Category Archives: Pathway

Oridonin

Cancer: Prostate, acute promyelocytic leukemia, breast, non-small-cell lung (NSCL), Ehrlich ascites, P388 lymphocytic leukemia, colorectal., ovarian, esphageal

Action: Induces apoptosis

Oridonin is a tetracycline diterpenoid isolated from the plant Rabdosia rubescens (RR) [(Hemsl.). Hara (Lamiaceae)] (dong ling cao) is a Chinese medicinal herb used widely in provinces including Henan. The aerial parts of RR and other species of the same genus has been reported to have the functions of clearing “heat” and “toxicity”, nourishing “yin”, removing “blood stasis”, and relieving swelling. RR has been used to treat stomach-ache, sore throat and cough.

Gastric Cancer, Esophageal Cancer, Liver Cancer, Prostate Cancer

RR and its extracts have been shown to be able to suppress disease progress, reduce tumor burden, alleviate syndrome and prolong survival in patients with gastric carcinoma, esophageal., liver and prostate cancers (Tang & Eisenbrand, 1992). Interestingly, other Isodon plants including Isodon japonicus Hara (IJ) and I. trichocarpus (IT) are also applied as home remedies for similar disorders in Japan and Korea.

Induces Apoptosis

These reports suggest that Isodon plants should have at least one essential anti-tumor component. In the 1970s, a bitter tetracycline diterpenoid compound, oridonin, was isolated from RR, IJ, and IT separately, and was shown to be a potent apoptosis inducer in a variety of cancer cells (Fujita et al., 1970; Fujita et al., 1976; Henan Medical Institute, 1978; Fujita et al., 1988).

Anti-cancer

There is currently research being undertaken regarding the relationship between the chemical structure/modifications and the molecular mechanisms underlying its anti-cancer activity, such as suppression of tumor proliferation and induction of tumor cell death, and the cell signal transduction in anti-cancer activity of oridonin (Zhang et al., 2010).

Prostate Cancer, Breast Cancer, NSCLC, Leukemia, Glioblastoma

Oridonin has been found to effectively inhibit the proliferation of a wide variety of cancer cells including those from prostate (LNCaP, DU145, PC3), breast (MCF-7, MDA-MB231), non-small-cell lung (NSCL) (NCI-H520, NCI-H460, NCI-H1299) cancers, acute promyelocytic leukemia (NB4), and glioblastoma multiforme (U118, U138).

Oridonin induced apoptosis and G0/G1 cell-cycle arrest in LNCaP prostate cancer cells. In addition, expression of p21waf1 was induced in a p53-dependent manner. Taken together, oridonin inhibited the proliferation of cancer cells via apoptosis and cell-cycle arrest with p53 playing a central role in several cancer types which express the wild-type p53 gene. Oridonin may be a novel, adjunctive therapy for a large variety of malignancies (Ikezoe et al., 2003).

Breast Cancer; Anti-metastatic

According to the flow cytometric analysis, oridonin suppressed MCF-7 cell growth by cell-cycle arrest at the G2/M phase and caused accumulation of MDA-MB-231 cells in the Sub-G1 phase. The induced apoptotic effect of oridonin was further confirmed by a morphologic characteristics assay and TUNEL assay. Meanwhile, oridonin significantly suppressed MDA-MB-231 cell migration and invasion, decreased MMP-2/MMP-9 activation and inhibited the expression of Integrin β1 and FAK. In conclusion, oridonin inhibited growth and induced apoptosis in breast cancer cells, which might be related to DNA damage and activation of intrinsic or extrinsic apoptotic pathways. Moreover, oridonin also inhibited tumor invasion and metastasis in vitro possibly via decreasing the expression of MMPs and regulating the Integrin β1/FAK pathway in MDA-MB-231 cells (Wang et al., 2013).

Gastric Cancer

The inhibitory effect of oridonin on gastric cancer HGC-27 cells was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. After treated with oridonin (0, 1.25, 2.5, 5 and 10 µg/mL), HGC-27 cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis, and oridonin- induced apoptosis in HGC-27 cells was detected.

Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose- and time-dependent manner. The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25, 2.5, 5 and 10 µg/mL) were 1.78% ± 0.36%, 4.96% ± 1.59%, 10.35% ± 2.76% and 41.6% ± 4.29%, respectively, which showed a significant difference (P < 0.05. Cells treated with oridonin showed typical apoptotic features with acridine orange/ethidium bromide staining. After treatment with oridonin, the cells became round, shrank, and developed small buds around the nuclear membrane while forming apoptotic bodies. However, the change in the release of LDH caused by necrosis was insignificant, suggesting that the major cause of oridonin-induced HGC-27 cell death was apoptosis. Flow cytometric analysis also revealed that oridonin induced significant apoptosis compared with the controls (P < 0.05).

Apoptosis of HGC-27 induced by oridonin may be associated with differential expression of Apaf-1, caspase-3 and cytochrome c, which are highly dependent upon the mitochondrial pathway (Sun et al., 2012).

Ehrlich Ascites, Leukemia

Oridonin has been found to also increase lifespan of mice bearing Ehrlich ascites or P388 lymphocytic leukemia. Oridonin triggered apoptosis in more than 50% of t(8;21) leukemic cells in vitro at concentration of 2 M or higher accompanied by degradation of AE oncoprotein, and showed significant anti-leukemia efficacies with low adverse effects in vivo. These data suggest possible beneficial effects for patients with t(8;21) acute myeloid leukemia (AML) (Zhou et al., 2007).

Prostate Cancer, Breast Cancer, Ovarian Cancer

Oridonin exhibited anti-proliferative activity toward all cancer cell lines tested, with an IC50 estimated by the MTT cell viability assay ranging from 5.8+/-2.3 to 11.72+/-4.8 microM. The increased incidence of apoptosis, identified by characteristic changes in cell morphology, was seen in tumor lines treated with oridonin. Notably, at concentrations that induced apoptosis among tumor cells, oridonin failed to induce apoptosis in cultures of normal human fibroblasts. Oridonin up-regulated p53 and Bax and down-regulated Bcl-2 expression in a dose-dependent manner and its absorption spectrum was measured in the presence and absence of double stranded (ds) DNA. Oridonin inhibits cancer cell growth in a cell-cycle specific manner and shifts the balance between pro- and anti-apoptotic proteins in favor of apoptosis. The present data suggest that further studies are warranted to assess the potential of oridonin in cancer prevention and/or treatment (Chen et al., 2005).

Ovarian Cancer Stem Cells; Chemotherapy Resistance

Oridonin was suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM. Unlike NSAIDS (non-steroid anti-inflammatory drugs), well documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these types of compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Colorectal Cancer

Oridonin induced potent growth inhibition, cell-cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice.

Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell-cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment as it has been shown to induce apoptosis and senescence of colon cancer cells in vitro and in vivo (Gao et al., 2010).

Colon Cancer; Apoptosis

Oridonin increased intracellular hydrogen peroxide levels and reduced the glutathione content in a dose-dependent manner. N-acetylcysteine, a reactive oxygen species scavenger, not only blocked the oridonin-induced increase in hydrogen peroxide and glutathione depletion, but also blocked apoptosis and senescence induced by oridonin.

Moreover, exogenous catalase could inhibit the increase in hydrogen peroxide and apoptosis induced by oridonin, but not the glutathione depletion and senescence. Furthermore, thioredoxin reductase (TrxR) activity was reduced by oridonin in vitro and in cells, which may cause the increase in hydrogen peroxide. In conclusion, the increase in hydrogen peroxide and glutathione depletion account for oridonin-induced apoptosis and senescence in colorectal cancer cells, and TrxR inhibition is involved in this process.

Given the importance of TrxR as a novel cancer target in colon cancer, oridonin would be a promising clinical candidate (Gao et al., 2012).

Prostate Cancer; Apoptosis

Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. After ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell-cycle arrest at the G2/M phase. Autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis (Li et al., 2012).

References

Chen S, Gao J, Halicka HD, et al. (2005). The cytostatic and cytotoxic effects of oridonin (Rubescenin), a diterpenoid from Rabdosia rubescens, on tumor cells of different lineage. Int J Oncol, 26(3):579-88.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Fujita E, Fujita T, Katayama H, Shibuya M. (1970). Terpenoids. Part XV. Structure and absolute configuration of oridonin isolated from Isodon japonicus trichocarpus. J Chem Soc (Chem Comm), 21:1674–1681


Fujita E, Nagao Y, Node M, et al. (1976). Anti-tumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia, 32:203–206.


Fujita T, Takeda Y, Sun HD, et al. (1988). Cytotoxic and anti-tumor activities of Rabdosia diterpenoids. Planta Med, 54:414–417.


Henan Medical Institute, Henan Medical College, Yunnan Institute of Botany. (1978). Oridonin–a new anti-tumor subject. Chin Science Bull, 23:53–56.


Ikezoe T, Chen SS, Tong XJ, et al. (2003). Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int J Oncol, 23(4):1187-93.


Gao FH, Hu XH, Li W, Liu H, et al. (2010). Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc. BMC Cancer, 10:610. doi: 10.1186/1471-2407-10-610.


Gao FH, Liu F, Wei W, et al. (2012). Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med, 29(4):649-55. doi: 10.3892/ijmm.2012.895.


Li X, Li X, Wang J, Ye Z, Li JC. (2012) Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. Int J Biol Sci. 2012;8(6):901-12. doi: 10.7150/ijbs.4554.


Sun KW, Ma YY, Guan TP, et al. (2012). Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol, 18(48):7166-74. doi: 10.3748/wjg.v18.i48.7166.


Tang W, Eisenbrand G. (1992). Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 817–847.


Wang S, Zhong Z, Wan J, et al. (2013). Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med, 41(1):177-96. doi: 10.1142/S0192415X13500134.


Zhang Wj, Huang Ql, Hua Z-C. (2010). Oridonin: A promising anti-cancer drug from China. Frontiers in Biology, 5(6):540-545.


Zhou G-B, Kang H, Wang L, et al. (2007). Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent anti-tumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood, 109(8):3441-3450.

Gambogic acid

Cancer:
Leukemia, metastatic breast, osteocarcinoma, glioblastoma, breast, lung, liver

Action: Anti-cancer, tumor apoptosis

Gambogic acid (GA) is the principal active ingredient of gamboges which is the resin from various Garcinia species including Garcinia hanburyi (Hook. F.) and Garcinia morella (Panthong et al., 2007). GA is a natural product with potent apoptotic activity. GA has various biological effects, such as anti-inflammatory, analgesic and anti-pyretic as well as anti-cancer activities.

Tumor Apoptosis, Osteocarcinoma, Glioblastoma, Breast, Lung, Liver

GA binding to Transferrin receptor (TfR) induces a unique signal leading to rapid apoptosis of tumor cells. (Kasibhatla et al., 2005; Gu et al., 2008). GA enhances p53 protein level through inhibition of mdm2 oncogene expression and thereby hampers p53 harboring tumor growth. GA could increase the chemotherapeutic effect of cisplatin in human osteosarcoma treatment through inducing the cell-cycle arrest and promoting cell apoptosis (Zhao et al., 2013).

In vitro and in vivo studies have demonstrated its potential as an excellent cytotoxicity against a variety of malignant tumors, including glioblastoma, as well as cancers of the breast, lung and liver. GA is currently investigated in clinical trials in China (Qi et al., 2008).

Leukemia

Gambogic acid (GA) has been found to inhibit the proliferation of Jurkat leukemia cells with 50% inhibitory concentration values of 1.51±0.09 (24 hours), 0.98±0.13 (48 hours), and 0.67±0.12 µmol/L (72 hours). GA was able to induce apoptosis of Jurkat cells. Treated by GA, the expression of DIO-1 was up-regulated, and that of Bcl-2 and NF-κB was down-regulated, leading to the activation of pro-caspase 3. GA induced the translocation of DIO-1 to the nucleus. GA suppressed the proliferation of Jurkat cells by apoptosis induction. DIO-1 triggered early-stage cell death in GA-treated Jurkat cells (Wang et al., 2008).

Metastatic Cancer

Patients with advanced or metastatic cancer who had not received any effective routine conventional treatment, or who had failed to respond to the existing conventional treatment, were randomly assigned to receive either 45 mg/m(2) gambogic acid intravenously from days 1– 5 of a 2-week cycle (Group A), or 45 mg/m(2) every other day for a total of 5 times during a 2-week cycle (Group B). The ORRs were 14.3% in Group A and 0% in Group B. It was not possible to analyze the significant difference because one of the values was zero. The disease control rates (DCRs) were 76.2% in Group A and 61.5% in Group B (P = 0.0456). The observed adverse reactions were mostly Grades I and II, and occurred in most patients after administration of the trial drug. There was no significant difference in the incidence of adverse reactions between the two arms.

The preliminary results of this phase IIa exploratory study suggest that gambogic acid has a favorable safety profile when administered at 45 mg/m(2). The DCR was greater in patients receiving gambogic acid on days 1–5 of a 2-week cycle, but the incidence of adverse reactions was similar irrespective of the administration schedule (Chi et al., 2013).

References

Chi Y, Zhan XK, Yu H, et al. (2013). An open-labeled, randomized, multicenter phase IIa study of gambogic acid injection for advanced malignant tumors. Chin Med J, 126(9):1642-6.


Gu H, Wang X, Rao S, et al. (2008). Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Mol Cancer Ther, 7:3298–3305. doi: 10.1158/1535-7163.MCT-08-0212.


Kasibhatla S, Jessen KA, Maliartchouk S, et al. (2005). A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci, 102:12095–12100. doi: 10.1073/pnas.0406731102.


Panthong A, Norkaew P, Kanjanapothi D, et al. (2007). Anti-inflammatory, analgesic and anti-pyretic activities of the extract of gamboge from Garcinia hanburyi Hook f. J Ethnopharmacol, 111:335–340. doi: 10.1016/j.jep.2006.11.038.


Qi Q, Gu H, Yang Y, et al. (2008). Involvement of matrix metalloproteinase 2 and 9 in gambogic acid induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med, 86:1367–1377. doi: 10.1007/s00109-008-0398-z.


Wang Y, Chen Y, Chen Z, et al. (2008). Gambogic acid induces death inducer-obliterator 1-mediated apoptosis in Jurkat T cells. Acta Pharmacologica Sinica, 29:349–354. doi:10.1111/j.1745-7254.2008.00762.x.


Zhao W, You CC, Zhuang JP, et al. (2013). Viability inhibition effect of gambogic acid combined with cisplatin on osteosarcoma cells via mitochondria-independent apoptotic pathway. Mol Cell Biochem.

Honokiol (See also Injectables)

Cancer:
Lung, breast, prostate, leukemia, colorectal., esophageal., ovarian, myeloma, pancreatic, stomach, uterine

Action: Anti-angiogenic, chemo-sensitizer, multi-drug resistance reversal., anti-inflammatory, anxiolytic, anti-depressant, inhibits VEGF, anti-metastatic, synergistic effects with other cancer treatments

Honokiol is a phenolic compound purified from plants of the Magnolia genus, including Magnolia officinalis (Rehder & Wilson) and Magnolia grandiflora (L.), that exhibits anti-cancer effects in experimental models with various types of cancer cells, including esophageal., ovarian, breast, and lung cancer, as well as myeloma and leukemia. It is speculated that this compound causes cancer cell death in part through targeting mitochondria (Munroe et al., 2007; Chen et al., 2009; Fried & Arbiser, 2009).

Inhibits Angiogenesis, MDR, Anti-inflammatory, Inhibits VEGF

Honokiol is one of two dominant biphenolic compounds isolated from Magnolia spp. bark, and is the most widely researched active constituent of the bark. In vivo studies suggest that honokiol's greatest value is in its multiple anti-cancer actions. In vitro research suggests honokiol has potential to enhance current anti-cancer regimens by inhibiting angiogenesis, promoting apoptosis, providing direct cytotoxic activity, down-regulating cancer cell signaling pathways, regulating genetic expression, enhancing the effects of specific chemotherapeutic agents, radio-sensitizing cancer cells to radiation therapy, and inhibiting multi-drug resistance.

Honokiol also shows potential in preventive health by reducing inflammation and oxidative stress, providing neurological protection, and regulating glucose; in mental illness by its effects against anxiety and depression; and in helping regulate stress response signaling. Its anti-microbial effects demonstrate potential for partnering with anti-viral/antibiotic therapy, and treating secondary infections.

Honokiol may occupy a distinct therapeutic niche because of its unique characteristics: the ability to cross the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSFB), high systemic bioavailability, and its actions on a multiplicity of signaling pathways and genomic activity. There is a need for research on honokiol to progress to human studies and on into clinical use.

The preclinical research on honokiol's broad-ranging capabilities shows its potential as a therapeutic compound for numerous solid and hematological cancers, including its effectiveness in combating multi-drug resistance (MDR) and its synergy with other anti-cancer therapies. Research thus far shows no toxicity or serious adverse effects in animal models.

Honokiol has also been shown to inhibit spread of cancer cells through the lymph system by inhibiting one of the primary pathways involved in growth stimulation related to vascular endothelial growth factor (VEGF) (Wen et al., 2009).

Inhibits Angiogenesis, Gastric Cancer

A 2012 in vivo study in PLoS One showed that honokiol, by inhibiting angiogenic pathways such as STAT-3, dampened peritoneal dissemination of gastric cancer in mice (5 mg/kg delivered intraperitoneally) (Liu et al., 2012).    

Induces Apoptosis; Leukemia

Honokiol induces cell apoptosis in several cell lines, such as leukemia cell lines HL-60, colon cancer cell lines RKO, lung cancer cell lines A549 and CH27 (Hirano et al., 1994; Wang et al., 2004; Hibasami et al., 1998; Konoshima et al., 1991;Yang et al., 2002; Kong et al., 2005). It also has remarkable in vivo anti-tumor activities in tumor mouse models (Bai et al., 2003). Honokiol has demonstrated potent anti-angiogenic and anti-tumor properties against aggressive angiosarcoma by blocking of VEGF-induced VEGF receptor 2 autophosphorylation (Konoshima et al., 1991; Yang et al., 2002).

MDR

Honokiol has also been found to down-regulate the expression of P-glycoprotein at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line. The down-regulation of P-glycoprotein is accompanied with a partial recovery of the intracellular drug accumulation (Xu et al., 2006).

Prostate Cancer

In addition, it has been shown that prostate cancer cells that failed to respond to hormone withdrawal responded to honokiol-induced apoptosis. It was found to significantly induce death in cells surrounding primary and metastatic prostate cancers, the prostate stromal fibroblasts, marrow stromal cells, and bone marrow-associated endothelial cells. Honokiol is hence a promising nontoxic agent that could be used as an adjuvant with low-dose docetaxel for the treatment of hormone-refractory prostate cancer and its distant bone metastases (Shigemura et al., 2007).

Anti-metastatic

Honokiol inhibited the activity of MMP-9, which may be responsible, in part, for the inhibition of tumor cell invasiveness (Nagase et al., 2001).

Breast Cancer

The development of more targeted and low toxic drugs from traditional Chinese medicines for breast cancer are needed due to most of the anti-breast cancer drugs often being limited because of drug resistance and serious adverse reactions. Results have shown that honokiol inhibited the rate of breast cancer MDA-MB-231 cell growth (Nagalingam et al., 2012).

Synergistic Effects with Other Cancer Treatments

One of the most promising benefits of honokiol is its ability to synergize with other cancer treatments. Clinical trials are desperately needed to validate the potential synergy that has been demonstrated in vitro and in vivo.

Chemotherapy

• A 2013 in vitro study published in the International Journal of Oncology showed that honokiol synergized chemotherapy drugs in Multi-drug-resistant breast cancer (Tian et al., 2013). A 2011 in vitro study published in PLoS One found that honokiol enhanced the apoptotic effects of the anti-cancer drug gemcitabine against pancreatic cancer (Arora et al., 2011).

• In vivo research published in Oncology Letters in 2011 found honokiol enhanced the action of cisplatin against colon cancer (Cheng et al., 2011).

• A 2010 in vitro study from the Journal of Biological Regulators and Homeostatic Agents showed that honokiol resensitized cancer cells to doxorubicin in Multi-drug-resistant uterine cancer (Angelini et al., 2010).

• A 2010 in vitro study published in Toxicology Mechanisms and Methods showed honokiol performed synergistically with the drug imatinib against human leukemia cells (Wang et al., 2010).

• 2008 in vivo research published in the International Journal of Gynecological Cancer showed honokiol to potentiate the activity of cisplatin in murine models of ovarian cancer (Liu et al., 2008).

• 2005 in vitro research published in Blood showed honokiol enhanced the cytotoxicity induced by fludarabine, cladribine, and chlorambucil, indicating it is a potent inducer of apoptosis in B-CLL cells (Battle et al., 2005).

Radiation treatment

• 2012 in vitro research published in Molecular Cancer Therapeutics showed that honokiol was able to sensitize cancer cells to radiation treatments (Ponnurangam et al., 2012).

• A 2011 in vitro study published in American Journal of Physiology Gastrointestinal and Liver Physiology showed honokiol sensitized treatment-resistant colon cancer cells to radiation therapy (He et al., 2011).

Inhibition of multi-drug resistance

Honokiol has been shown to interact with genes that are involved with mechanisms of drug efflux, thus reversing MDR in experimental models. The exact mechanisms of action in this regard are thought to be related to effects of blocking of NF-kB activity, but other mechanisms may also be involved (Xu et al., 2006).

References

Angelini A, Di Ilio C, Castellani ML, Conti P, Cuccurullo F. (2010). Modulation of Multi-drug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): Implications for natural sedatives as chemosensitizing agents in cancer therapy. Journal of Biological Regulators & Homeostatic Agents, 24(2). 197-205.


Arora S, Bhardwaj A, Srivastava SK, et al. (2011). Honokiol arrests Cell-cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One, 6(6), e21573. doi: 10.1371/journal.pone.0021573.


Bai X, Cerimele F, Ushio-Fukai M, et al. (2003). Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem, 278: 35501–7.


Battle TE, Arbiser J, Frank DA. (2005). The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood, 106(2), 690-697.


Chen G, Izzo J, Demizu Y, et al. (2009). Different redox states in malignant and nonmalignant esophageal epithelial cells and differential cytotoxic responses to bile acid and honokiol. Antioxid. Redox Signal., 11(5):1083–1095


Cheng N, Xia T, Han Y, et al. (2001). Synergistic anti-tumor effects of liposomal honokiol combined with cisplatin in colon cancer models. Oncology Letters, 2(5), 957-962.


Eliaz I. (2013). Honokiol research review: A promising extract with multiple applications. Natural Medicine Journal., 5(7).


Fried LE, Arbiser JL. (2009). Honokiol, a multifunctional anti-angiogenic and anti-tumor agent. Antioxid. Redox Signal., 1(5):1139–1148. doi: 10.1089/ARS.2009.2440.


He Z, Subramaniam D, Ramalingam S, et al. (2011). Honokiol radiosensitizes colorectal cancer cells: enhanced activity in cells with mismatch repair defects. American Journal of Physiology: Gastrointest and Liver Physiology, 301(5):G929-937.


Hibasami H, Achiwa Y, Katsuzaki H, et al. (1998). Honokiol induces apoptosis in human lymphoid leukemia Molt 4B cells. Int J Mol Med, 2:671–3.


Hirano T, Gotoh M, Oka K. (1994). Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci, 55:1061–9.


Hou X, Yuan X, Zhang B, Wang S, Chen Q. (2013). Screening active anti-breast cancer compounds from Cortex Magnolia officinalis by 2D LC-MS. J Sep Sci, 36(4):706-12. doi: 10.1002/jssc.201200896.


Kong ZL, Tzeng SC, Liu YC. (2005). Cytotoxic neolignans: an SAR study. Bioorg Med Chem Lett, 15: 163–6.


Konoshima T, Kozuka M, Tokuda H, et al. (1991). Studies on inhibitors of skin tumor promotion. IX. Neolignans from Magnolia officinalis. J Nat Prod, 54: 816–22.


Liu Y, Chen L, He X, et al. (2010). Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. International Journal of Gynecological Cancer, 18(4), 652-659.


Liu SH, Wang KB, Lan KH, et al. (2012). Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PLoS One, 7(8):e43711.


Munroe ME, Arbiser JL, Bishop GA. (2007). Honokiol, a natural plant product, inhibits inflammatory signals and alleviates inflammatory arthritis. J. Immunol., 179(2):753–763


Nagalingam A, Arbiser JL, Bonner MY, Saxena NK, Sharma D. (2012). Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Research, 14:R35 doi:10.1186/bcr3128


Nagase H, Ikeda K, Sakai Y. (2001). Inhibitory Effect of Magnolol and Honokiol from Magnolia obovata on Human Fibrosarcoma HT-1080 Invasiveness in vitro. Planta Med, 67(8): 705-708. DOI: 10.1055/s-2001-18345


Ponnurangam S, Mammen JM, Ramalingam S, et al. (2012). Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Molecular Cancer Therapeutics, 11(4), 963-972. doi: 10.1371/journal.pone.0043711.


Shigemura K, Arbiser JL, Sun SY, et al. (2007). Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer, 109(7), 1279-1289.


Tian W, Deng Y, Li L, et al. (2013). Honokiol synergizes chemotherapy drugs in Multi-drug-resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death. International Journal of Oncology, 42(2), 721-732. doi: 10.3892/ijo.2012.1739.


Wang Y, Yang Z, Zhao X. (2010). Honokiol induces parapoptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicology Mechanisms and Methods, 20(5), 234-241. doi: 10.3109/15376511003758831.


Wang T, Chen F, Chen Z, et al. (2004). Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol, 10: 2205–8.


Wen J, Fu AF, Chen LJ, et al. (2009). Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. International Journal of Cancer, 124(11), 2709-2718. doi: 10.1002/ijc.24244.


Xu D, Lu Q, Hu X. (2006). Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Letters, 243(2), 274-280.


Yang SE, Hsieh MT, Tsai TH, Hsu SL. (2002). Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochemical Pharmacology, 63(9), 1641-1651.

Source

Eliaz I. (2013). Honokiol research review: A promising extract with multiple applications. Natural Medicine Journal., 5(7). Retrieved from http://www.naturalmedicinejournal.com/article_content.asp?edition=1.

Formononetin

Cancer: Prostate, colorectal., breast, cervical

Action: Cell-cycle arrest, MDR, growth-inhibitory

Estrogenic or Anti-estrogenic

Formononetin is one of the main active components of red clover plants, and considered as a phytoestrogen. Its pharmacological effects in vivo may be either estrogenic or anti-estrogenic, mainly depending upon the estrogen levels (Chen & Sun., 2012).

Cell-cycle Arrest, Prostate Cancer

Formononetin has been demonstrated to cause cell-cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. The molecular mechanisms involved in the effect of formononetin on prostate cancer cells were hence investigated. These results suggest that higher concentrations of formononetin inhibit the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells.

From these results, it was concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, these results provided the foundation for future development of different concentrations of formononetin for treatment of prostate cancer (Ye et al., 2012).

Colon Cancer

Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses anti-tumorigenic properties. It has been demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. The potential of formononetin in controlling angiogenesis and tumor cell invasiveness has further been examined in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group.

The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers (Auyeung et al., 2012).

Cervical Cancer

Formononetin may potentiate the cytotoxicity of epirubicin in HeLa cells through the ROS-mediated MRP inhibition and concurrent activation of the mitochondrial and death receptor pathways of apoptosis. Hence, the circumvention of pump and non-pump resistance using formononetin and epirubicin may pave the way for a powerful chemotherapeutic regimen for treating human cervical cancer (Lo et al., 2013).

Breast Cancer

Recent studies by Chen & Sun (2012) suggest that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. In their present study, they further investigated the molecular mechanisms involved in the induced apoptosis effect of formononetin on breast cancer cells and formononetin inhibited the proliferation of ER-positive MCF-7 cells and T47D cells. The induced apoptosis effect of formononetin on human breast cancer cells was related to Ras-p38MAPK pathway.

Formononetin causes cell-cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1 mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis (Chen et al., 2011).

References

Auyeung KK, Law PC, Ko JK. (2012). Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep, 28(6):2188-94. doi: 10.3892/or.2012.2056.


Chen J, Zeng J, Xin M, Huang W, Chen X. (2011). Formononetin induces cell-cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res, 43(10):681-6. doi: 10.1055/s-0031-1286306.


Chen J, Sun L. (2012). Formononetin-induced apoptosis by activation of Ras/p38 mitogen-activated protein kinase in estrogen receptor-positive human breast cancer cells. Horm Metab Res, 44(13):943-8. doi: 10.1055/s-0032-1321818.


Lo YL, Wang W. (2013). Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem Biol Interact, 205(3):188-97. doi: 10.1016/j.cbi.2013.07.003.


Ye Y, Hou R, Chen J, et al. (2012). Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm Metab Res, 44(4):263-7. doi: 10.1055/s-0032-1301922.

Fucoidan

Cancer:
Lymphoma, prostate, hepatocellular carcinoma, breast, colorectal

Action: Chemotherapy protective

Fucoidan is a ulphated polysaccharide found in brown seaweed, including Sargassum thunbergii [(Mertens ex Roth) Kuntze] and Fucus vesiculosus (L.).

Lymphoma

Fucoidan, a sulfated polysaccharide in brown seaweed, was found to inhibit proliferation and induce apoptosis in human lymphoma HS-Sultan cell lines. Fucoidan-induced apoptosis was accompanied by the activation of caspase-3 and was partially prevented by pre-treatment with a pan-caspase inhibitor, z-VAD-FMK. The neutralizing antibody, Dreg56, against human l-selectin, did not prevent the inhibitory effect of fucoidan on the proliferation of IM9 and MOLT4 cells, both of which express l-selectin; thus it is possible fucoidan induced apoptosis through different receptors. These results demonstrate that fucoidan has direct anti-cancer effects on human HS-Sultan cells through caspase and ERK pathways (Aisa et al., 2005).

Colorectal Cancer; Chemotherapy

A total of 20 patients with unresectable advanced or recurrent colorectal cancer scheduled to undergo treatment with FOLFOX or FOLFIRI were randomly allocated into a fucoidan treatment group (n=10) and a control group without fucoidan treatment (n=10). Results showed that fucoidan regulated the occurrence of fatigue during chemotherapy. Chemotherapy with fucoidan was continued for a longer period than chemotherapy without fucoidan. Additionally, the survival of patients with fucoidan treatment was longer than that of patients without fucoidan, although the difference was not significant.

Thus, fucoidan may enable the continuous administration of chemotherapeutic drugs for patients with unresectable advanced or recurrent colorectal cancer, and as a result, the prognosis of such patients is prolonged (Ikeguchi et al., 2011).

Prostate Cancer

Fucoidan obtained from Undaria pinnatifida induced the apoptosis of PC-3 cells by activating both intrinsic and extrinsic pathways. The induction of apoptosis was accompanied by the activation of extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the inactivation of p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, fucoidan also induced the up-regulation of p21Cip1/Waf and down-regulation of E2F-1 cell-cycle-related proteins. Furthermore, in the Wnt/β-catenin pathway, fucoidan activated GSK-3β that resulted in the decrease of β-catenin level, followed by the decrease of c-myc and cyclin D1 expressions, target genes of β-catenin in PC-3 cells. The data support that fucoidan might have potential for the treatment of prostate cancer (Boo et al., 2013).

Hepatocellular Carcinoma

Fucoidan isolated from U. pinnatifida induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. SMMC-7721 cells exposed to fucoidan displayed growth inhibition and several typical features of apoptotic cells, such as chromatin condensation and marginalization, and a decrease in the number of mitochondria, and in mitochondrial swelling and vacuolation (Yang et al., 2013).

Breast Cancer

Fucoidan exerts its anti-cancer activity through down-regulation of Wnt/β-catenin signaling. Fucoidan may be an effective therapy for the chemoprevention and treatment of mouse breast cancer. Fucoidan significantly inhibited cell growth, increased cell death, and induced G1 cell- cycle arrest in breast cancer 4T1 cells. Fucoidan also reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity. Furthermore, fucoidan down-regulated the expression of downstream target genes such as c-myc, cyclin D1, and survivin (Xue et al., 2013).

References

Aisa Y, Miyakawa Y, Nakazato T, Shibata H, et al. (2005). Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK Pathways. Am. J. Hematol, 78:7–14. doi: 10.1002/ajh.20182.


Boo HJ, Hong JY, Kim SC, et al. (2013). The anti-cancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs, 11(8):2982-99. doi: 10.3390/md11082982.


Ikeguchi M, Yamamoto M, Arai Y, et al. (2011). Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncology Letters, 2(2). doi: 10.3892/ol.2011.254.


Xue M, Ge Y, Zhang J, et al. (2013). Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via down-regulation of Wnt/β -catenin signaling. Nutr Cancer, 65(3):460-8. doi: 10.1080/01635581.2013.757628.


Yang L, Wang P, Wang H, et al. (2013). Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs, 11(6):1961-76. doi: 10.3390/md11061961.

Curcumin

Cancer: Colorectal., prostate, pancreatic

Action: MDR, chemo-preventive activity, anti-inflammatory, attenuation of immune suppression

Chemo-preventive Activity

Curcumin is a naturally occurring, dietary polyphenolic phytochemical that is under preclinical trial evaluation for cancer-preventive drug development. It is derived from the rhizome of Curcuma longa L. and has both anti-oxidant and anti-inflammatory properties; it inhibits chemically-induced carcinogenesis in the skin, forestomach, and colon when it is administered during initiation and/or postinitiation stages. Chemo-preventive activity of curcumin is observed when it is administered prior to, during, and after carcinogen treatment as well as when it is given only during the promotion/progression phase (starting late in premalignant stage) of colon carcinogenesis (Kawamori et al., 1999)

Anti-inflammatory

With respect to inflammation, in vitro, it inhibits the activation of free radical-activated transcription factors, such as nuclear factor κB (NFκB) and AP-1, and reduces the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and interleukin-8 (Chan et al., 1998)

Prostate Cancer

In addition, NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin may abrogate their survival mechanisms (Mukhopadhyay et al., 2001).

Pancreatic Cancer

In patients suffering from pancreatic cancer, orally-administered curcumin was found to be well-tolerated and despite limited absorption, had a reasonable impact on biological activity in some patients. This was attributed to its potent nuclear factor-kappaB (NF-kappaB) and tumor-inhibitory properties, against advanced pancreatic cancer (Dhillon et al., 2008)

MDR

Curcumin, the major component in Curcuma longa (Jianghuang), inhibited the transport activity of all three major ABC transporters, i.e. Pgp, MRP1 and ABCG2 (Ganta et al., 2009).

Curcumin reversed MDR of doxorubicin or daunorubicin in K562/DOX cell line and decreased Pgp expression in a time-dependent manner (Chang et al., 2006). Curcumin enhanced the sensitivity to vincristine by the inhibition of Pgp in SGC7901/VCR cell line (Tang et al., 2005). Moreover, curcumin was useful in reversing MDR associated with a decrease in bcl-2 and survivin expression but an increase in caspase-3 expression in COC1/DDP cell line (Ying et al., 2007).

The cytotoxicity of vincristine and paclitaxel were also partially restored by curcumin in resistant KBV20C cell line. Curcumin derivatives reversed MDR by inhibiting Pgp efflux (Um et al., 2008). A chlorine substituent at the meta-or para-position on benzamide improved MDR reversal [72]. Bisdemethoxycurcumin modified from curcumin resulted in greater inhibition of Pgp expression (Limtrakul et al., 2004).

Attenuation of Immune Suppression

Curcumin (a chalcone) exhibited toxicity to human neural stem cells (hNSCs). Although oridonin (a diterpene) showed a null toxicity toward hNSCs, it repressed the enzymatic function only marginally in contrast to its potent cytotoxicity in various cancer cell lines. While the mode of action of the enzyme-polyphenol complex awaits to be investigated, the sensitivity of enzyme inhibition was compared to the anti-proliferative activities toward three cancer cell lines.

The IC50s obtained from both sets of the experiments indicate that they are in the vicinity of micromolar concentration with the enzyme inhibition slightly more active.

These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

Cancer Stem Cells

In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size.

Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in 'complete' or 'partial' responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples (Reddy et al., 2011).

Multiple Cancer Effects; Cell-signaling

Curcumin has been shown to interfere with multiple cell signaling pathways, including cell-cycle (cyclin D1 and cyclin E), apoptosis (activation of caspases and down-regulation of anti-apoptotic gene products), proliferation (HER-2, EGFR, and AP-1), survival (PI3K/AKT pathway), invasion (MMP-9 and adhesion molecules), angiogenesis (VEGF), metastasis (CXCR-4) and inflammation (NF- κB, TNF, IL-6, IL-1, COX-2, and 5-LOX).

The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets (Anand et al., 2008).

Anti-inflammatory; Cell-signaling

Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anti-cancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene.

Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies (Cretu et al., 2012). Curcumin also sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5) (Jung et al., 2005).

Curcumin and bioavailability

Curcumin, a major constituent of the spice turmeric, suppresses expression of the enzyme cyclooxygenase 2 (Cox-2) and has cancer chemo-preventive properties in rodents. It possesses poor systemic availability. Marczylo et al. (2007) explored whether formulation with phosphatidylcholine increases the oral bioavailability or affects the metabolite profile of curcumin. Their results suggest that curcumin formulated with phosphatidylcholine furnishes higher systemic levels of parent agent than unformulated curcumin.

Curcuminoids are poorly water-soluble compounds and to overcome some of the drawbacks of curcuminoids, Aditya et al. (2012) explored the potential of liposomes for the intravenous delivery of curcuminoids. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC). Curcumin/curcuminoids were encapsulated in phosphatidylcholine vesicles with high yields. Vesicles in the size range around 200 nm were selected for stability and cell experiments. Liposomal curcumin were found to be twofold to sixfold more potent than corresponding curcuminoids. Moreover, the mixture of curcuminoids was found to be more potent than pure curcumin in regard to the anti-oxidant and anti-inflammatory activities (Basnet et al., 2012). Results suggest that the curcumin-phosphatidylcholine complex improves the survival rate by increasing the anti-oxidant activity (Inokuma et al., 2012). Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases (Wang et al., 2012). Data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response (Patzk- et al., 2012).

References

Aditya NP, Chimote G, Gunalan K, et al. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol, 131(3):292-9. doi: 10.1016/j.exppara.2012.04.010.


Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. (2008). Curcumin and cancer: An 'old-age' disease with an 'age-old' solution. Cancer Letters, 267(1):133–164. doi: 10.1016/j.canlet.2008.03.025.


Basnet P, Hussain H, Tho I, Skalko-Basnet N. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci, 101(2):598-609. doi: 10.1002/jps.22785.


Chan MY, Huang HI, Fenton MR, Fong D. (1998). In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer-preventive Natural Product with Anti-Inflammatory Properties. Biochemical Pharmacology, 55(12), 1955-1962.


Chang HY, Pan KL, Ma FC, et al. (2006). The study on reversing mechanism of Multi-drug resistance of K562/DOX cell line by curcumin and erythromycin. Chin J Hem, 27(4):254-258.


Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Cre ţ u E, Trifan A, Vasincu A, Miron A. (2012). Plant-derived anti-cancer agents – curcumin in cancer prevention and treatment. Rev Med Chir Soc Med Nat Iasi, 116(4):1223-9.


Dhillon N, Aggarwal BB, Newman RA, et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res,14(14):4491-9. doi: 10.1158/1078-0432.CCR-08-0024.


Ganta S, Amiji M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations To overcome Multi-drug resistance in tumor cells. Mol Pharm, 6(3):928-939. doi: 10.1021/mp800240j.


Inokuma T, Yamanouchi K, Tomonaga T, et al. (2012). Curcumin improves the survival rate after a massive hepatectomy in rats. Hepatogastroenterology, 59(119):2243-7. doi: 10.5754/hge10650.


Jung EM, Lim JH, Lee TJ, et al. (2005). Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5). Carcinogenesis, 26(11):1905-1913.


Kawamori T, Lubet R, Steele V E, et al. (1999). Chemo-preventive Effect of Curcumin, a Naturally Occurring Anti-Inflammatory Agent, during the Promotion/Progression Stages of Colon Cancer. Cancer Research, 59(3), 597-601.


Limtrakul P, Anuchapreeda S, Buddhasukh D. (2004). Modulation of human Multi-drug resistance MDR-1 gene by natural curcuminoids. BMC Cancer, 4:13.


Marczylo TH, Verschoyle RD, Cooke DN, et al. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol, 60(2):171-7.


Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, & Aggarwal., B. B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609.


Patzk- A, Bai Y, Saporta MA, et al. (2012). Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain, 135(Pt 12):3551-66. doi: 10.1093/brain/aws299.


Reddy RM, Kakarala M, Wicha MS. (2011). Clinical trial design for testing the stem cell model for the prevention and treatment of cancer. Cancers (Basel), 3(2):2696-708. doi: 10.3390/cancers3022696.


Tang XQ, Bi H, Feng JQ, Cao JG. (2005). Effect of curcumin on Multi-drug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin, 26(8):1009-1016.


Um Y, Cho S, Woo HB, et al. (2008). Synthesis of curcumin mimics with Multi-drug resistance reversal activities. Bioorg Med Chem,16(7):3608-3615.


Wang LL, Sun Y, Huang K, Zheng L. (2012). Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res, 57(9):1557-68. doi: 10.1002/mnfr.201200718.


Ying HC, Zhang SL, Lv J. (2007). Drug-resistant reversing effect of curcumin on COC1/DDP and its mechanism. J Mod Oncol, 15(5):604-607.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.

Berberine

Cancer:
Liver, leukemia, breast, prostate, epidermoid (squamous-cell carcinoma), cervical., testicular, melanoma, lymphoma, hepatoma

Action:
Radio-sensitizer, anti-inflammatory, cell-cycle arrest, angiogenesis, chemo-enhancing, anti-metastatic, anti-oxidative

 

Berberine is a major phytochemical component of the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. It has been implicated in the cytotoxic effects on multiple cancer cell lines.

 

Anti-inflammatory

Berberine is an isoquinoline alkaloid widely distributed in natural herbs, including Rhizoma Coptidis chinensis and Epimedium sagittatum (Sieb. et Zucc.), a widely prescribed Chinese herb (Chen et al., 2008). It has a broad range of bioactivities, such as anti-inflammatory, anti-bacterial., anti-diabetes, anti-ulcer, sedation, protection of myocardial ischemia-reperfusion injury, expansion of blood vessels, inhibition of platelet aggregation, hepato-protective, and neuroprotective effects (Lau et al., 2001; Yu et al., 2005; Kulkarni & Dhir, 2010; Han et al., 2011; Ji, 2011). Berberine has been used in the treatment of diarrhea, neurasthenia, arrhythmia, diabetes, and so forth (Ji, 2011).

 

Angiogenesis, Chemo-enhancing

Inhibition of tumor invasion and metastasis is an important aspect of berberine’s anti-cancer activities (Tang et al., 2009; Ho et al., 2009). A few studies have reported berberine’s inhibition of tumor angiogenesis (Jie et al., 2011; Hamsa & Kuttan, 2012). In addition, its combination with chemotherapeutic drugs or irradiation could enhance the therapeutic effects (Youn et al., 2008; Hur et al., 2009).

 

Cell-cycle Arrest

The potential molecular targets and mechanisms of berberine are rather complicated. Berberine interacts with DNA or RNA to form a berberine-DNA or a berberine-RNA complex, respectively (Islam & Kumar. 2009; Li et al., 2012). Berberine is also identified as an inhibitor of several enzymes, such as N-acetyltransferase (NAT), cyclooxygenase-2 (COX-2), and telomerase (Sun et al., 2009).

 

Other mechanisms of berberine are mainly related to its effect on cell-cycle arrest and apoptosis, including regulation of cyclin-dependent kinase (CDK) family of proteins (Sun et al., 2009; Mantena, Sharma, & Katiyar, 2006) and expression regulation of B-cell lymphoma 2 (Bcl-2) family of proteins (such as Bax, Bcl-2, and Bcl-xL) (Sun et al., 2009), and caspases (Eom et al., 2010; Mantena, Sharma, & Katiyar, 2006). Furthermore, berberine inhibits the activation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and induces the formation of intracellular reactive oxygen species (ROS) in cancer cells (Sun et al., 2009; Eom et al., 2010). Interestingly, these effects might be specific for cancer cells (Sun et al., 2009).

 

Several studies have shown that berberine has anti-cancer potential by interfering with the multiple aspects of tumorigenesis and tumor progression in both in vitro and in vivo experiments. These observations have been well summarized in recent reports (Sun et al., 2009; Tan et al., 2011). Berberine inhibits the proliferation of multiple cancer cell lines by inducing cell-cycle arrest at the G1 or G 2 / M phases and by apoptosis (Sun et al., 2009; Eom et al., 2010; Burgeiro et al., 2011). In addition, berberine induces endoplasmic reticulum stress (Chang et al., 1990; Eom et al., 2010) and autophagy (Wang et al., 2010) in cancer cells.

 

However, compared with clinically prescribed anti-cancer drugs, the cytotoxic potency of berberine is much lower, with an IC50 generally at 10 µM to 100 µM depending on the cell type and treatment duration in vitro (Sun et al., 2009). Besides, berberine also induces morphologic differentiation in human teratocarcinoma (testes) cells (Chang et al., 1990).

 

Anti-metastatic

The effect of berberine on invasion, migration, metastasis, and angiogenesis is mediated through the inhibition of focal adhesion kinase (FAK), NF-κB, urokinase-type plasminogen-activator (u-PA), matrix metalloproteinase 2 (MMP-2), and matrix metalloproteinase 9 (MMP-9) (Ho  et al., 2009; Hamsa & Kuttan. (2011); reduction of Rho kinase-mediated Ezrin phosphorylation (Tang et al., 2009); reduction of the expression of COX-2, prostaglandin E, and prostaglandin E receptors (Singh et al., 2011); down-regulation of hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), pro-inflammatory mediators (Jie et al., 2011; Hamsa & Kuttan, 2012).

 

Hepatoma, Leukaemia

The cytotoxic effects of Coptis chinensis extracts and their major constituents on hepatoma and leukaemia cells in vitro have been investigated. Four human liver cancer cell lines, namely HepG2, Hep3B, SK-Hep1 and PLC/PRF/5, and four leukaemia cell lines, namely K562, U937, P3H1 and Raji, were investigated. C. chinensis exhibited strong activity against SK-Hep1 (IC50 = 7 microg/mL) and Raji (IC50 = 4 microg/mL) cell lines. Interestingly, the two major compounds of C. chinensis, berberine and coptisine, showed a strong inhibition on the proliferation of both hepatoma and leukaemia cell lines. These results suggest that the C. chinensis extract and its major constituents berberine and coptisine possess active anti-hepatoma and anti-leukaemia activities (Lin, 2004).

 

Leukemia

The steady-state level of nucleophosmin/B23 mRNA decreased during berberine-induced (25 g/ml, 24 to 96 hours) apoptosis of human leukemia HL-60 cells. A decline in telomerase activity was also observed in HL-60 cells treated with berberine. A stable clone of nucleophosmin/B23 over-expressed in HL-60 cells was selected and found to be less responsive to berberine-induced apoptosis. About 35% to 63% of control vector–transfected cells (pCR3) exhibited morphological characteristics of apoptosis, while about 8% to 45% of nucleophosmin/B23-over-expressed cells (pCR3-B23) became apoptotic after incubation with 15 g/ml berberine for 48 to 96 hours.

 

These results indicate that berberine-induced apoptosis is associated with the down-regulation of nucleophosmin/B23 and telomerase activity. Nucleophosmin/B23 may play an important role in the control of the cellular response to apoptosis induction (Hsing, 1999).

 

Prostate Cancer

In vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24–72 hours) manner. Berberine significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential., and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase.

 

The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy (Mantena, 2006).

 

In another study, the treatment of human prostate cancer cells (PC-3) with berberine-induced dose-dependent apoptosis; however, this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential., release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins.

 

Berberine-induced apoptosis was blocked in the presence of the anti-oxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. Taken together, these results suggest that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer (Meeran, 2008).

 

Breast Cancer     Back

DNA microarray technology has been used to understand the molecular mechanism underlying the anti-cancer effect of berberine carcinogenesis in two human breast cancer cell lines, the ER-positive MCF-7 and ER-negative MDA-MB-231 cells; specifically, whether it affects the expression of cancer-related genes. Treatment of the cancer cells with berberine markedly inhibited their proliferation in a dose- and time-dependent manner. The growth-inhibitory effect was much more profound in MCF-7 cell line than that in MDA-MB-231 cells.

 

IFN-ß is among the most important anti-cancer cytokines, and the up-regulation of this gene by berberine is, at least in part, responsible for its anti-proliferative effect. The results of this study implicate berberine as a promising extract for chemoprevention and chemotherapy of certain cancers (Kang, 2005).

 

Breast Cancer Metastasis

Berberine also inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance.

 

The anoikis-resistant cells have a reduced growth rate and are more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell-cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells was compared to untreated control cells. These results reveal that berberine can efficiently inhibit growth by inducing cell-cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis (Kim, 2010).

 

Melanoma

Berberine inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. The effects and associated molecular mechanism of berberine on human melanoma cancer cell migration using melanoma cell lines A375 and Hs294 were probed in an in vitro cell migration assay, indicating that over- expression of cyclo-oxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells.

 

Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-kB), an up- stream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-kB, inhibited cell migration. Together, these results indicate that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors (Sing, 2011).

 

Cell-cycle Arrest, Squamous-cell Carcinoma

The in vitro treatment of human epidermoid carcinoma A431 cells with berberine decreases cell viability and induces cell death in a dose (5-75 microM)- and time (12–72 hours)-dependent manner, which was associated with an increase in G(1) arrest. G(0)/G(1) phase of the cell-cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin kinase inhibitors (Cdki) and cyclins.

 

Pre-treatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway.

 

Together, these results indicate berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 (squamous-cell) cells in vitro; further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers (Mantena, 2006).

 

Cervical Cancer, Radio-sensitizer

Cervical cancer remains one of the major killers amongst women worldwide. In India, a cisplatin based chemo/radiotherapy regimen is used for the treatment of advanced cervical cancer. Evidence shows that most of the chemotherapeutic drugs used in current clinical practice are radio-sensitizers. Natural products open a new avenue for treatment of cancer, as they are generally tolerated at high doses. Animal studies have confirmed the anti-tumorigenic activity of natural products, such as curcumin and berberine.

 

Berberine is a natural chemo-preventive agent, extracted from Berberis aristata, which has been shown to suppress and retard carcinogenesis by inhibiting inflammation.

 

The combined therapy of cisplatin/berberine and radiotherapy produced up-regulation of pro-apoptotic proteins Bax and p73, while causing down regulation of the anti-apoptotic proteins Bcl-xL, COX-2, cyclin D1. This additionally was accompanied by increased activity of caspase-9 and caspase-3, and reduction in telomerase activity. Results demonstrated that the treatment combination of berberine/cisplatin had increased induction of apoptosis relative to cisplatin alone  (Komal., Singh, & Deshwal., 2013).

 

Anti-oxidative; Breast, Liver and Colon Cancer

The effect of B. vulgaris extract and berberine chloride on cellular thiobarbituric acid reactive species (TBARS) formation (lipid peroxidation), diphenyle–alpha-picrylhydrazyl (DPPH) oxidation, cellular nitric oxide (NO) radical scavenging capability, superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholinesterase (AChE) and alpha-gulcosidase activities were spectrophotometrically determined.

 

Barberry crude extract contains 0.6 mg berberine/mg crude extract. Barberry extract showed potent anti-oxidative capacity through decreasing TBARS, NO and the oxidation of DPPH that is associated with GPx and SOD hyperactivation. Both berberine chloride and barberry ethanolic extract were shown to have inhibitory effect on the growth of breast, liver and colon cancer cell lines (MCF7, HepG2 and CACO-2, respectively) at different incubation times starting from 24 hours up to 72 hours and the inhibitory effect increased with time in a dose-dependent manner.

 

This work demonstrates the potential of the barberry crude extract and its active alkaloid, berberine, for suppressing lipid peroxidation, suggesting a promising use in the treatment of hepatic oxidative stress, Alzheimer and idiopathic male factor infertility. As well, berberis vulgaris ethanolic extract is a safe non-toxic extract as it does not inhibit the growth of PBMC that can induce cancer cell death (Abeer et al., 2013).

 

Source:

Alkaloids Isolated from Natural Herbs as the Anti-cancer Agents. Evidence-Based Complementary and Alternative Medicine. Volume 2012 (2012) http://dx.doi.org/10.1155/2012/485042

References

Burgeiro A, Gajate C, Dakir EH, et al. (2011). Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells. Anti-Cancer Drugs, 22(6):507–518.

Chang KSS, Gao C, Wang LC. (1990). Berberine-induced morphologic differentiation and down-regulation of c-Ki-ras2 protooncogene expression in human teratocarcinoma cells. Cancer Letters, 55(2):103–108.

Chen J, ZHao H, Wang X, et al. (2008). Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis, 29(10):2135–2147.

Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.

Eom KS, Kim HJ, So HS, et al. (2010). Berberine-induced apoptosis in human glioblastoma T98G Cells Is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biological and Pharmaceutical Bulletin, 33(10):1644–1649.

El-Wahab AEA, Ghareeb DA, et al. (2013). In vitro biological assessment of berberis vulgaris and its active constituent, berberine: anti-oxidants, anti-acetylcholinesterase, anti-diabetic and anti-cancer effects. BMC Complementary and Alternative Medicine, 13:218 doi:10.1186/1472-6882-13-218

Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.

Hamsa TP & Kuttan G. (2012). Anti-angiogenic activity of berberine is mediated through the down-regulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. Drug and Chemical Toxicology, 35(1):57–70.

Hamsa TP & Kuttan G. (2011). Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic B16F-10 melanoma cells. Phytotherapy Research, 26(4):568–578.

Han J, Lin H, Huang W. (2011). Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 17(7):RA164–RA167.

Ho YT, Yang JS, Li TC, et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Letters, 279(2):155–162.

Hur JM, Hyun MS, Lim SY, Lee WY, Kim D. (2009). The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. Journal of Cellular Biochemistry, 107(5):955–964.

Islam MM & Kumar GS. (2009). RNA-binding potential of protoberberine alkaloids: spectroscopic and calorimetric studies on the binding of berberine, palmatine, and coralyne to protonated RNA structures. DNA and Cell Biology, 28(12):637–650.

Ji JB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application, People’s Medical Publishing House Cp., LTD.

Jie S, Li H, Tian Y, et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1):179–185.

Kang JX, Liu J, Wang J, He C, Li FP. (2005). The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by up-regulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 26(11):1934-1939. doi:10.1093/carcin/bgi154

Kim JB, Yu JH, Ko E, et al. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell-cycle arrest. Phytomedicine, 17(6):436-40. doi: 10.1016/j.phymed.2009.08.012.

Komal Singh M, & Deshwal VK. (2013). Natural plant product berberine/cisplatin based radiotherapy for cervical cancer: The new and effective method to treat cervical cancer. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 2(5), 278-291.

Kulkarni SK & Dhir A. (2010). Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytotherapy Research, 24(3):317–324.

Lau CW, X. Q. Yao XQ, et al. (2001). Cardiovascular actions of berberine. Cardiovascular Drug Reviews, 19(3):234–244.

Li, XL Hu XJ, Wang H, et al. (2012). Molecular spectroscopy evidence for berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3):873–880.

Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol, 31(1-2):65-9.

Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine, a natural product, induces G1-phase cell-cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther, 5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448

Mantena SK, Sharma SD, Katiyar SK. (2006). Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki–Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis, 27(10):2018-27. doi: 10.1093/carcin/bgl043

Meeran SM, Katiyar S & Katiyar SK. (2008). Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicology and Applied Pharmacology, 229(1):33-43. doi:10.1016/j.taap.2007.12.027

Singh T, Vaid M, Katiyar N, et al. (2011). Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis, 32(1):86–92.

Sun Y, Xun K, Wang Y, Chen X. (2009). A systematic review of the anti-cancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9):757–769.

Tan W, Lu J, Huang M, et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6(1):27.

Tang F, Wang D, Duan C, et al. (2009) Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting rho kinase-mediated ezrin phosphorylation at threonine 567. Journal of Biological Chemistry, 284(40):27456–27466.

Wang N, Feng Y, Zhu M et al. (2010). Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. Journal of Cellular Biochemistry, 111(6):1426–1436.

Wu HL, Hsu CY, Liu WH, Yung BYM. (1999). Berberine‐induced apoptosis of human leukemia HL‐60 cells is associated with down‐regulation of nucleophosmin/B23 and telomerase activity. International Journal of Cancer, 81(6):923–929.

Youn MJ, So HS, Cho HJ, et al. (2008). Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells.  Biological and Pharmaceutical Bulletin, 31(5):789–795.

Yu HH, Kim KJ, Cha JD, et al. (2005). Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Journal of Medicinal Food, 8(4):454–461.

VEGF

The tumour microenvironment is closely correlated with the malignant degrees, metastasis, and recurrence of tumours. Besides, the acid environment, oxygen deficiency, and other inducible factors may severely affect the efficacies of routine therapies, radiotherapy and chemotherapy. Recent studies have also proved that many Chinese herbs could fight against tumour vascular angiogenesis, lower serum VEGF concentration, and inhibit expressions of VEGF. This may lead to the development of new potential antiangiogenic drugs.

Angiogenesis

Angiogenesis, the sprouting of new capillaries, is required for the development of the vascular system and, consequently, the growth of vertebrates. Angiogenic proteins, including several from the fibroblast growth factor family were found to be mitogenic not only for vascular endothelial cells but also for a wide variety of other types of cells and appeared to promote angiogenesis as part of coordinated tissue growth and repair. In the late 1980s the first selective angiogenic growth factor was purified on the basis of its ability to induce transient vascular leakage and endothelial cell mitogenesis called vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) (Neufeld et al 1994). The identification of VEGF (Ferrara 1993) set the stage for a rapid expansion in the understanding of what now appears to be one of the most important mediators of physiologic and pathologic angiogenesis yet discovered.

Transcription of VEGF mRNA is induced by a variety of factors. Serum-derived and paracrine growth factors and cytokines, including Platelet-Derived Growth Factor BB (PDGF-BB), basic fibroblast growth factor (bFGF) (Sipos et al 2002), epidermal growth factor, tumor necrosis factor α (Frank et al 1995), nitric oxide (Frank et al 1999), transforming growth factor-β1, and interleukin-1β (Li et al 1995; Jung et al 2001), can each induce expression of VEGF from 3- to 20-fold in a variety of cultured cells.

Hypoxia

Without an independent blood supply, tumours must rely on diffusion to obtain oxygen and other nutrients, and typically cannot grow more than 2-3 mm in size. Thus, a growing tumour without sufficient vasculature will have hypoxic areas.

In response to hypoxic conditions, tumours secrete vascular endothelial growth factor (VEGF) in order to recruit new vasculature, which then provides a supply of oxygen (Gimbrone et al., 1972). Hypoxia is known to induce angiogenesis, thereby providing a compensatory mechanism by which tissues can increase oxygenation. Therefore, diminished O2 is one of the most intriguing transcriptional inducers of VEGF (Shweiki et al 1992) and its receptors (Tuder, Flook & Voelkel 1995) in normal and transformed cells. Hypoxic induction of VEGF appears to be a general response since many types of cultured cells have been observed to increase VEGF mRNA levels by approximately 10-50-fold as a consequence of lowering the percentage of O2 from ambient 21% to the range of 0-3% (Sipos et al 2002).

Vascular permeability factor (VPF)

The microvasculature of tumours is hyperpermeable compared with that of most normal tissues and as a consequence, fluid and plasma accumulate in the interstitium of solid tumors (Heldin et al 2004) and this barrier is an obstacle in tumour treatment, as it results in inefficient uptake of therapeutic agents. Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition, which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factor in vitro, and it presumably stimulates EC proliferation in vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation (Senger et al 1993; Baban & Seymour 1998). Although VEGF is known to be a powerful growth factor for therapeutic angiogenesis/vascularization in the ischemic hind limb and myocardium, it has other activities that can increase the proliferation and permeability of capillary endothelial cells. These activities may produce unwanted side effects, such as tumor angiogenesis, vascular leakage, oedema, and inflammation (Chae et al, 2000).

Medicinal herbs and their phytochemicals are potential novel leads for developing antiangiogenic drugs. Jeong et al., (2011) conducted a review that aimed to assess the current status of research with medicinal herbs and their phytochemicals for the development of antiangiogenic agents for cancer and other angiogenesis-related diseases including inflammation, diabetic retinopathy, endometriosis and obesity. Most studies reviewed have focused on vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR-2) signaling for endothelial response processes and have led to the identification of many potential antiangiogenic agents.

Since human clinical trials with antiangiogenic modalities targeting VEGF/VEGFR-2 signaling have shown limited efficacy and occasional toxic side effects, screening strategies for herbal phytochemicals based on other signaling pathways important for cancer-endothelial and stromal crosstalks should be emphasized in the future.

Reference

Baban DF & Seymour LW. (1998) Control of tumour vascular permeability. Advanced Drug Delivery Reviews. Volume 34, Issue 1, 5 October 1998, Pp 109-9. doi:10.1016/S0169-409X(98)00003-9

Chae JK, Kim I, Lim ST, et al. (2000) Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol. 2000 Dec; 20(12): 2573-8.

Ferrara N. (1993) Trends Cardiovasc. Med. 3, 244–250

Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J. (1999) Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J. 1999 Nov;13(14):2002-14.

Heldin C-H, Rubin K, Pietras K & Östman A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Reviews Cancer 4, 806-813 (October 2004) doi:10.1038/nrc1456

Jung YD, Liu W, Reinmuth N, et al. (2001) Vascular endothelial growth factor is up-regulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis. 2001;4(2):155-62.

Li J, Perrella M. A, Tsai J-C, et al. (1995) Induction of Vascular Endothelial Growth Factor Gene Expression by Interleukin-1 in Rat Aortic Smooth Muscle Cells. J. Biol. Chem. 270, 308–312

Neufeld G, Tessler S, Gitay-Goren H, Cohen T & Levi B-Z. (1994) Prog. Growth Factor Res. 5, 89–97

Senger DR, Water L, Lawrence F. Brown LF, et al. (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews. Volume 12, Numbers 3-4, Pp. 303-24, DOI: 10.1007/BF00665960

Shweiki D, Itin A, Soffer D & Keshet E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845

Sipos B, Weber D, Ungefroren H, et al. (2002) Vascular endothelial growth factor mediated angiogenic potential of pancreatic ductal carcinomas enhanced by hypoxia: an in vitro and in vivo study. Int J Cancer. 2002 Dec 20;102(6):592-600.

Tuder RM, Flook BE & Voelkel NF. (1995) J. Clin. Invest. 95, 1798–1807

Jeong SJ, Koh W, Lee EO, et al. (2011) Antiangiogenic phytochemicals and medicinal herbs. Phytother Res. 2011 Jan;25(1):1-10. doi: 10.1002/ptr.3224. DOI: 10.1002/ptr.3224

Cordyceps sinensis

The aqueous extract of Cordyceps sinensis (Cs), one of the traditional Chinese medicines, has been used for the treatment of a wide range of disorders for centuries. It is generally accepted that its cultivated Cs fungi possess the same functions as Cs natural herbs. Although polysaccharide from Cs is one of its bioactive compositions, its antitumor ability has not been confirmed. In a study, Yang et al., (2005) investigated the effects of the exopolysaccharide fraction (EPSF) of a cultivated Cs fungus on c-Myc, c-Fos, and vascular endothelial growth factor (VEGF) expression of tumor-bearing mice. The mice (C57BL/6) were administered three different doses of EPSF peritoneally every 2 days, starting from the day of implantation of B16 melanoma cells through their tail veins for 27 days (14 times).

Sections from mouse paraffin-embedded liver and lung tissues were subjected to immunohistochemical analyses. The results of c-Myc, c-Fos, and VEGF expression were analyzed using SimplePCI image analysis software. The c-Myc, c-Fos, and VEGF levels in the lungs and livers of EPSF-treated mice were found to be significantly lower than those of untreated mice (p<0.05). This suggests that EPSF had inhibited tumor growth in the lungs and livers of mice, and that it might be a potential adjuvant in cancer therapy.

Reference

Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y. (2005) Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice.

Pathol Res Pract. 2005;201(11):745-50. Epub 2005 Oct 19.

Ligustrazine

Ligustrazine is isolated from Ligustici Chuangxiong and can significantly inhibit the growth of vascular endothelial cell line (VEC-304), induce VEC-304 apoptosis and down-regulate the expression of VEGF (Peng, Jiang, & Wu, 2006).

Reference

Peng J, Jiang D, & Wu Y. (2006) Effect of Ligustrazine on Apoptosis of Expression of VEGF Gene in Blood Vessel Endothelial Cells. Zhong Hua Shi Yong Zhong Xi Yi Zha Zhi, 19(21), 2562–2564.

Ginsenoside Rg2

Ginseng saponins 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells in a fermenter show a protection effect on human umbilical cord vein endothelial cells (VEC-304) from H2O2-induced cell apoptosis. When 50 mg/ml 20(S)-ginsenoside Rg2 was present in the culture medium for 8 h, the H2O2-damaged VEC-304 cells acquired about 11-fold ( p < 0.01) on the amount and about 2-fold ( p < 0.05) increase in PA activity compared with those untreated cells. And the Rg2 has a strong ability in scavenging intracellular ROS induced by H2O2 (Xin et al., 2005).

Reference

Xin Xj, Zhong Jj, Wei Dz, Liu Jw. (2005) Protection effect of 20(S)-ginsenoside Rg2 extracted from cultured Panax notoginseng cells on hydrogen peroxide-induced cytotoxity of human umbilical cord vein endothelial cells in vitro. Process Biochemistry 40 (2005) 3202–3205

Curcumin and CSCs

Action: Anti-cancer

The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, Sonic Hedgehog) and specific microRNAs involved in acquisition of epithelial–mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments (Li & Zhang, 2014).

Reference

Li Y, Zhang T. (2014) Targeting Cancer Stem Cells by Curcumin and Clinical Applications. Cancer Letters. 23 January 2014

Cancer stem cell (CSC)

microRNA

Action: Anti-cancer

The anticancer effect of curcumin has been demonstrated in many cell and animal studies, and recent research has shown that curcumin can target cancer stem cells (CSCs). CSCs are proposed to be responsible for initiating and maintaining cancer, and contribute to recurrence and drug resistance. A number of studies have suggested that curcumin has the potential to target CSCs through regulation of CSC self-renewal pathways (Wnt/β-catenin, Notch, Sonic Hedgehog) and specific microRNAs involved in acquisition of epithelial-mesenchymal transition (EMT). The potential impact of curcumin, alone or in combination with other anticancer agents, on CSCs was evaluated as well. Furthermore, the safety and tolerability of curcumin have been well-established by numerous clinical studies. Importantly, the low bioavailability of curcumin has been dramatically improved through the use of structural analogues or special formulations. More clinical trials are underway to investigate the efficacy of this promising agent in cancer chemoprevention and therapy. In this article, we review the effects of curcumin on CSC self-renewal pathways and specific microRNAs, as well as its safety and efficacy in recent human studies. In conclusion, curcumin could be a very promising adjunct to traditional cancer treatments (Li & Zhang, 2014).

Reference

Li Y, Zhang T. (2014) Targeting Cancer Stem Cells by Curcumin and Clinical Applications. Cancer Letters. 23 January 2014

Millettia reticulata flavonoids

(-)-epicatechin, naringenin, 5,7,3′,5′-tetrahydroxyflavanone, formononetin, isoliquiritigenin, and genistein

Action: Induces apoptosis

A study by Fang, Hsu, Lin & Yen (2010) was done on the vitro anticancer activity of flavonoid derivatives isolated from the stems of M. reticulata Benth. Six flavonoid derivatives including (-)-epicatechin (1), naringenin (2), 5,7,3′,5′-tetrahydroxyflavanone (3), formononetin (4), isoliquiritigenin (5), and genistein (6) were isolated from the stems of M. reticulata Benth.

The structures of 1-6 were determined by spectroscopic methods. The effects of flavonoid derivatives (1-6) on the viability of human cancer cells (including HepG2, SK-Hep-1, Huh7, PLC5, COLO 205, HT-29, and SW 872 cells) were investigated. The results indicated that genistein (6) had the strongest inhibitory activity with an IC(50) value of 16.23 microM in SK-Hep-1 human hepatocellular carcinoma cells. Treatment of SK-Hep-1 cells with genistein (6) caused loss of mitochondrial membrane potential. Western blot data revealed that genistein (6) stimulated an increase in the protein expression of Fas, FasL, and p53. Additionally, treatment with genistein (6) changed the ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members and subsequently induced the activation of caspase-9 and caspase-3, which was followed by cleavage of poly(ADP-ribose) polymerase (PARP). These results demonstrate that genistein (6) induces apoptosis in SK-Hep-1 cells via both Fas- and mitochondria-mediated pathways.

Reference

Fang SC, Hsu CL, Lin HT, Yen GC. 2010 Anticancer effects of flavonoid derivatives isolated from Millettia reticulata Benth in SK-Hep-1 human hepatocellular carcinoma cells. J Agric Food Chem. 2010 Jan 27;58(2):814-20. doi: 10.1021/jf903216r.

Zingiber officinale extract

Cancer: endometrial

Action: Anticancer, antioxidant properties

Terpenoids from Zingiber officinale (TZO) treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with TZO. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of TZO and apoptosis was also not observed in the p53(neg) SKOV-3 cells. Our studies demonstrate that terpenoids from steam distilled extract of ginger mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer (Liu et al., 2012).

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, anti-ulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome (Koo et al., 2012).

Reference

Koo HJ, Gang DR. (2012) Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One. 2012;7(12):e51481. doi: 10.1371/journal.pone.0051481.

Liu Y, Whelan RJ, Pattnaik BR, et al. (2012) Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One. 2012;7(12):e53178. doi: 10.1371/journal.pone.0053178.

Spica Prunellae Extract

Cancer: Colorectal

Action: Promotes apoptosis, anti-angiogenic, induces angiogenesis

Constitutive activation of STAT3 is one of the major oncogenic pathways involved in the development of various types of malignancies including colorectal cancer (CRC); and thus becomes a promising therapeutic target. Spica Prunellae has long been used as an important component in many traditional Chinese medicine formulas to clinically treat CRC. Previously, Lin et al., (2013) found that Spica Prunellae inhibits CRC cell growth through mitochondrion-mediated apoptosis. Furthermore, we demonstrated its anti-angiogenic activities in vivo and in vitro.

CRC mouse xenograft model was generated by subcutaneous injection of human colon carcinoma HT-29 cells into nude mice. Animals were given intra-gastric administration with 6 g/kg of the ethanol extract of Spica Prunellae (EESP) daily, 5 days a week for 16 days. Body weight and tumor growth were measured every two days. Tumor growth in vivo was determined by measuring the tumor volume and weight. HT-29 cell viability was examined by MTT assay. Cell apoptosis and proliferation in tumors from CRC xenograft mice was evaluated via immunohistochemical staining (IHS) for TUNEL and PCNA, and the intratumoral microvessel density (MVD) was examined by using IHS for the endothelial cell-specific marker CD31. The activation of STAT3 was evaluated by determining its phosphorylation level using IHS. The mRNA and protein expression of Bcl-2, Bax, Cyclin D1, VEGF-A and VEGFR2 was measured by RT-PCR and IHS, respectively.

EESP treatment reduced tumor volume and tumor weight but had no effect on body weight change in CRC mice; decreasedanti-angiogenic cell viability in a dose-dependent manner, suggesting that EESP displays therapeutic efficacy against colon cancer growth in vivo and in vitro, without apparent toxicity. In addition, EESP significantly inhibited the phosphorylation of STAT3 in tumor tissues, indicating its suppressive action on the activation of STAT3 signaling. Consequently, the inhibitory effect of EESP on STAT3 activation resulted in an increase in the pro-apoptotic Bax/Bcl-2 ratio, decrease in the expression of the pro-proliferative Cyclin D1 and CDK4, as well as down-regulation of pro-angiogenic VEGF-A and VEGFR-2 expression. Finally, these molecular effects led to the induction of apoptosis, the inhibition of cell proliferation and tumor angiogenesis.

Spica Prunellae possesses a broad range of anti-cancer activities due to its ability to affect STAT3 pathway, suggesting that Spica Prunellae could be a novel potent therapeutic agent for the treatment of CRC.

Reference

Lin W, Zheng L, Zhuang Q, Zhao J, et al. (2013) Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun 24;13(1):144.

San Jiang Shan

(Ramulus et Folium Cephalotaxi Fortunei)

• Harringtonine injection: 1-6 mg added in 5-10% glucose 500 ml IV for drips daily, 5-7 days as one course, 1-3 courses may be applied at an 1-2 week intervals; homo-harringtonine, same dosage as harringtonine.

• Indications: this herb is mainly used as an anti-carcinogenic for acute non-lymphocytic leukemia such as acute myelocytic leukemia, acute monocytic leukemia, malignant lymphoma.

• Pharmacological action: 1) Harringtonine, homo-harringtonine, iso-harringtonine and deoxy-harringtonine are the anti-carcinogenic components, which interfere with the cell growth and mitotic activity, damage and inhibit the growth of S-stage cells and inhibit the synthesis of DNA. Harringtonine and homo-harringtonine are more effective for the interference of mitotic activity. 2) Inhibiting the hematopoeitic cells in bone marrow. 3) Causing irritant effect on digestive tract.

Oplopanax horridus

Cancer: Ovarian

Action: Chemotherapy sensitising, anti-proliferation, apoptosis inducing

To search for more effective treatment of ovarian cancer, Tai et al., (2010) investigated the in vitro anti-proliferation activities of Oplopanax horridus (Devil’s club/OH) root bark extracts, an important medicinal plant of North America, on cisplatin sensitive and resistant human ovarian cancer cell lines. Their data showed that water, 70% ethanol, 100% ethanol, and ethyl acetate extracts of OH inhibited the proliferation of human ovarian cancer cell lines A2780, A2780CP70, OVCAR3, and OVCAR10 in vitro. The respective 50% inhibition (IC(50)) was estimated at 1/256, 1/74, 1/69, 1/53; 1/4156, 1/1847, 1/1029, 1/4530; 1/25,753, 1/3310, 1/3462, 1/5049; and 1/29,916, 1/2912 1/3828, and 1/4232 dilutions. Some combinations of non-cytotoxic dilutions (<IC(50)) of 70% ethanol OH extract with cisplatin and paclitaxel enhanced its anti-proliferation IC(50) on A2780 and A2780CP70 cells. Cell cycle analysis demonstrated that the effect of OH extract on cell cycle was dependent on the concentration tested, blocking cells in the S and G2/M phases. At low concentrations it induced cell death by apoptosis, while at high concentrations, it kills cells by necrosis. Their data showed that OH extracts exhibited significant anti-proliferation effect against both cisplatin sensitive and resistant human ovarian cell lines. Further research might result in discovery of agent(s) that can potentially be useful as an adjunct therapy for ovarian cancer cells. It is one of the few North American medicinal herbs that have been tested for anti-ovarian cancer activities.

Reference

Tai J, Cheung S, Chan E, Hasman D. (2010) Inhibition of human ovarian cancer cell lines by devil’s club Oplopanax horridus. J Ethnopharmacol. 2010 Feb 3;127(2):478-85. doi: 10.1016/j.jep.2009.10.010.

Methanol Extract of Angelica sinensis

Cancer: Glioblastoma

Action: Cell-cycle arrest

Glioblastoma multiforme (GBM), the most common malignant tumor of the central nervous system, is a highly vascularized and invasive neoplasm. The annual incidence of GBM was approximately 5–7 per 100,000 people per year in the USA between 1995 and 2008. Because of its malignant properties, rapid growth, diffuse invasion, and resistance to current therapies, the median survival of GBM patients is approximately 50 weeks. Current treatments combine surgery, radiation, and chemoradiotherapy, providing an increase in the median overall survival from 12 to 15 months.

The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis.

AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival.

In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

The different extracts of A. sinensis, such as water, chloroform, and acetone extracts, have demonstrated antitumor biofunctions (Cheng et al., 2004; Tsai et al., 2005). In this study, AS-M has demonstrated to be a potential antitumor extract isolated from A. sinensis that efficiently inhibits GBM tumor growth. In an in vitro cytotoxic assay, brain tumor cells were sensitive to AS-M and normal fibroblast cells were unsusceptible to AS-M. AS-M dramatically inhibited 90% of the subcutaneous tumor growth and prolonged survival in vivo. AS-M efficiently suppressed tumor growth by inducing cell cycle arrest at the G0-G1 phase and promoting apoptosis. The AS-M mechanism was found to involve the cyclin/CDK/CKI cell cycle regulatory system and the upregulation of p16 and p53 expression.

Source:

Lin Y-L, Lai W-L, Harn H-j, et al (2013) The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors. Evidence-Based Complementary and Alternative Medicine. Volume 2013 (2013), http://dx.doi.org/10.1155/2013/394636

Reference

Cheng, Y.L., et al., (2004) Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis. Life Sciences, vol. 75, no. 13, pp. 1579–1594, 2004

Tsai, N.M., et al., (2005) The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clinical Cancer Research, vol. 11, no. 9, pp. 3475–3484, 2005.

Longan Seed Extract

Cancer: Colorectal

Action: Cell-cycle arrest

Polyphenols of longan seeds (LSP) were extracted and measured by colorimetry. Four CRC cell lines (Colo 320DM, SW480, HT-29 and LoVo) were treated with LSP and assessed for viability by trypan blue exclusion, for cell cycle distribution by flow cytometry, for apoptosis by annexin V labelling and for changes in the levels of proteins involved in cell cycle control or apoptosis by immunoblotting. Total phenol content of LSP was 695 mg g(-1) and total flavonoids were 150 mg g(-1). LSP inhibited the proliferation (25 microg mL(-1)-200 microg mL(-1)) of Colo 320DM, SW480 and HT-29, but not LoVo.

LSP inhibited the proliferation by blocking cell cycle progression during the DNA synthesis phase and inducing apoptotic death. Western blotting indicated that LSP blocks the S phase, reducing the expression of cyclin A and cyclin D1. Colo 320DM and SW480 treated with LSP also showed the activation of caspase 3 and increased Bax : Bcl-2 ratio. LSP induces S phase arrest of the cell cycle and apoptotic death in three CRC cell lines. The results indicate that LSP is a potential novel chemoprevention and treatment agent for colorectal cancer (Chung et al., 2010).

Reference

Chung YC, Lin CC, Chou CC, Hsu CP. (2010) Eur J Clin Invest. 2010 Aug;40(8):713-21. doi: 10.1111/j.1365-2362.2010.02322.x.