukemia

The steady-state level of nucleophosmin/B23 mRNA decreased during berberine-induced (25 g/ml, 24 to 96 hours) apoptosis of human leukemia HL-60 cells. A decline in telomerase activity was also observed in HL-60 cells treated with berberine. A stable clone of nucleophosmin/B23 over-expressed in HL-60 cells was selected and found to be less responsive to berberine-induced apoptosis. About 35% to 63% of control vector–transfected cells (pCR3) exhibited morphological characteristics of apoptosis, while about 8% to 45% of nucleophosmin/B23-over-expressed cells (pCR3-B23) became apoptotic after incubation with 15 g/ml berberine for 48 to 96 hours.

These results indicate that berberine-induced apoptosis is associated with the down-regulation of nucleophosmin/B23 and telomerase activity. Nucleophosmin/B23 may play an important role in the control of the cellular response to apoptosis induction (Hsing, 1999).

Prostate Cancer

In vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24–72 hours) manner. Berberine significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential., and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase.

The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy (Mantena, 2006).

In another study, the treatment of human prostate cancer cells (PC-3) with berberine-induced dose-dependent apoptosis; however, this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential., release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins.

Berberine-induced apoptosis was blocked in the presence of the anti-oxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. Taken together, these results suggest that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer (Meeran, 2008).

Breast Cancer

DNA microarray technology has been used to understand the molecular mechanism underlying the anti-cancer effect of berberine carcinogenesis in two human breast cancer cell lines, the ER-positive MCF-7 and ER-negative MDA-MB-231 cells; specifically, whether it affects the expression of cancer-related genes. Treatment of the cancer cells with berberine markedly inhibited their proliferation in a dose- and time-dependent manner. The growth-inhibitory effect was much more profound in MCF-7 cell line than that in MDA-MB-231 cells.

IFN-β is among the most important anti-cancer cytokines, and the up-regulation of this gene by berberine is, at least in part, responsible for its anti-proliferative effect. The results of this study implicate berberine as a promising extract for chemoprevention and chemotherapy of certain cancers (Kang, 2005).

Breast Cancer Metastasis

Berberine also inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance.

The anoikis-resistant cells have a reduced growth rate and are more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell-cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells was compared to untreated control cells. These results reveal that berberine can efficiently inhibit growth by inducing cell-cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis (Kim, 2010).

Melanoma

Berberine inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. The effects and associated molecular mechanism of berberine on human melanoma cancer cell migration using melanoma cell lines A375 and Hs294 were probed in an in vitro cell migration assay, indicating that over- expression of cyclo-oxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells.

Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-kB), an up- stream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-kB, inhibited cell migration. Together, these results indicate that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors (Sing, 2011).

Cell-cycle Arrest, Squamous-cell Carcinoma

The in vitro treatment of human epidermoid carcinoma A431 cells with berberine decreases cell viability and induces cell death in a dose (5-75 microM)- and time (12–72 hours)-dependent manner, which was associated with an increase in G(1) arrest. G(0)/G(1) phase of the cell-cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin kinase inhibitors (Cdki) and cyclins.

Pre-treatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway.

Together, these results indicate berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 (squamous-cell) cells in vitro; further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers (Mantena, 2006).

Cervical Cancer, Radio-sensitizer

Cervical cancer remains one of the major killers amongst women worldwide. In India, a cisplatin based chemo/radiotherapy regimen is used for the treatment of advanced cervical cancer. Evidence shows that most of the chemotherapeutic drugs used in current clinical practice are radio-sensitizers. Natural products open a new avenue for treatment of cancer, as they are generally tolerated at high doses. Animal studies have confirmed the anti-tumorigenic activity of natural products, such as curcumin and berberine.

Berberine is a natural chemo-preventive agent, extracted from Berberis aristata, which has been shown to suppress and retard carcinogenesis by inhibiting inflammation.

The combined therapy of cisplatin/berberine and radiotherapy produced up-regulation of pro-apoptotic proteins Bax and p73, while causing down regulation of the anti-apoptotic proteins Bcl-xL, COX-2, cyclin D1. This additionally was accompanied by increased activity of caspase-9 and caspase-3, and reduction in telomerase activity. Results demonstrated that the treatment combination of berberine/cisplatin had increased induction of apoptosis relative to cisplatin alone (Komal., Singh, & Deshwal., 2013).

Anti-oxidative; Breast, Liver and Colon Cancer

The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation (lipid peroxidation), diphenyle–alpha-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and alpha-gulcosidase activities were spectrophotometrically determined.

Barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent anti-oxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that is associated with GPx and SOD hyperactivation. Both berberine chloride and barberry ethanolic extract were shown to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hours up to 72 hours and the inhibitory effect increased with time in a dose-dependent manner.

This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, for suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. As well, berberis vulgaris ethanolic extract is a safe non-toxic extract as it does not inhibit the growth of PBMC that can induce cancer cell death (Abeer et al., 2013).

Source:

Alkaloids Isolated from Natural Herbs as the Anti-cancer Agents. Evidence-Based Complementary and Alternative Medicine. Volume 2012 (2012) http://dx.doi.org/10.1155/2012/485042

References

Burgeiro A, Gajate C, Dakir EH, et al. (2011). Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 22(6):507–518.


Chang KSS, Gao C, Wang LC. (1990). Berberine-induced morphologic differentiation and down-regulation of c-Ki-ras2 protooncogene expression in human teratocarcinoma cells. Cancer Letters, 55(2):103–108.


Chen J, ZHao H, Wang X, et al. (2008). Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 29(10):2135–2147.


Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.


El-Wahab AEA, Ghareeb DA, et al. (2013). In vitro biological assessment of berberis vulgaris and its active constituent, berberine: anti-oxidants, anti-acetylcholinesterase, anti-diabetic and anti-cancer effects. BMC Complementary and Alternative Medicine, 13:218 doi:10.1186/1472-6882-13-218


Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.


Hamsa TP & Kuttan G. (2012). Anti-angiogenic activity of berberine is mediated through the down-regulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. Drug and Chemical Toxicology, 35(1):57–70.


Han J, Lin H, Huang W. (2011). Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 17(7):RA164–RA167.


Ho YT, Yang JS, Li TC, et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Letters, 279(2):155–162.


Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. (2009). The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. Journal of Cellular Biochemistry, 107(5):955–964.


Islam MM & Kumar GS. (2009). RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA and Cell Biology, 28(12):637–650.


Ji JB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People's Medical Publishing House Cp., LTD.


Jie S, Li H, Tian Y, et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1):179–185.


Kang JX, Liu J, Wang J, He C, Li FP. (2005). The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by up-regulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 26(11):1934-1939. doi:10.1093/carcin/bgi154


Kim JB, Yu JH, Ko E, et al. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Phytomedicine, 17(6):436-40. doi: 10.1016/j.phymed.2009.08.012.


Komal Singh M, & Deshwal VK. (2013). Natural plant product berberine/cisplatin based radiotherapy for cervical cancer: The new and effective method to treat cervical cancer. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 2(5), 278-291.


Kulkarni SK & Dhir A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3):317–324.


Lau CW, X. Q. Yao XQ, et al. (2001). Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3):234–244.


Li, XL Hu XJ, Wang H, et al. (2012). Molecular spectroscopy evidence for berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3):873–880.


Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol, 31(1-2):65-9.


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine, a natural product, induces G1-phase cell-cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448


Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27(10):2018-27. doi: 10.1093/carcin/bgl043


Meeran SM, Katiyar S & Katiyar SK. (2008). Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 229(1):33-43. doi:10.1016/j.taap.2007.12.027


Singh T, Vaid M, Katiyar N, et al. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1):86–92.


Sun Y, Xun K, Wang Y, Chen X. (2009). A systematic review of the anti-cancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9):757–769.


Tan W, Lu J, Huang M, et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6(1):27.


Tang F, Wang D, Duan C, et al. (2009) Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567. Journal of Biological Chemistry, 284(40):27456–27466.


Wang N, Feng Y, Zhu M et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of Cellular Biochemistry, 111(6):1426–1436.


Wu HL, Hsu CY, Liu WH, Yung BYM. (1999). Berberine‐induced apoptosis of human leukemia HL‐60 cells is associated with down‐regulation of nucleophosmin/B23 and telomerase activity. International Journal of Cancer, 81(6):923–929.


Youn MJ, So HS, Cho HJ, et al. (2008). Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells. Biological and Pharmaceutical Bulletin, 31(5):789–795.


Yu HH, Kim KJ, Cha JD, et al. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Journal of Medicinal Food, 8(4):454–461.

Antrodia camphorata

 

Cancer: Leukemia, colorectal., ER+ ovarian cancer

Action: Anti-cancer

Antrodia Camphorata [(M. Zang & C.H. Su) Sheng H. Wu, Ryvarden & T.T.] is a native Taiwanese mushroom which is used in Asian folk medicine. It is also known as Ganoderma camphoratum (M. Zang & C.H. Su) and Taiwanofungus camphoratus [(M. Zang & C.H. Su) Sheng H. Wu, Z.H. Yu, Y.C. Dai & C.H. Su].

Anti-tumor

Mycotherapy is defined as the study of the use of extracts and compounds obtained from mushrooms as medicines or health-promoting agents. An increasing number of studies in the past few years have revealed mushroom extracts as potent anti-tumor agents. Also, numerous studies have been conducted on bioactive compounds isolated from mushrooms reporting the heteropolysaccharides, β-glucans, α-glucans, proteins, complexes of polysaccharides with proteins, fatty acids, nucleoside antagonists, terpenoids, sesquiterpenes, lanostanoids, sterols and phenolic acids, as promising anti-tumor agents (Popović et al., 2013).

Leukemia

Antrodia camphorata (AC) is a native Taiwanese mushroom, which is used in Asian folk medicine as a chemo-preventive agent. The triterpenoid-rich fraction (FEA) was obtained from the ethanolic extract of AC and characterized by high performance liquid chromatography (HPLC). FEA caused DNA damage in leukemia HL60 cells which was characterized by phosphorylation of H2A.X and Chk2. It also exhibited apoptotic effect which was correlated to the enhancement of PARP cleavage and to the activation of caspase 3.

Taken together, these results provide the first evidence that pure AC component inhibits tumor growth in an in vivo model, thereby backing the traditional anti-cancer use of AC in Asian countries (Du et al., 2012).

Colon Cancer

Antrodia camphorata (AC) grown on germinated brown rice (CBR) was studied in HT-29 human colon cancer cells. CBR 80% ethanol EtOAc fraction showed the strongest inhibitory activity against HT-29 cell proliferation. Induction of G0/G1 cell-cycle arrest on human colon carcinoma cell was observed in CBR EtOAc fraction-treated cells. We found that CBR decreased the level of proteins involved in G0/G1 cell-cycle arrest and apoptosis. CBR EtOAc fraction inhibited the β-catenin signaling pathway, supporting its suppressive activity on the level of cyclin D1 (Park, Lim, & Park, 2013).

A new enynyl-benzenoid, antrocamphin O (1,4,7-dimethoxy-5-methyl-6-(3'-methylbut-3-en-1-ynyl)benzo[d][1,3]dioxide), and the known benzenoids antrocamphin A and 7-dimethoxy-5-methyl-1,3-benzodioxole, were isolated from the fruiting bodies of Antrodia camphorata (Taiwanofungus camphoratus). The benzenoids were tested successfully for cytotoxicity against the HT29, HTC15, DLD-1, and COLO 205 colon cancer cell lines (Chen et al., 2013).

ER+ Ovarian Cancer

MTT and colony formation assays showed that Antrodia camphorata (AC) induced a dose-dependent reduction in SKOV-3 cell growth. Immunoblot analysis demonstrated that HER-2/neu activity and tyrosine phosphorylation were significantly inhibited by AC. Furthermore, AC treatment significantly inhibited the activation of PI3K/Akt and their downstream effector β-catenin (Yang et al., 2013).

References

Chen PY, Wu JD, Tang KY, et al. (2013). Isolation and synthesis of a bioactive benzenoid derivative from the fruiting bodies of Antrodia camphorata. Molecules, 18(7):7600-8. doi: 10.3390/molecules18077600.


Du YC, Chang FR, Wu TY, et al. (2012). Anti-leukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models. Phytomedicine. doi:10.1016/j.phymed.2012.03.014


Park DK, Lim YH, Park HJ. (2013). Antrodia camphorata Grown on Germinated Brown Rice Inhibits HT-29 Human Colon Carcinoma Proliferation Through Inducing G0/G1 Phase Arrest and Apoptosis by Targeting the β -Catenin Signaling. J Med Food, 16(8):681-91. doi: 10.1089/jmf.2012.2605.


Popovi ć V, Zivkovi ć J, Davidovi ć S, et al. (2013). Mycotherapy Of Cancer: An Update On Cytotoxic And Anti-tumor Activities Of Mushrooms, Bioactive Principles And Molecular Mechanisms Of Their Action. Curr Top Med Chem.


Yang HL, Lin KY, Juan YC, et al. (2013). The anti-cancer activity of Antrodia camphorata against human ovarian carcinoma (SKOV-3) cells via modulation of HER-2/neu signaling pathway. J Ethnopharmacol, 148(1):254-65. doi: 10.1016/j.jep.2013.04.023.