Category Archives: anti-proliferative

Baicalin & Baicalein

Cancer:
Myeloma, liver, colorectal., breast, prostate, oral., hepatoma, ovarian

Action: Anti-cancer, cardiovascular disease, cytostatic, cardio-protective against Doxorubicin, anti-inflammatory, angiogenesis

Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants (including Scutellaria radix, Scutellaria rivularis (Benth.); Scutellaria baicalensis (Georgi) and Scutellaria lateriflora (L.)) are thought to have anti-oxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. In particular, Scutellaria baicalensis is one of the most popular and multi-purpose herbs used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections (Ye et al., 2002; Zhang et al., 2011a).

Anti-cancer

Accumulating evidence demonstrates that Scutellaria also possesses potent anti-cancer activities. The bioactive components of Scutellaria have been confirmed to be flavones, wogonin, baicalein and baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The anti-tumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell-cycle, to suppress COX-2 gene expression and to prevent viral infections (Li, 2008).

Multiple Myeloma

In the search for a more effective adjuvant therapy to treat multiple myeloma (MM), Ma et al. (2005) investigated the effects of the traditional Chinese herbal medicines Huang-Lian-Jie-Du-Tang (HLJDT), Gui-Zhi-Fu-Ling-Wan (GZFLW), and Huang-Lian-Tang (HLT) on the proliferation and apoptosis of myeloma cells. HLJDT inhibited the proliferation of myeloma cell lines and the survival of primary myeloma cells, especially MPC-1- immature myeloma cells, and induced apoptosis in myeloma cell lines via a mitochondria-mediated pathway by reducing mitochondrial membrane potential and activating caspase-9 and caspase-3.

Further experiments confirmed that Scutellaria radix was responsible for the suppressive effect of HLJDT on myeloma cell proliferation, and the baicalein in Scutellaria radix showed strong growth inhibition and induction of apoptosis in comparison with baicalin or wogonin. Baicalein as well as baicalin suppressed the survival in vitro of MPC-1- immature myeloma cells rather than MPC-1+ myeloma cells from myeloma patients.

Baicalein inhibited the phosphorylation of IkB-alpha, which was followed by decreased expression of the IL-6 and XIAP genes and activation of caspase-9 and caspase-3. Therefore, HLJDT and Scutellaria radix have an anti-proliferative effect on myeloma cells, especially MPC-1- immature myeloma cells, and baicalein may be responsible for the suppressive effect of Scutellaria radix by blocking IkB-alpha degradation (Ma, 2005).

Hepatoma

The effects of the flavonoids from Scutellaria baicalensis Georgi (baicalein, baicalin and wogonin) in cultured human hepatoma cells (Hep G2, Hep 3B and SK-Hep1) were compared by MTT assay and flow cytometry. All three flavonoids dose-dependently decreased the cell viabilities accompanying the collapse of mitochondrial membrane potential and the depletion of glutathione content. However, the influence of baicalein, baicalin or wogonin on cell-cycle progression was different.

All three flavonoids resulted in prominent increase of G2/M population in Hep G2 cells, whereas an accumulation of sub G1 (hypoploid) peak in Hep 3B cells was observed. In SK-Hep1 cells, baicalein and baicalin resulted in a dramatic boost in hypoploid peak, but wogonin mainly in G1 phase accumulation. These data, together with the previous findings in other hepatoma cell lines, suggest that baicalein, baicalin and wogonin might be effective candidates for inducing apoptosis or inhibiting proliferation in various human hepatoma cell lines (Chang, 2002).

Long dan xie gan tang (pinyin) is one of the most commonly used herbal formulas by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, were investigated, respectively, on human hepatoma Hep3B cells..

Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis. Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Ovarian Cancer

Ovarian cancer is one of the primary causes of death for women all through the Western world. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45-55 µM for baicalin and 25-40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein.

Baicalin decreased expression of VEGF (20 µM), cMyc (80 µM), and NFkB (20 µM); baicalein decreased expression of VEGF (10 µM), HIF-1α (20 µM), cMyc (20 µM), and NFkB (40 µM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB.

Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers (Chen, 2013).

Breast Cancer

Baicalin was found to be a potent inhibitor of mammary cell line MCF-7 and ductal breast epithelial tumor cell line T-47D proliferation, as well as having anti-proliferative effects on other cancer types such as the human head and neck cancer epithelial cell lines CAL-27 and FaDu. Overall, baicalin inhibited the proliferation of human breast cancer cells and CAL-27 and FaDu cells with effective potency (Franek, 2005).

Breast Cancer, Cell Invasion

The effect of Baicalein on cell viability of the human breast cancer MDA-MB-231 cell line was tested by MTT. 50, 100 µmol·L-1 of Baicalein inhibited significantly cell invasion(P0.01) and migration(P0.01) compared with control groups. The inhibitory rates were 50% and 77% in cell migration and 15% and 44% in cell invasion, respectively. 50 µmol·L-1 of Baicalein significantly inhibited the level of MMP 2 expression. 100 µmol·L-1 of Baicalein significantly inhibited the level of MMP 9 and uPA expressions.

Baicalein inhibits invasion and migration of MDA-MB-231 cells. The mechanisms may be involved in the direct inhibition of cell invasion and migration abilities, and the inhibition of MMP 2, MMP 9, and uPA expressions (Wang et al., 2010).

The proliferation of MDA-MB-231 cell line human breast adenocarcinoma was inhibited by baicalin in a dose-and time-dependent manner and the IC50 was 151 µmol/L. The apoptotic rate of the baicalin-treated MDA-MB-231 cells increased significantly at 48 hours. Flow cytometer analysis also revealed that most of the baicalin-treated MDA-MB-231 cells were arrested in the G2/M phase. Typically apoptotic characteristics such as condensed chromatin and apoptotic bodies were observed after being treated with baicalin for 48 hours.

The results of RT-PCR showed that the expression of bax was up-regulated; meanwhile, the expression of bcl-2 was down-regulated. Baicalin could inhibit the proliferation of MDA-MB-231 cells through apoptosis by regulating the expression of bcl-2, bax and intervening in the process of the cell-cycle (Zhu et al., 2008).

Oral Cancer

As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell-cycle, it is suspected that the anti-cancer effect of baicalein is associated with AhR. The molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3 has been investigated, including whether such an effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell-cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased.

When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is mediated by baicalein both through activation of AhR and facilitation of cyclin D1 degradation, which causes cell-cycle arrest at the G1 phase, and results in the inhibition of cell proliferation (Cheng, 2012).

Anti-inflammatory

Baicalin has also been examined for its effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. The results indicated that baicalin inhibited LPS-induced NO production in a concentration-dependent manner without a notable cytotoxic effect on these cells. The decrease in NO production was consistent with the inhibition by baicalin of LPS-induced iNOS gene expression (Chen, 2001)

Angiogenesis Modulation

The modulation of angiogenesis is one possible mechanism by which baicalin may act in the treatment of cardiovascular diseases. This may be elucidated by investigating the effects of baicalin on the expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1alpha (HIF-1alpha).

Their ability to induce VEGF expression was suppressed once ERRalpha expression was knocked down by siRNA, or ERRalpha-binding sites were deleted in the VEGF promoter. It was also found that both agents stimulated cell migration and vessel sprout formation from the aorta. These results therefore implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRalpha pathway (Zhang, 2011b).

Colon Cancer

The compounds of baicalein and wogonin, derived from the Chinese herb Scutellaria baicalensis, were studied for their effect in suppressing the viability of HT-29 human colon cancer cells. Following treatment with baicalein or wogonin, several apoptotic events were observed, including DNA fragmentation, chromatin condensation and increased cell-cycle arrest at the G1 phase. Baicalein and wogonin decreased Bcl-2 expression, whereas the expression of Bax was increased in a dose-dependent manner when compared to the control.

The results indicated that baicalein induced apoptosis via Akt activation, in a p53-dependent manner, in HT-29 colon cancer cells. Baicalein may serve as a chemo-preventive, or therapeutic, agent for HT-29 colon cancer (Kim et al., 2012).

Cardio-protective

The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. Baicalein attenuated phosphorylation of JNK induced by doxorubicin. Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 µM; 24 hours) reduced JNK phosphorylation and enhanced cell survival., suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy (Chang et al., 2011).

Prostate Cancer

There are four compounds capable of inhibiting prostate cancer cell proliferation in Scutellaria baicalensis: baicalein, wogonin, neobaicalein, and skullcapflavone. Comparisons of the cellular effects induced by the entire extract versus the four-compound combination produced comparable cell-cycle changes, levels of growth inhibition, and global gene expression profiles (r(2) = 0.79). Individual compounds exhibited anti-androgenic activities with reduced expression of the androgen receptor and androgen-regulated genes. In vivo, baicalein (20 mg/kg/d p.o.) reduced the growth of prostate cancer xenografts in nude mice by 55% at 2 weeks compared with placebo and delayed the average time for tumors to achieve a volume of approximately 1,000 mm(3) from 16 to 47 days (P < 0.001).

Most of the anti-cancer activities of S. baicalensis can be recapitulated with four purified constituents that function in part through inhibition of the androgen receptor signaling pathway (Bonham et al., 2005)

Cancer: Acute lymphocytic leukemia, lymphoma and myeloma

Action: Cell-cycle arrest, induces apoptosis

Scutellaria baicalensis (S.B.) is a widely used Chinese herbal medicine. S.B inhibited the growth of acute lymphocytic leukemia (ALL), lymphoma and myeloma cell lines by inducing apoptosis and cell cycle arrest at clinically achievable concentrations. The anti-proliferative effectwas associated with mitochondrial damage, modulation of the Bcl family of genes, increased level of the CDK inhibitor p27KIP1 and decreased level of c-myc oncogene. HPLC analysis of S.B. showed it contains 21% baicalin and further studies confirmed it was the major anti-cancer component of S.B. Thus, Scutellaria baicalensis should be tested in clinical trials for these hematopoietic malignancies (Kumagai et al., 2007).

References

Bonham M, Posakony J, Coleman I, Montgomery B, Simon J, Nelson PS. (2005). Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res, 11(10):3905-14.


Chang WH Chen CH Lu FJ. (2002). Different Effects of Baicalein, Baicalin and Wogonin on Mitochondrial Function, Glutathione Content and cell-cycle Progression in Human Hepatoma Cell Lines. Planta Med, 68(2):128-32. doi: 10.1055/s-2002-20246


Chang WT, Li J, Huang HH, et al. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury .and JNK activation. J Cell Biochem. doi: 10.1002/jcb.23201.


Chen J, Li Z, Chen AY, Ye X, et al. (2013). Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci, 14(3):6012-25. doi: 10.3390/ijms14036012.


Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL. (2001). Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol,61(11):1417-27. doi:10.1016/S0006-2952(01)00594-9


Cheng YH, Li LA, Lin P, et al. (2012). Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol, 263(3):360-7. doi: 10.1016/j.taap.2012.07.010.


Chou CC, Pan SL, Teng CM, & Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Franek KJ, Zhou Z, Zhang WD, Chen WY. (2005). In vitro studies of baicalin alone or in combination with Salvia miltiorrhiza extract as a potential anti-cancer agent. Int J Oncol, 26(1):217-24.


Kim SJ, Kim HJ, Kim HR, et al. (2012). Anti-tumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Molecular Medicine Reports, 6(6):1443-1449. doi: 10.3892/mmr.2012.1085.


Li-Weber M. (2009). New therapeutic aspects of flavones: The anti-cancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev, 35(1):57-68. doi: 10.1016/j.ctrv.2008.09.005.


Ma Z, Otsuyama K, Liu S, et al. (2005). Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 105(8):3312-8. doi:10.1182/blood-2004-10-3915.


Wang Xf, Zhou Qm, Su Sb. (2010). Experimental study on Baicalein inhibiting the invasion and migration of human breast cancer cells. Zhong Guo Yao Li Xue Tong Bao, 26(6): 745-750.


Zhang XW, Li WF, Li WW, et al. (2011a). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharm Biol, 49(3): 256–261. doi:10.3109/13880209.2010.501803.


Ye F, Xui L, Yi J, Zhang, W, Zhang DY. (2002). Anti-cancer activity of Scutellaria baicalensis and its potential mechanism. J Altern Complement Med, 8(5):567-72.


Zhang K, Lu J, Mori T, et al. (2011b). Baicalin increases VEGF expression and angiogenesis by activating the ERR{alpha}/PGC-1{alpha} pathway.[J]. Cardiovascular Research, 89(2):426-435.


Zhu Gq, Tang Lj, Wang L, Su Jj, et al. (2008). Study on Baicalin Induced Apoptosis of Human Breast Cancer Cell Line MDA-MB-231. An Hui Zhong Yi Xue Yuan Xue Bao, 27(2):20-23

Kumagai T, et al. (2007) Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leukemia Research 31 (2007) 523-530

Emodin (See also Aloe-Emodin)

Cancer:
Breast, colon, liver, chemotherapy, myeloma, oral., pancreatic, hepatocellular carcinoma, lung, leukemia

Action: MDR-1, cell-cycle arrest

Emodin is an active natural anthraquinone derivative component of a traditional Chinese and Japanese medicine isolated from the root and rhizomes of Rheum palmatum L., Senna obtusifolia [(L.) H.S.Irwin & Barneby], Fallopia japonica [Houtt. (Ronse Decr.)], Kalimeris indica (L.) Sch.Bip., Ventilago madraspatana (Gaertn.), Rumex nepalensis (Spreng.), Fallopia multiflora [(Thunb.) Haraldson], Cassia occidentalis [(L.) Link], Senna siamea [(Lam.) Irwin et Barneby] and Acalypha australis (L.).

Aloe-emodin is an active natural anthraquinone derivative, and is found in the roots and rhizomes of numerous Chinese medicinal herbs (including Rheum palmatum L) and exhibits anti-cancer effects on many types of human cancer cell lines.

Administration of rhubarb (Emodin) can effectively reverse severe acute pancreatitis (SAP) by regulating the levels of IL-15 and IL-18 (Yu & Yang, 2013).

Pancreatic Cancer

Emodin is a tyrosine kinase inhibitor that has an inhibitory effect on mammalian cell-cycle modulation in specific oncogene-overexpressing cells. Recently, there has been great progress in the preclinical study of the anti-cancer mechanisms of emodin. A recent study revealed that emodin has therapeutic effects on pancreatic cancer through various anti-tumor mechanisms. Notably, the therapeutic efficacy of emodin in combination with chemotherapy was found to be higher than the comparable single chemotherapeutic regime, and the combination therapy also exhibited fewer side-effects (Wei et al., 2013).

Hepatocellular Carcinoma, Pancreatic, Breast, Colorectal and Lung Cancers, and Leukemia

Emodin is found as an active ingredient in different Chinese herbs including Rheum palmatum and Polygonam multiflorum, and has diuretic, vasorelaxant, anti-bacterial., anti-viral., anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. The anti-inflammatory effects of emodin have been exhibited in various in vitro as well as in vivo models of inflammation including pancreatitis, arthritis, asthma, atherosclerosis and glomerulonephritis. As an anti-cancer agent, emodin has been shown to suppress the growth of various tumor cell lines including hepatocellular carcinoma, pancreatic, breast, colorectal., leukemia, and lung cancers. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets including NF-κB, casein kinase II, HER2/neu, HIF-1α, AKT/mTOR, STAT3, CXCR4, topoisomerase II, p53, p21, and androgen receptors which are involved in inflammation and cancer (Shrimali et al., 2013).

Hepatocellular Carcinoma

It has been found that emodin induces apoptotic responses in the human hepatocellular carcinoma cell lines (HCC) Mahlavu, PLC/PRF/5 and HepG2. The addition of emodin to these three cell lines led to inhibition of growth in a time-and dose-dependent manner. Emodin generated reactive oxygen species (ROS) in these cells which brought about a reduction of the intracellular mitochondrial transmembrane potential (ΔΨ m), followed by the activation of caspase–9 and caspase–3, leading to DNA fragmentation and apoptosis.

Preincubation of hepatoma cell lines with the hydrogen peroxide-scavenging enzyme, catalase (CAT) and cyclosporin A (CsA), partially inhibited apoptosis. These results demonstrate that enhancement of generation of ROS, DeltaPsim disruption and caspase activation may be involved in the apoptotic pathway induced by emodin (Jing et al., 2002).

Colon Cancer

In in vitro study, emodin induced cell morphological changes, decreased the percentage of viability, induced G2/M phase arrest and increased ROS and Ca(2+) productions as well as loss of mitochondrial membrane potential (ΔΨ(m)) in LS1034 cells. Emodin-triggered apoptosis was also confirmed by DAPI staining and these effects are concentration-dependent.

In in vivo study, emodin effectively suppressed tumor growth in tumor nude mice xenografts bearing LS1034. Overall, the potent in vitro and in vivo anti-tumor activities of emodin suggest that it might be developed for treatment of colon cancer in the future (Ma et al., 2012).

Myeloid Leukemia

It has been shown that emodin significantly induces cytotoxicity in the human myeloma cells through the elimination of myeloid cell leukemia 1 (Mcl-1). Emodin inhibited interleukin-6–induced activation of Janus-activated kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3), followed by the decreased expression of Mcl-1. Activation of caspase-3 and caspase-9 was triggered by emodin, but the expression of other anti-apoptotic Bcl-2 family members, except Mcl-1, did not change in the presence of emodin. To clarify the importance of Mcl-1 in emodin-induced apoptosis, the Mcl-1 expression vector was introduced into the human myeloma cells by electroporation. Induction of apoptosis by emodin was almost abrogated in Mcl-1–overexpressing myeloma cells as the same level as in parental cells, which were not treated with emodin. Emodin therefore inhibits interleukin-6–induced JAK2/STAT3 pathway selectively and induces apoptosis in myeloma cells via down-regulation of Mcl-1, which is a good target for treating myeloma. Taken together, these results show emodin as a new potent anti-cancer agent for the treatment of multiple myeloma patients (Muto et al., 2007).

Breast Cancer; Block HER-2

The mechanism by which emodin prevents breast cancer is unknown; however the product of the HER-2/neu proto-oncogene, HER2 has been proposed to be involved. The product of the HER-2/neu proto-oncogene, HER2, is the second member of the human epidermal growth factor receptor (HER) family of tyrosine kinase receptors and has been suggested to be a ligand orphan receptor. Amplification of the HER2 gene and overexpression of the HER2 protein induces cell transformation and has been demonstrated in 10% to 40% of human breast cancer. HER2 overexpression has been suggested to associate with tumor aggressiveness, prognosis and responsiveness to hormonal and cytotoxic agents in breast cancer patients. These findings indicate that HER2 is an appropriate target for tumor-specific therapies.

A number of approaches have been investigated: (1) a humanized monoclonal antibody against HER2, rhuMAbHER2 (trastuzumab), which is already approved for clinical use in the treatment of patients with metastatic breast cancer; (2) tyrosine kinase inhibitors, such as emodin, which block HER2 phosphorylation and its intracellullar signaling; (3) active immunotherapy, such as vaccination; and (4) heat shock protein (Hsp) 90-associated signal inhibitors, such as radicicol derivatives, which induce degradation of tyrosine kinase receptors, such as HER2 (Kurebayashi, 2001).

MDR

The effects of emodin on the nucleoside transport and multi-drug resistance in cancer cells has also been investigated. Nucleoside transport inhibition was determined by thymidine incorporation assay. The cytotoxicity to cancer cells was determined by MTT assay. The pump efflux activity and the expression of P glycoprotein were examined by flow cytometric assay. Emodin was active in the inhibition of nucleoside transport, with an IC 50 value of 9 9 µmol·L -1. Emodin markedly enhanced the cytotoxicity of 5 FU, MMC and MTX against human hepatoma BEL 7402 cells and partly reversed the multi-drug resistance in human breast cancer MCF 7/Adr cells.

Emodin inhibited P-gp pump efflux activity and reduced the expression of P gp in MCF 7/Adr cells. These findings provide a biological basis for the application of emodin as a biochemical modulator to potentiate the effects of anti-tumor drugs and reverse the multi-drug resistance in cancer cells (Jiang et al., 2009).

Cell-cycle Arrest

Large quantities of emodin were isolated from the roots of Rheum emodi and a library of novel emodin derivatives 2–15 were prepared to evaluate their anti-proliferative activities against HepG2, MDA-MB-231 and NIH/3T3 cells lines. The derivatives 3 and 12 strongly inhibited the proliferation of HepG2 and MDA-MB-231 cancer cell line with an IC50 of 5.6, 13.03 and 10.44, 5.027, respectively, which is comparable to marketed drug epirubicin (III). The compounds 3 and 12 were also capable of inducing cell-cycle arrest and caspase dependent apoptosis in HepG2 cell lines and exhibit DNA intercalating activity. These emodin derivatives hold promise for developing safer alternatives to the marketed epirubicin (Narender et al., 2013).

Cell-cycle Arrest; MDR1 & AZT

3'-azido-3'-deoxythymidine (AZT) and emodin altered the cell-cycle distribution and led to an accumulation of cells in S phase. Meanwhile, the expression of MDR1 mRNA/p-gp protein was markedly decreased. These results show a synergistic growth-inhibitory effect of AZT and emodin in K562/ADM cells, which is achieved through S phase arrest. MDR1 might ultimately be responsible for these phenomena (Chen et al., 2013).

References

Chen P, Liu Y, Sun Y, et al. (2013). AZT and emodin exhibit synergistic growth-inhibitory effects on K562/ADM cells by inducing S phase cell-cycle arrest and suppressing MDR1 mRNA/p-gp protein expression. Pharm Biol.


Garg AK, Buchholz TA, Aggarwal BB. (2005). Chemo-sensitization and Radiosensitization of Tumors by Plant Polyphenols. Antioxid Redox Signal., 7(11-12):1630-47.


Jiang XF & Zhen YS. (1999). Reversal of Multi-drug resistance by emodin in cancer cells. Acta Pharmaceutica Sinica, 1999-03.


Jing X, Ueki N, Cheng J, Imanishi H, Hada T. (2002). Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Cancer Science, 93(8):874–882.


Kurebayashi J. (2001). Biological and clinical significance of HER2 overexpression in breast cancer. Breast Cancer, 8(1):45-51


Ma YS, Weng SW, Lin MW, et al. (2012). Anti-tumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: Roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol, 50(5): 1271–1278. doi: 10.1016/j.fct.2012.01.033.


Muto A, Hori M, Sasaki Y, et al. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-06-0605.


Narender T, Sukanya P, Sharma K, et al. (2013). Preparation of novel anti-proliferative emodin derivatives and studies on their cell-cycle arrest, caspase dependent apoptosis and DNA binding interaction. Phytomedicine, 20(10):890-896.


Shrimali D, Shanmugam MK, Kumar AP, et al. (2013). Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett:S0304-3835(13)00598-3. doi: 10.1016/j.canlet.2013.08.023.


Wei WT, Lin SZ, Liu DL, Wang ZH. (2013). The distinct mechanisms of the anti-tumor activity of emodin in different types of cancer (Review). Oncol Rep. doi: 10.3892/or.2013.2741.


Yu XW, Yang RZ. (2013). Effects of crude rhubarb on serum IL-15 and IL-18 levels in patients with severe acute pancreatitis. An Hui Yi Xue, 34(3): 285-287.

Chelerythrine, Chelidonine and Sanguinarine

Cancer:
Leukemia, oral squamous cell carcinoma, melanoma

Action: Cytotoxic, MDR, apoptosis-triggering, inhibits proliferation

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy. This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

MDR

Cancer cells often develop multi-drug resistance (MDR) which is a multidimensional problem involving several mechanisms and targets. This study demonstrates that chelidonine, an alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids, has the ability to overcome MDR of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects.

Chelidonine and the alkaloid extract inhibited P-gp/MDR1 activity in a concentration-dependent manner in Caco-2 and CEM/ADR5000 and reversed their doxorubicin resistance. In addition, chelidonine and the alkaloid extract inhibited the activity of the drug, modifying enzymes CYP3A4 and GST in a dose-dependent manner. The expression analysis identified a common set of regulated genes related to apoptosis, cell-cycle, and drug metabolism.

Results suggest that chelidonine is a promising compound for overcoming MDR and enhancing cytotoxicity of chemotherapeutics, especially against leukemia cells. Its efficacy needs to be confirmed in animal models (El-Readi, Eid, Ashour, Tahrani & Wink, 2013).

Induces Apoptosis, Leukemia

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), howerver chelidonine did not affect mitochondrial integrity. Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h.

Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy, & Stoika, 2008).

Induces Apoptosis

Chelerythrine, formerly identified as a protein kinase C inhibitor, has also been shown to inhibit the anti-apoptotic Bcl-2 family proteins. Chelerythrine initiates the rapid mitochondrial apoptotic death of H9c2 cardiomyoblastoma cells in a manner that is likely independent of the generation of ROS from mitochondria (Funakoshi et al., 2011).

Oral Cancer, Inhibits cell proliferation

The effects of benzo[c] phenanthridine alkaloids (QBA), known mainly as sanguinarine and chelerythrine, on the inhibition of some kinds of cancer cell proliferation have been established. Sanguinarine is a potential inhibitor of tumorigenesis which suggests that it may be valuable in the development of new anti-cancer drugs for the treatment of oral squamous cell carcinoma (OSCC) (Tsukamoto et al., 2011).

Apoptotic Effects; Melanoma

Mixtures of isoquinoline alkaloids containing protopine, chelidonine, sanguinarine, allocryptopine, and stylopine were applied to murine fibroblast NIH/3T3, mouse melanoma B16F10, and human breast cancer MCF7 cell cultures for 20 and 40 min, and the content of alkaloids in the cell media was measured by capillary electrophoresis (CE). CE separation of isoquinoline alkaloids was performed in 30 mM phosphate buffer (pH 2.5). As these alkaloids have native fluorescence, they were directly detected using the commercially available UV light-emitting diode without fluorescent derivatization. The results showed a differential ability of celandine alkaloids to penetrate into the normal and cancer cell interior, which was inversely proportional to their cytotoxic activity.

While the most effective transport of celandine alkaloids from the cell medium to the cell interior was observed for normal murine fibroblast NIH/3T3 cells (about 55% of total content), cytotoxicity tests demonstrated selective and profound apoptotic effects of a five-alkaloid combination in the mouse melanoma B16F10 cell line (Kulp & Bragina, 2013).

Leukemia

The methanol extract isolated from the greater celandine Chelidonium majus L. (CME) has a strong anti-oxidant potential and exerted the anti-proliferative activity via apoptosis on leukemia cells. CME, due to the presence of the isoquinoline alkaloids and the flavonoid components may play an important role in both cancer chemoprevention through its anti-oxidant activity and modern cancer chemotherapy as a cytotoxic and apoptosis-inducing agent (Nadova et al., 2008).

Apoptosis-inducing Activity

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus L. (Papaveraceae), were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukaemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells was accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells. CHE, in contrast to SAN, does not interact directly with DNA.

This fact is in line with DNA-damaging effects of the alkaloids detected in the COMET assay. Nevertheless, apoptosis-inducing activity of CHE even slightly exceeded that of SAN (Philchenkov et al., 2008).

Chelidonium majus L. alkaloids chelidonine, sanguinarine, chelerythrine, protopine and allocryptopine were identified as major components of Ukrain. Apart from sanguinarine and chelerythrine, chelidonine turned out to be a potent inducer of apoptosis, triggering cell death at concentrations of 0.001 mM, while protopine and allocryptopine were less effective. Similar to Ukrain, apoptosis signaling of chelidonine involved Bcl-2 controlled mitochondrial alterations and caspase-activation (Habermehl et al., 2006).

References

El-Readi MZ, Eid S, Ashour ML, Tahrani A, & Wink M. (2013). Modulation of Multi-drug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine, 20(3-4), 282-94. doi: 10.1016/j.phymed.2012.11.005.


Funakoshi T, Aki T, Nakayama H, et al. (2011). Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicol In Vitro, 25(8):1581-7. doi: 10.1016/j.tiv.2011.05.028.


Habermehl D, Kammerer B, Handrick R, et al. (2006). Pro-apoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer, 6:14.


Kaminskyy V, Lin KW, Filyak Y, & Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International., 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O,Stoika R. (2008). A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Kulp M, Bragina O. (2013). Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Analytical and Bioanalytical Chemistry, 405(10), 3391-7. doi: 10.1007/s00216-013-6755-y.


Nadova S, Miadokova E, Alfoldiova L, et al. (2008). Potential anti-oxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinol Lett, 29(5):649-52.


Philchenkov A., Kaminskyy V., Zavelevich M., Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.


Tsukamoto H, Kondo S, Mukudai Y, et al., (2011). Evaluation of anti-cancer activities of benzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cell line. Anti-cancer Res, 31(9):2841-6.


Zhe C, Li-Juan W, Ming Hui W, et al. (2011). Mechanism governing reversal of Multi-drug resistance in human breast carcinoma cells by chelerythrine. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 33(1):45-50. doi: 10.3881/j.issn.1000-503X.2011.01.010.

Costunolide and Dehydrocostus Lactone

Cancers:
Breast, cervical., lung, ovarian, bladder, leukemia, prostate, gastric

Action: Anti-inflammatory, pro-oxidative, MDR, lymphangiogenesis inhibitor, anti-metastasis, mediates apoptosis, anti-metastatic

Components of Saussurea lappa Clarke, Vladimiria souliei (Franchet) Lingelsheim (Compositae)

Breast cancer; Anti-metastatic

It was found that costunolide inhibited the growth and telomerase activity of MCF-7 and MDA-MB-231 cells in a concentration- and time-dependent manner. The expression of hTERT mRNA was also inhibited but hTR mRNA was not. In addition, the bindings of transcription factors in hTERT promoters were significantly decreased in both cells by the treatment of costunolide. These results suggest that costunolide inhibited the growth of both MCF-7 and MDA-MB-231 cells and this effect was mediated at least in part by a significant reduction in telomerase activity (Choi et al., 2005).

Breast Cancer

Costunolide has been demonstrated to suppress tumor growth and metastases of MDA-MB-231 highly metastatic human breast cancer cells via inhibiting TNF-α induced NF-kB activation. Costunolide also inhibited MDA-MB-231 tumor growth and metastases without affecting body weights in the in vivo mouse orthotopic tumor growth assays.

In addition, costunolide inhibited in vitro TNF-α induced invasion and migration of MDA-MB-231 cells. Costunolide further suppressed TNF-α induced NF-kB signaling activation, resulting in a reduced expression of MMP-9, a well-known NF-kB-dependent gene to mediate breast cancer cell growth and metastases. Taken together, these results suggest that SLC and its derivative costunolide suppress breast cancer growth and metastases by inhibiting TNF-α induced NF-k B activation, suggesting that costunolide as well as SLC may be promising anti-cancer drugs, especially for metastatic breast cancer (Choi et al., 2013).

Several Chinese herbs, namely, Herba Taraxaci Mongolici (Pu Gong Ying), Radix Glycyrrhizae Uralensis (Gan Cao), Radix Bupleuri (Chai Hu), Radix Aucklandiae Lappae/ Radix Aucklandiae Lappae (Mu Xiang), Fructus Trichosanthis (Gua Lou) and Rhizoma Dioscoreae Bulbiferae (Huang Yao Zi) are frequently used in complex traditional Chinese medicine formulas for breast hyperplasia and breast tumor therapy.

The pharmacological effects of these Chinese herbs are all described as 'clearing heat-toxin and resolving masses' in traditional use. A bioactivity-oriented screening platform, which was based on a human breast cancer MCF-7 cellular model was developed to rapidly screen the 6 Chinese herbs. Two potential anti-breast cancer compounds, which were costunolide (Cos) and dehydrocostus lactone (Dehy), were identified in Radix Aucklandiae Lappae.

Combination of the two compounds showed a synergism on inhibiting the proliferation of MCF-7 cells in vitro, which exhibits a potential application prospect for breast cancer therapy. This bioactivity-oriented screening strategy is rapid, economical., reliable and specific for screening potential anti-breast cancer compounds in traditional Chinese medicines (Peng et al., 2013).

Dehydrocostuslactone (DHE) suppresses the expression of cyclin D, cyclin A, cyclin-dependent kinase 2, and cdc25A and increases the amount of p53 and p21, resulting in G(0)/G(1)-S phase arrest in MCF-7 cells. In contrast, DHE caused S-G(2)/M arrest by increasing p21 expression and chk1 activation and inhibiting cyclin A, cyclin B, cdc25A, and cdc25C expression in MDA-MB-231 cells. Reduction of SOCS-1 and SOCS-3 expression by small interfering RNA inhibits DHE-mediated signal transducer and activator of transcription-3 inhibition, p21 up-regulation, and cyclin-dependent kinase 2 blockade, supporting the hypothesis that DHE inhibits cell-cycle progression and cell death through SOCS-1 and SOCS-3.

Significantly, animal studies have revealed a 50% reduction in tumor volume after a 45-day treatment period. Taken together, this study provides new insights into the molecular mechanism of the DHE action that may contribute to the chemoprevention of breast cancer (Kuo et al., 2009).

ER- Breast Cancer

Costunolide induced apoptosis through the extrinsic pathway, including the activation of Fas, caspase-8, caspase-3, and degradation of PARP. However, it did not have the same effect on the intrinsic pathway as revealed by analysis of mitochondrial membrane potential (Δψ m) with JC-1 dye and expression of Bcl2 and Bax proteins level.

Furthermore, costunolide induced cell-cycle arrest in the G2/M phase via decrease in Cdc2, cyclin B1 and increase in p21WAF1 expression, independent of p53 pathway in p53-mutant MDA-MB-231 cells, and increases Cdc2-p21WAF1 binding/

Through this study it was confirmed that costunolide induces G2/M cell-cycle arrest and apoptotic cell death via extrinsic pathway in MDA-MB-231 cells, suggesting that it could be a promising anti-cancer drug especially for ER negative breast cancer (Choi et al., 2012).

Bladder Cancer

Costunolide, a member of sesquiterpene lactone family, possesses potent anti-cancer properties. The effects of costunolide were investigated on the cell viability and apoptosis in human bladder cancer T24 cells. Treatment of T24 cells with costunolide resulted in a dose-dependent inhibition of cell viability and induction of apoptosis, which was associated with the generation of ROS and disruption of mitochondrial membrane potential (Δψm).

These effects were significantly blocked when the cells were pre-treated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Exposure of T24 cells to costunolide was also associated with increased expression of Bax, down-regulation of Bcl-2, and of   survivin and significant activation of caspase-3, and its downstream target PARP. These findings provide the rationale for further in vivo and clinical investigation of costunolide against human bladder cancer (Rasul et al., 2013).

Sarcomas; MDR

Human soft tissue sarcomas represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment.

The effects on cell proliferation, cell-cycle distribution, apoptosis induction, and ABC transporter expression were analyzed. Cells treated with costunolide showed no changes in cell-cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 hours. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase. Moreover, it led to enhanced caspase 3/7 activity, cleaved caspase-3, and cleaved PARP indicating apoptosis induction.

These data demonstrate that dehydrocostus lactone affects cell viability, cell-cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumors (Kretschmer et al., 2013).

Leukemia, Lung Cancer

Costunolide, an active compound isolated from the stem bark of Magnolia sieboldii, has been found to induce apoptosis via reactive oxygen species (ROS) and Bcl-2-dependent mitochondrial permeability transition in human leukemia cells. Mitogen-activated protein kinases (MAPKs) were investigated for their involvement in the costunolide-induced apoptosis in human promonocytic leukemia U937 cells.

Treatment with costunolide resulted in the significant activation of c-Jun N-terminal kinase (JNK), but not of extracellular-signal-related kinase (ERK1/2) or p38. In vitro kinase assays showed that JNK activity was low in untreated cells but increased dramatically after 30 minutes of costunolide treatment. U937 cells co-treated with costunolide and sorbitol, a JNK activator, exhibited higher levels of cell death. In addition, inhibition of the JNK pathway using a dominant-negative mutation of c-jun and JNK inhibitor SP600125, significantly prevented costunolide-induced apoptosis.

Furthermore, pre-treatment with the anti-oxidant NAC (N-acetyl-L-cysteine) blocked the costunolide-stimulated activation of JNK while the overexpression of Bcl-2 failed to reverse JNK activation. These results indicate that costunolide-induced JNK activation acts downstream of ROS but upstream of Bcl-2, and suggest that ROS-mediated JNK activation plays a key role in costunolide-induced apoptosis. Moreover, the administration of costunolide (intraperitoneally once a day for 7 days) significantly suppressed tumor growth and increased survival in 3LL Lewis lung carcinoma-bearing model (Choi et al., 2009).

Prostate Cancer

Several pharmacological and biochemical assays were used to characterize the apoptotic-signaling pathways of costunolide in prostate cancer cells. Costunolide showed effective anti-proliferative activity against hormone dependent (LNCaP) and independent (PC-3 and DU-145) prostate cancer cells (ATCC¨) by sulforhodamine B assay, clonogenic test and flow cytometric analysis of carboxyfluorescein succinimidyl ester labeling. In PC-3 cells data showed that costunolide induced a rapid overload of nuclear Ca(2+), DNA damage response and ATR phosphorylation.

This indicated the crucial role of intracellular Ca(2+) mobilization and thiol depletion but not of reactive oxygen species production in apoptotic signaling. Data suggest that costunolide induces the depletion of intracellular thiols and overload of nuclear Ca(2+) that cause DNA damage and p21 up-regulation. The association of p21 with the cyclin dependent kinase 2/cyclin E complex blocks cyclin dependent kinase 2 activity and inhibits Rb phosphorylation, leading to G1 arrest of the cell-cycle and subsequent apoptotic cell death in human prostate cancer cells (Hsu et al., 2011).

Gastric Cancer, Prostate Cancer

Radix Aucklandiae Lappae/Saussurea lappa has been used in Chinese traditional medicine for the treatment of abdominal pain, tenesmus, nausea, and cancer; previous studies have shown that S. lappa also induces G(2) growth arrest and apoptosis in gastric cancer cells. The effects of hexane extracts of S. lappa (HESLs) on the migration of DU145 and TRAMP-C2 prostate cancer cells were investigated.

The active compound, dehydrocostus lactone (DHCL), in fraction 7 dose-dependently inhibited the basal and EGF-induced migration of prostate cancer cells. HESL and DHCL reduced matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 secretion but increased TIMP-2 levels in both the absence and presence of EGF. These results demonstrate that the inhibition of MMP-9 secretion and the stimulation of TIMP-2 secretion contribute to reduced migration of DU145 cells treated with HESL and DHCL.

This indicates that HESL containing its active principle, DHCL, has potential as an anti-metastatic agent for the treatment of prostate cancer (Kim et al., 2012).

Anti-metastatic

Lymphangiogenesis inhibitors from crude drugs used in Japan and Korea were investigated for their impact on metastasis. The three crude drugs Saussureae Radix, Psoraleae Semen and Aurantti Fructus Immaturus significantly inhibited the proliferation of temperature-sensitive rat lymphatic endothelial (TR-LE) cells in vitro.

Among isolated compounds, several compounds; costunolide, dehydrocostus lactone, psoracorylifol D, bavachinin, bakuchiol, showed an inhibitory effect on the proliferation and the capillary-like tube formation of TR-LE cells. In addition, all compounds showed selective inhibition of the proliferation of TR-LE cells compared to Hela and Lewis lung carcinoma (LLC) cells.

These compounds might offer clinical benefits as lymphangiogenesis inhibitors and may be good candidates for novel anti-cancer and anti-metastatic agents (Jeong et al., 2013).

Ovarian Cancer, MDR

The apoptosis-inducing effect of costunolide, a natural sesquiterpene lactone, was studied in platinum-resistant human ovarian cancer cells relative to cisplatin.

The MTT assay for cell viability, PI staining for cell-cycle profiling, and annexin V assay for apoptosis analysis were performed. Costunolide induced apoptosis of platinum-resistant cells in a time and dose-dependent manner and suppressed tumor growth in the SKOV3 (PT)-bearing mouse model. In addition, costunolide triggered the activation of caspase-3, caspase-8, and caspase-9. Pre-treatment with caspase inhibitors neutralized the pro-apoptotic activity of costunolide. We further demonstrated that costunolide induced a significant increase in intracellular reactive oxygen species (ROS). Moreover, costunolide synergized with cisplatin to induce cell death in platinum-resistant ovarian cancer cells.

Data suggests that costunolide, alone or in combination with cisplatin, may be of therapeutic potential in platinum-resistant ovarian cancers (Yang, Kim, Lee, & Choi, 2011).

Anti-inflammatory, Anti-oxidant, Mediates Apoptosis

Cheon et al. (2013) found that costunolide significantly inhibited RANKL-induced BMM differentiation into osteoclasts in a dose-dependent manner without causing cytotoxicity. Costunolide did not regulate the early signaling pathways of RANKL, including the mitogen-activated protein kinase and NF-κB pathways.

However, costunolide suppressed nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) expression via inhibition of c-Fos transcriptional activity without affecting RANKL-induced c-Fos expression. The inhibitory effects of costunolide were rescued by overexpression of constitutively active (CA)-NFATc1. Taken together, these results suggest that costunolide inhibited RANKL-induced osteoclast differentiation by suppressing RANKL-mediated c-Fos transcriptional activity.

References

Cheon YH, Song MJ, Kim JY, Kwak SC, Park JH, Lee CH, Kim JJ, Kim JY, Choi MK, Oh J, Kim YC, Yoon KH., Kwak HB, Lee MS. (2013). Costunolide inhibits osteoclast differentiation by suppressing c-Fos transcriptional activity. Phytotherapy, July, (6). doi: 10.1002/ptr.5034.

Choi SH, Im E, Kang HK, et al. (2005). Inhibitory effects of costunolide on the telomerase activity in human breast carcinoma cells. Cancer Lett, 227(2):153-62.


Choi JH, Lee KT. (2009). Costunolide-induced apoptosis in human leukemia cells: involvement of c-jun N-terminal kinase activation. Biol Pharm Bull, 32(10):1803-8.


Choi YK, Seo HS, Choi HS, et al. (2012). Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell-cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231. Mol Cell Biochem, 363(1-2):119-28. doi: 10.1007/s11010-011-1164-z.


Choi YK, Cho S-G, Woo S-M, et al. (2013). Saussurea lappa Clarke-Derived Costunolide Prevents TNF α-Induced Breast Cancer Cell Migration and Invasion by Inhibiting NF-κ B Activity. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2013/936257.


Hsu JL, Pan SL, Ho YF, Het al. (2011). Costunolide induces apoptosis through nuclear calcium2+ overload and DNA damage response in human prostate cancer. The Journal of Urology, 185(5):1967-74. doi: 10.1016/j.juro.2010.12.091.


Jeong D, Watari K, Shirouzu T, et al. (2013). Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs. Biol Pharm Bull, 36(1):152-7.


Kim EJ, Hong JE, Lim SS, et al. (2012). The hexane extract of Saussurea lappa and its active principle, dehydrocostus lactone, inhibit prostate cancer cell migration. J Med Food, 15(1):24-32. doi: 10.1089/jmf.2011.1735.


Kretschmer N, Rinner B, Stuendl N, et al. (2012). Effect of costunolide and dehydrocostus lactone on cell-cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells. Planta Med, 78(16):1749-56. doi: 10.1055/s-0032-1315385.


Kuo PL, Ni WC, Tsai EM, Hsu YL. (2009). Dehydrocostuslactone disrupts signal transducers and activators of transcription 3 through up-regulation of suppressor of cytokine signaling in breast cancer cells. Mol Cancer Ther, 8(5):1328-39. doi: 10.1158/1535-7163.MCT-08-0914.


Peng ZX, Wang Y, Gu X, Wen YY, Yan C. (2013). A platform for fast screening potential anti-breast cancer compounds in traditional Chinese medicines. Biomed Chromatogr. doi: 10.1002/bmc.2990.


Rasul A, Bao R, Malhi M, et al. (2013). Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules, 18(2):1418-33. doi: 10.3390/molecules18021418.


Yang YI, Kim JH, Lee KT, & Choi JH. (2011). Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species. Gynecologic Oncology, 123(3), 588-96. doi: 10.1016/j.ygyno.2011.08.031.

Isorhamnetin

Cancer:
Lung, colon, acute myeloid leukemia, T lymphoma, Ehrlich carcinoma, gastric, esophageal squamous cell, chronic myelogenous leukemia

Action: Dox-induced cardiotoxicity, anti-oxidant

Isorhamnetin, the anti-tumor component of Hippophae rhamnoides Linn, is also a member of the ßavonoid class of compounds. Its chemical name is 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl) chromen-4-one and its molecular formula is C16H12O7.

Lung Cancer

Isorhamnetin shows good inhibitory effects on human lung adenocarcinoma A549 cells, human colon cancer HT-29 cells, human chronic myeloid leukemia K562 cells, human acute myeloid leukemia HL-60 cells, mouse T lymphoma YAC-1 cells and mouse Ehrlich carcinoma. In terms of its mechanism of action, it seems that isorhamnetin simultaneously reduces the expression of Bcl-2 and increases the expression of Bax, which activates caspase-9 and its downstream factor caspase-3, thus resulting in cell death (Zhu et al. 2005).

Colorectal Cancer

It was demonstrated that isorhamnetin prevents colorectal tumorigenesis. Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. Magnetic resonance imaging, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than control diet.

These observations suggest the chemo-protective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression (Saud et al., 2013).

Gastric Cancer

The potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, were investigated on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, gastric cancer (GC) cell lines, and xenograft mice model.

It was observed that IH exerted a strong anti-proliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of gastric cancer cells, which could be reversed in the presence of PPAR-γ inhibitor.

Using molecular docking analysis, Ramachandran et al. (2013) demonstratd that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, these findings clearly indicate that anti-tumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

Cardiac-protective; Doxorubicin

Isorhamnetin is a natural anti-oxidant with obvious cardiac-protective effect. Its action against doxorubicin-induced cardotoxicity and underlying mechanisms were investigated. Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. The aim of this study is to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity.

Daily pre-treatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes, and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox (Sun et al., 2013).

Chronic Myelogenous Leukemia

The isorhamnetin 3-o-robinobioside and its original extract, ethyl acetate extract, from Nitraria retusa leaves, were evaluated for their ability to induce anti-oxidant and anti-genotoxic effects in human chronic myelogenous leukemia cell line. They were shown to have a great anti-oxidant and anti-genotoxic potential on human chronic myelogenous leukemia cell line K562 (Boubaker et al., 2012).

Esophageal Cancer

The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells and it inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro (Shi et al., 2012).

Cancer:
Actions: Overcomes MDR; P-glycoproteins, breast cancer resistance proteins (BCRP), efflux transporters

Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated.

Isorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin’s permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (p<0.01).

Efflux transporters, P-glycoproteins (P-gp), breast cancer resistance proteins (BCRP) and multidrug resistance proteins (MRPs) participated in the isorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571).

References

Boubaker J, Ben Sghaier M, Skandrani I, et al. (2012). Isorhamnetin 3-O-robinobioside from Nitraria retusa leaves enhance anti-oxidant and anti-genotoxic activity in human chronic myelogenous leukemia cell line K562. BMC Complement Altern Med, 12:135. doi: 10.1186/1472-6882-12-135.


Ramachandran L, Manu KA, Shanmugam MK, et al. (2013). Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem, 288(26):18777. doi: 10.1074/jbc.A112.388702.


Saud SM, Young MR, Jones-Hall YL, et al. (2013). Chemo-preventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β -catenin. Cancer Res, 73:5473.


Shi C, Fan LY, Cai Z, Liu YY, Yang CL. (2012). Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin. Neoplasma, 59(4):361-9. doi: 10.4149/neo_2012_047.


Sun J, Sun G, Meng X, et al. (2013). Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One, 8(5):e64526. doi: 10.1371/journal.pone.0064526.


Zhu L, Wang ZR, Zhou LM, et al. (2005). Effects and mechanisms of isorhamnetin on lung carcinoma. Space Med Med Eng (Chin), 18:381-383.


Duan J, Xie Y, Luo H, Li G, Wu T, Zhang T. (2014) Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem Toxicol. 2014 Apr;66:313-20. doi: 10.1016/j.fct.2014.02.003.

Tanshinone II A & Tanshinone A (See also Cryptotanshinone)

Cancer:
Leukemia, prostate, breast, gastric, colorectal, nasopharyngeal carcinoma

Action: Chemo-sensitizer, cytostatic, cancer stem cells, anti-cancer, autophagic cell death, cell-cycle arrest

Anti-cancer

Tanshinone IIA and cryptotanshinone could induce CYP3A4 activity (Qiu et al., 2103).

Tanshinone II-A (Tan IIA) is the most abundant diterpene quinone isolated from Danshen (Salvia miltiorrhiza), which has been used in treating cardiovascular diseases for more than 2,000 years in China. Interest in its versatile protective effects in cardiovascular, metabolic, neurodegenerative diseases, and cancers has been growing over the last decade.

Tan IIA is a multi-target drug, whose molecular targets include transcription factors, scavenger receptors, ion channels, kinases, pro- and anti-apoptotic proteins, growth factors, inflammatory mediators, microRNA, and others. More recently, enhanced or synergistic effects can be observed when Tan IIA is used in combination therapy with cardio-protective and anti-cancer drugs (Xu & Liu, 2013).

Leukemia

The in vitro anti-proliferation and apoptosis-inducing effects of Tanshinone IIA on leukemia THP-1 cell lines and its mechanisms of action were investigated. MTT assay was used to detect the cell growth-inhibitory rate; cell apoptotic rate and the mitochondrial membrane potential (Deltapsim) were investigated by flow cytometry (FCM); apoptotic morphology was observed by Hoechst 33258 staining and DNA fragmentation analysis.

It was therefore concluded that Tanshinone IIA has significant growth inhibition effects on THP-1 cells by induction of apoptosis, and that Tanshinone IIA-induced apoptosis on THP-1 cells is mainly related to the disruption of Deltapsim and activation of caspase-3 as well as down-regulation of anti-apoptotic protein Bcl-2, survivin and up-regulation of pro-apoptotic protein Bax. The results indicate that Tanshinone IIA may serve as a potential anti-leukemia agent (Liu et al., 2009).

Prostate Cancer

Chiu et al. (2013) explored the mechanisms of cell death induced by Tan-IIA treatment in prostate cancer cells in vitro and in vivo. Results showed that Tan-IIA caused prostate cancer cell death in a dose-dependent manner, and cell-cycle arrest at G0/G1 phase was noted, in LNCaP cells. The G0/G1 phase arrest correlated with increased levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. Tan-IIA also induced ER stress in prostate cancer cells: activation and nuclear translocation of GADD153/CCAAT/enhancer-binding protein-homologous protein (CHOP) were identified, and increased expression of the downstream molecules GRP78/BiP, inositol-requiring protein-1α and GADD153/CHOP were evidenced. Blockage of GADD153/CHOP expression by siRNA reduced Tan-IIA-induced cell death in LNCaP cells.

Gastric Cancer

Tan IIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Tan IIA (1, 5, 10 µg/ml) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that Tan IIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. Tan IIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that Tan IIA markedly decreased migratory and invasive abilities of SGC7901 cells (Xu et al., 2013).

Cell-cycle Arrest

MTT and SRB assays were applied to measure the effects of tanshinone A on cell viability. Cell-cycle distribution and apoptosis were assessed via flow cytometry using PI staining and the Annexin V/PI double staining method respectively. Changes to mitochondrial membrane potential was also detected by flow cytometry. The spectrophotometric method was utilized to detect changes of caspase-3 activity. Western blotting assay was used to evaluate the expression of Bcl-2, Bax and c-Myc proteins.

Results indicated that Tan-IIA displayed significant inhibitory effect on the growth of K562 cells in a dose- and time- dependent manner, and displayed only minimal damage to hepatic LO2 cells.

Tan-IIA could arrest K562 cells in the G0/G1 phase and induce apoptosis, decrease mitochondrial transmembrane potential, and the expressions of Bcl-2 and c-Myc proteins, increase the expression of Bax protein and activity of caspase-3. Accordingly, it was presumed that the induction of apoptosis may be through the endogenous pathway. Subsequently, tanshinone A could be a promising candidate in the development of a novel anti-tumor agent (Zhen et al., 2011).

Prostate Cancer, Chemo-sensitizer

Treatment with a combination of Chinese herbs and cytotoxic chemotherapies has shown a higher survival rate in clinical trials.

Tan-IIA displayed synergistic anti-tumor effects on human prostate cancer PC3 cells and LNCaP cells, when combined with cisplatin in vitro. Anti-proliferative effects were detected via MTT assay. Cell-cycle distribution and apoptosis were detected by flow cytometer. Protein expression was detected by Western blotting. The intracellular concentration of cisplatin was detected by high performance liquid chromatography (HPLC).

Results demonstrated that tanshinone II A significantly enhanced the anti-proliferative effects of cisplatin on human prostate cancer PC3 cells and LNCaP cells with an increase in the intracellular concentration of cisplatin. These effects were correlated with cell-cycle arrest at the S phase and induction of cell apoptosis. Apoptosis could potentially be achieved through the death receptor and mitochondrial pathways, decreased expression of Bcl-2.

Collectively, results indicated that the combination of tanshinone II A and cisplatin had a better treatment effect, in vitro, not only on androgen-dependent LNCaP cells but also on androgen-independent PC3 cells (Hou, Xu, Hu, & Xie, 2013).

Autophagic Cell Death, CSCs

Tan IIA significantly increased the expression of microtubule-associated protein light chain 3 (LC3) II as a hallmark of autophagy in Western blotting and immunofluorescence staining. Tan IIA augmented the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and attenuated the phosphorylation of mammalian target of rapamycin (mTOR) and p70 S6K in a dose-dependent manner.Tan IIA dramatically activated the extracellular signal regulated kinase (ERK) signaling pathway including Raf, ERK and p90 RSK in a dose-dependent and time-dependent manner. Consistently, ERK inhibitor PD184352 suppressed LC3-II activation induced by Tan IIA, whereas PD184352 and PD98059 did not affect poly (ADP-ribose) polymerase cleavage and sub-G1 accumulation induced by Tan IIA in KBM-5 leukemia cells.

Tan IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 cells as a potent natural compound for leukemia treatment (Yun et al., 2013).

Cancer stem cells (CSCs) are maintained by inflammatory cytokines and signaling pathways. Tanshinone IIA (Tan-IIA) possesses anti-cancer and anti-inflammatory activities. The purpose of this study is to confirm the growth inhibition effect of Tan-IIA on human breast CSCs growth in vitro and in vivo and to explore the possible mechanism of its activity. After Tan-IIA treatment, cell proliferation and mammosphere formation of CSCs were decreased significantly; the expression levels of IL-6, STAT3, phospho-STAT3 (Tyr705), NF-κBp65 in nucleus and cyclin D1 proteins were decreased significantly; the tumor growth and mean tumor weight were reduced significantly.

Tan-IIA has the potential to target and kill CSCs, and can inhibit human breast CSCs growth both in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways (Lin et al., 2013).

Colorectal Cancer

Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF. Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis (Zhou et al., 2012). The results showed that Tan IIA inhibited the proliferation of inflammation-related colon cancer cells HCT116 and HT-29 by decreasing the production of inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which are generated by macrophage RAW264.7 cell line.

Treatment with TanshinoneIIA prevented increased PU.1, a transcriptional activator of miR-155, and hence increased miR-155, whereas aspirin could not. These findings support that the interruption of signal conduction between activated macrophages and colon cancer cells could be considered as a new therapeutic strategy and miR-155 could be a potential target for the prevention of inflammation-related cancer (Tu et al., 2012).

Breast Cancer

The proliferation rate of T47D and MDA-MB-231 cells influenced by 1×10-6 mol·L-1 and 1×10-7 mol·L-1 Tanshinone IIA was analyzed by MTT assay. Estrogen receptor antagonist ICI182, 780 was employed as a tool. Level of ERα and ERβ mRNA in T47D cells was quantified by Real-time RT-PCR assay. Expression of ERα and ERβ protein was measured by flow cytometry. The proliferation rates of T47D cells treated with Tanshinone IIA decreased significantly. Such effects could be partly blocked by ICI182, 780.

Meanwhile, the proliferation rates of MDA-MB-231 cells treated with Tanshinone IIA decreased much more dramatically. Real-time RT-PCR and flow cytometry results showed that Tanshinone IIA could induce elevation of ERα and ERβ, especially ERα mRNA, and protein expression level in T47D cells. Tanshinone IIA shows inhibitory effects on proliferation of breast cancer cell lines (Zhao et al., 2010).

The role of cell adhesion molecules in the process of inflammation has been studied extensively, and these molecules are critical components of carcinogenesis and cancer metastasis. This study investigated the effect of tanshinone I on cancer growth, invasion and angiogenesis on human breast cancer cells MDA-MB-231, both in vitro and in vivo. Tanshinone I dose-dependently inhibited ICAM-1 and VCAM-1 expressions in human umbilical vein endothelial cells (HUVECs) that were stimulated with TNF-α for 6 h.

Additionally, reduction of tumor mass volume and decrease of metastasis incidents by tanshinone I were observed in vivo. In conclusion, this study provides a potential mechanism for the anti-cancer effect of tanshinone I on breast cancer cells, suggesting that tanshinone I may serve as an effective drug for the treatment of breast cancer (Nizamutdinova et al., 2008).

Nasopharyngeal Carcinoma

To investigate anti-cancer effect and potential mechanism of tanshinone II(A) (Tan II(A)) on human nasopharyngeal carcinoma cell line CNE cells, the anti-proliferative effect of Tan II(A) on CNE cells was evaluated by morphological examination, cell growth curves, colonial assay and MTT assay. Tan II(A) could inhibit CNE cell proliferation in dose- and time-dependent manner. After treatment with Tan II(A), intracellular Ca2+ concentration of CNE cells was increased, mitochondria membrane potential of the cells was decreased, relative mRNA level of Bad and MT-1A was up-regulated. Tan II(A) had an anti-cancer effect on CNE cells through apoptosis via a calcineurin-dependent pathway and MT-1A down-regulation, and may be the next generation of chemotherapy (Dai et al., 2011).

References

Chiu SC, Huang SY, Chen SP, et al. (2013). Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis. doi: 10.1038/pcan.2013.38.


Dai Z, Huang D, Shi J, Yu L, Wu Q, Xu Q. (2011). Apoptosis inducing effect of tanshinone II(A) on human nasopharyngeal carcinoma CNE cells. Zhongguo Zhong Yao Za Zhi, 36(15):2129-33.


Hou LL, Xu QJ, Hu GQ, Xie SQ. (2013). Synergistic anti-tumor effects of tanshinone II A in combination with cisplatin via apoptosis in the prostate cancer cells. Acta Pharmaceutica Sinica, 48(5), 675-679.


Lin C, Wang L, Wang H, et al. (2013). Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem, 114(9):2061-70. doi: 10.1002/jcb.24553.


Liu JJ, Zhang Y, Lin DJ, Xiao RZ. (2009). Tanshinone IIA inhibits leukemia THP-1 cell growth by induction of apoptosis. Oncol Rep, 21(4):1075-81.


Nizamutdinova IT, Lee GW, Lee JS, et al. (2008). Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 29(10):1885-1892. doi:10.1093/carcin/bgn151


Qiu F, Jiang J, Ma Ym, et al. (2013). Opposite Effects of Single-Dose and Multidose Administration of the Ethanol Extract of Danshen on CYP3A in Healthy Volunteers. Evidence-Based Complementary and Alternative Medicine, 2013(2013) http://dx.doi.org/10.1155/2013/730734


Tu J, Xing Y, Guo Y, et al. (2012). TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int Immunopharmacol, 14(4):353-61. doi: 10.1016/j.intimp.2012.08.015.


Xu M, Cao FL, Li NY, et al. (2013). Tanshinone IIA reverses the malignant phenotype of SGC7901 gastric cancer cells. Asian Pac J Cancer Prev, 14(1):173-7.


Xu S, Liu P. (2013). Tanshinone II-A: new perspectives for old remedies. Expert Opin Ther Pat, 23(2):149-53. doi: 10.1517/13543776.2013.743995.


Yun SM, Jung JH, Jeong SJ, et al. (2013). Tanshinone IIA Induces Autophagic Cell Death via Activation of AMPK and ERK and Inhibition of mTOR and p70 S6K in KBM-5 Leukemia Cells. Phytother Res. doi: 10.1002/ptr.5015.


Zhen X, Cen J, Li YM, Yan F, Guan T, Tang, XZ. (2011). Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. European Journal of Pharmacology, 667(1-3), 129-135. doi: 10.1016/j.ejphar.2011.06.004.


Zhao PW, Niu JZ, Wang JF, Hao QX, Yu J, et al. (2010). Research on the inhibitory effect of Tanshinone IIA on breast cancer cell proliferation. Zhong Guo Yao Li Xue Tong Bao, 26(7):903-906.


Zhou LH, Hu Q, Sui H, et al. (2012). Tanshinone II–a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer. Asian Pac J Cancer Prev, 13(9):4453-8.

Luteolin

Cancer: Colorectal., ovarian, pancreatic

Action: Anti-inflammatory, immunomodulatory, radio-sensitizer, chemo-sensitizer

Luteolin is a flavonoid found in many plants and foods, including Terminalia chebula (Retz.), Prunella vulgaris (L.) and Perilla frutescens [(L.) Britton].

Luteolin is contained in Ocimum sanctum L . or Ocimum tenuiflorum L , commonly known as Holy Basil in English or Tulsi in various Indian languages, which is an important medicinal plant in the various traditional and folk systems of medicine in Southeast Asia. Scientific studies have shown it to possess anti-inflammatory, analgesic, anti-pyretic, anti-diabetic, hepato-protective, hypolipidemic, anti-stress, and immunomodulatory activities. It has been found to prevent chemical-induced skin, liver, oral., and lung cancers and mediates these effects by increasing the anti-oxidant activity, altering the gene expressions, inducing apoptosis, and inhibiting angiogenesis and metastasis.

Colon Cancer

Luteolin inhibited cyclin-dependent kinase (CDK)4 and CDK2 activity, resulting in G1 arrest with a concomitant decrease of phosphorylation of retinoblastoma protein. Activities of CDK4 and CDK2 decreased within 2 hours after luteolin treatment, with a 38% decrease in CDK2 activity (P < 0.05) observed in cells treated with 40 µmol/l luteolin. Luteolin also promoted G2/M arrest at 24 hours post-treatment by down-regulating cyclin B1 expression and inhibiting cell division cycle (CDC)2 activity. Luteolin promoted apoptosis with increased activation of caspases 3, 7, and 9 and enhanced poly(ADP-ribose) polymerase cleavage and decreased expression of p21CIP1/WAF1, survivin, Mcl-1, Bcl-xL, and Mdm-2. Lim et al. (2007) demonstrated that luteolin promotes both cell-cycle arrest and apoptosis in the HT-29 colon cancer cell line, providing insight about the mechanisms underlying its anti-tumorigenic activities.

Radio-protective

The aqueous extract of Perilla frutescens has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. The chemo-preventive and radio-protective properties of Perilla emphasize aspects that warrant future research to establish its activity and utility in cancer prevention and treatment (Baliga et al., 2013).

Anti-inflammatory

Pre-treatment of RAW 264.7 macrophages with luteolin, luteolin-7-glucoside, quercetin, and the isoflavonoid genistein inhibited both the LPS-stimulated TNF-α and interleukin-6 release, whereas eriodictyol and hesperetin only inhibited TNF-α release. From the compounds tested, luteolin and quercetin were the most potent in inhibiting cytokine production with an IC50 of less than 1 and 5 µM for TNF-α release, respectively. Moreover, luteolin inhibited LPS-induced phosphorylation of Akt. Treatment of macrophages with LPS resulted in increased IκB-α phosphorylation and reduced the levels of IκB-α. Pre-treatment of cells with luteolin abolished the effects of LPS on IκB-α.

Xagorari et al. (2001) concluded that luteolin inhibits protein tyrosine phosphorylation, nuclear factor-κB-mediated gene expression and pro-inflammatory cytokine production in murine macrophages.

Anti-inflammatory; Neuroinflammation

Pre-treatment of primary murine microglia and BV-2 microglial cells with luteolin inhibited LPS-stimulated IL-6 production at both the mRNA and protein levels. Whereas luteolin had no effect on the LPS-induced increase in NF-κB DNA binding activity, it markedly reduced AP-1 transcription factor binding activity. Consistent with this finding, luteolin did not inhibit LPS-induced degradation of IκB-α but inhibited JNK phosphorylation.

Luteolin consumption reduced LPS-induced IL-6 in plasma 4 hours after injection. Furthermore, luteolin decreased the induction of IL-6 mRNA by LPS in the hippocampus but not in the cortex or cerebellum. Taken together, these data suggest luteolin inhibits LPS-induced IL-6 production in the brain by inhibiting the JNK signaling pathway and activation of AP-1 in microglia. Thus, luteolin may be useful for mitigating neuroinflammation (Jang et al., 2008).

Immunostimulatory and Anti-inflammatory

Luteolin (Lut) possesses significant anti-inflammatory activity in well-established models of acute and chronic inflammation, such as xylene-induced ear edema in mice (ED50= 107 mg/ kg), carrageenin-induced swellingof the ankle, acetic acid-induced pleurisy and croton oil-induced gaseous pouch granuloma in rats. Lut had a marked inhibitory effect on the inflammatory exudation, but did not affect the number of leucocytes. Its combined immunostimulatory and anti-inflammatory activity, and inhibitory effect upon immediate hypersensitive response, provide the pharmacologic bases for the beneficial effects of Lut in the treatment of chronic bronchitis (Chen et al., 1986).

Anti-inflammatory

Luteolin dose-dependently inhibited the expression and production of those inflammatory genes and mediators in macrophages stimulated with lipopolysaccharide (LPS). Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay further confirmed the suppression of LPS-induced TNF- α, IL-6, iNOS and COX-2 gene expression by luteolin at a transcriptional level. Luteolin also reduced the DNA binding activity of nuclear factor-kappa B (NF-κB) in LPS-activated macrophages.

In addition, luteolin significantly inhibited the LPS-induced DNA binding activity of activating protein-1 (AP-1). It was also found that luteolin attenuated the LPS-mediated protein kinase B (Akt) and IKK phosphorylation, as well as reactive oxygen species (ROS) production. In sum, these data suggest that, by blocking NF-κB and AP-1 activation, luteolin acts to suppress the LPS-elicited inflammatory events in mouse alveolar macrophages, and this effect was mediated, at least in part, by inhibiting the generation of reactive oxygen species. These observations suggest a possible therapeutic application of this agent for treating inflammatory disorders in the lung (Chen et al., 2007).

Pancreatic Cancer; Chemo-enhancing

Simultaneous treatment or pre-treatment (0, 6, 24 and 42h) of flavonoids and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Pre-treatment for 24 hours with 13µM of either Apigenin or Luteolin, followed by Gem for 36 h was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of either flavonoid for 24 hours resulted in 59%–73% growth inhibition when followed by Gem (10µM, 36 hours). Lut (15µM, 24 hours) pre-treatment followed by Gem (10µM, 36h), significantly decreased protein expression of nuclear GSK-3β and NF-κB p65 and increased pro-apoptotic cytosolic cytochrome c. Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of Lut effectively aid in the anti-proliferative activity of chemotherapeutic drugs (Johnson et al., 2013).

Ovarian Cancer

Recent studies further indicate that luteolin potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM.

Unlike NSAIDS (non-steroid anti-inflammatory drugs), well-documented clinical data for phyto-active compounds are lacking. In order to evaluate objectively the potential benefit of these compounds in the treatment of ovarian cancer, strategically designed, large scale studies are warranted (Chen et al., 2012).

Chemo-sensitizer

The sensitization effect of luteolin on cisplatin-induced apoptosis is p53 dependent, as such effect is only found in p53 wild-type cancer cells but not in p53 mutant cancer cells. Moreover, knockdown of p53 by small interfering RNA made p53 wild-type cancer cells resistant to luteolin and cisplatin. The critical role of c-Jun NH(2)-terminal kinase (JNK) was identified in regulation of p53 protein stability: luteolin activates JNK, and JNK then stabilizes p53 via phosphorylation, leading to reduced ubiquitination and proteasomal degradation.

An in vivo nude mice xenograft model confirmed that luteolin enhanced the cancer therapeutic activity of cisplatin via p53 stabilization and accumulation. In summary, data from this study reveal a novel molecular mechanism involved in the anti-cancer effects of luteolin and support its potential clinical application as a chemo-sensitizer in cancer therapy (Shi et al., 2007).

Breast Cancer; Chemo-sensitzer

Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemo-preventive or chemo-sensitizing properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified.

Relatively high levels of cyclin E2 (CCNE2) protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5µM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitized the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemo-sensitizer to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients (Tu et al., 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

Chen CY, Peng WH, Tsai KD and Hsu SL. (2007). Luteolin suppresses inflammation-associated gene expression by blocking NF- κ B and AP-1 activation pathway in mouse alveolar macrophages. Life Sciences, 81(23-24):1602-1614. doi:10.1016/j.lfs.2007.09.028

Chen MZ, Jin WZ, Dai LM, Xu SY. (1986). Effect of luteolin on inflammation and immune function. Chinese Journal of Pharmacology and Toxicology, 1986-01.

Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.

Jang S, Kelley KW, Johnson RW. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. PNAS, 105(21):7534-7539

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, S0278-6915(13)00491-2. doi: 10.1016/j.fct.2013.07.036.

Lim DY, Jeong Y, Tyner Al., Park JHY. (2007). Induction of cell-cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastrointest Liver Physiol, 292: G66-G75. doi:10.1152/ajpgi.00248.2006.

Shi R, Huang Q, Zhu X, et al. (2007). Luteolin sensitizes the anti-cancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Molecular Cancer Therapeutics, 6(4):1338-1347. doi: 10.1158/1535-7163.MCT-06-0638.

Tu SH, Ho CT, Liu MF, et al. (2013). Luteolin sensitizes drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem, 141(2):1553-61. doi: 10.1016/j.foodchem.2013.04.077.

Xagorari A, Papapetropoulos A, Mauromatis A, et al. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and pro-inflammatory cytokine production in macrophages. JPET, 296(1):181-187.

Evodiamine

Cancer: Pancreatic, gastric, breast; ER+, ER-, lung

Action: Inhibits NF- κB, inhibits metastasis, increases intracellular ROS, apoptosis, cell-cycle arrest, anti-cancer, MDR

Evodiamine, a naturally occurring indole alkaloid, is one of the main bioactive ingredients of Evodia rutaecarpa [(Juss.) Benth.] (alkaloidal component of the extract). With respect to the pharmacological actions of evodiamine, more attention has been paid to beneficial effects in insults involving cancer, obesity, nociception, inflammation, cardiovascular diseases, Alzheimer's disease, infectious diseases and thermo-regulative effects. Evodiamine has evolved a superior ability to bind various proteins (Yu et al., 2013). Evodiamine exhibits anti-proliferative, anti-metastatic, and apoptotic activities.

Anti-cancer, MDR

Evodiamine possesses anti-anxiety, anti-obesity, anti-nociceptive, anti-inflammatory, anti-allergic, and anti-cancer effects. As well, it has thermoregulation, protection of myocardial ischemia-reperfusion injury and vessel-relaxing activities (Kobayashi, 2003; Shin et al., 2007; Ko et al., 2007; Ji, 2011). Evodiamine exhibits anti-cancer activities both in vitro and in vivo by inducing cell-cycle arrest or apoptosis, and inhibiting angiogenesis, invasion, and metastasis in a variety of cancer cell lines (Ogasawara et al., 2001; Ogasawara et al., 2002; Fei et al., 2003; Shyu et al., 2006). It presents anti-cancer potentials at micromolar concentrations and even at the nanomolar level in some cell lines in vitro (Lee et al., 2006; Wang, Li, & Wang, 2010). Evodiamine also stimulates autophagy, which serves as a survival function (Yang et al., 2008). Compared with other compounds, evodiamine is less toxic to normal human cells, such as human peripheral blood mononuclear cells (Fei et al., 2003; Zhang et al., 2004). It also inhibits the proliferation of adriamycin-resistant human breast cancer NCI/ADR-RES cells both in vitro and in Balb-c/nude mice (Liao et al., 2005).

Lung Cancer, Cell-cycle Arrest

Evodiamine (10  mg/kg) administrated orally twice daily significantly inhibits   tumor growth (Liao et al., 2005). Moreover, treatment with 10 mg/kg evodiamine from the 6th day after tumor inoculation into mice reduces lung metastasis and does not affect the body weight of mice during the experimental period (Ogasawara et al., 2001).

Cell-cycle Arrest

Evodiamine inhibits TopI enzyme, forms the DNA covalent complex with a similar concentration to that of irinotecan, and induces DNA damage (Chan et al., 2009; Tsai et al., 2010; Dong et al., 2010). However, TopI may not be the main target of this compound. Cancer cells treated with evodiamine exhibit G 2 / M phase arrest (Kan et al., 2004; Huang et al., 2004; Liao et al., 2005) rather than S phase arrest, which is not consistent with the mechanism of classic TopI inhibitors, such as irinotecan. Therefore, other targets aside from TopI may also be important for realizing the anti-cancer potentials of evodiamine. This statement is supported by the fact that evodiamine has effects on tubulin polymerization (Huang et al., 2004).

Increases Intracellular ROS, Apoptosis

Exposure to evodiamine rapidly increases intracellular ROS followed by an onset of mitochondrial depolarization (Yang et al., 2007). The generation of ROS and nitric oxide acts in synergy and triggers mitochondria-dependent apoptosis (Yang et al., 2008). Evodiamine also induces caspase-dependent and caspase-independent apoptosis, down-regulates Bcl-2 expression, and up-regulates Bax expression in some cancer cells (Zhang et al., 2003; Lee et al., 2006). The phosphatidylinositol 3-kinase/Akt/caspase and Fas ligand (Fas-L)/NF-κB signaling pathways might account for evodiamine-induced cell death. Moreover, these signals could be increased by the ubiquitin-proteasome pathway (Wang, Li, & Wang, 2010).

Inhibits Metastasis

Evodiamine has a marked inhibitory activity on tumor cell migration in vitro. When evodiamine at 10 mg/kg was administered into mice from the 6th day after tumor inoculation, the number of tumor nodules in lungs was decreased by 48% as compared to control. The inhibition rate was equivalent to that produced by cisplatin. Results suggest that evodiamine may be regarded as a promising agent in tumor metastasis therapy (Ogasawara et al., 2005).

Inhibits NF-κB

Evodiamine inhibited tumor necrosis factor (TNF)-induced Akt activation and its association with IKK. This down-regulation potentiated the apoptosis induced by cytokines and chemotherapeutic agents and suppressed TNF-induced invasive activity. Overall, these results indicate that evodiamine inhibits both constitutive and induced NF-κB activation and NF-κB-regulated gene expression (Takada et al., 2005).

Breast Cancer

Endocrine sensitivity, assessed by the expression of estrogen receptor (ER), has long been the predict factor to guide therapeutic decisions. Tamoxifen has been the most successful hormonal treatment in endocrine-sensitive breast cancer. However, in estrogen-insensitive cancer tamoxifen showed less effectiveness than in estrogen-sensitive cancer. It is interesting to develop new drugs against both hormone-sensitive and insensitive tumor. In this present study Wang et al. (2013) examined anti-cancer effects of evodiamine extracted from the Chinese herb, Evodiae fructus, in estrogen-dependent and -independent human breast cancer cells, MCF-7 and MDA-MB-231 cells, respectively.

Breast Cancer; ER+, ER-

The expression of ER α and β in protein and mRNA levels was down-regulated by evodiamine according to data from immunoblotting and RT-PCR analysis. Overall, results indicate that evodiamine mediates degradation of ER and induces caspase-dependent pathway leading to inhibition of proliferation of breast cancer cell lines. It suggests that evodiamine may in part mediate through ER-inhibitory pathway to inhibit breast cancer cell proliferation.

Evodiamine (10 mg/kg) significantly reduced tumor growth and pulmonary metastasis. In vitro, evodiamine inhibited cell migration and invasion abilities through down-regulation of MMP-9, urokinase-type plasminogen activator (uPA) and uPAR expression. Evodiamine-induced G0/G1 arrest and apoptosis were associated with a decrease in Bcl-2, cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression and an increase in Bax and p27Kip1 expression (Du et al., 201).

Gastric Cancer

A study by Rasul et al. (2012) was conducted to investigate the synchronized role of autophagy and apoptosis in evodiamine-induced cytotoxic activity on SGC-7901 human gastric adenocarcinoma cells and further to elucidate the underlying molecular mechanisms. Evodiamine significantly inhibited the proliferation of SGC-7901 cells and induced G2/M phase cell-cycle arrest.

Evodiamine-induced autophagy is partially involved in the death of SGC-7901 cells which was confirmed by using the autophagy inhibitor 3-methyladenine (3-MA). Evodiamine has therapeutic potential against cancers.

Pancreatic Cancer

In vitro application of the combination therapy triggered significantly higher frequency of pancreatic cancer cells apoptosis, inhibited the activities of PI3K, Akt, PKA, mTOR and PTEN, and decreased the activation of NF-κB and expression of NF- κB-regulated products. Evodiamine can augment the therapeutic effect of gemcitabine in pancreatic cancer through direct or indirect negative regulation of the PI3K/Akt pathway (Wei et al., 2012).

References

Chan ALF, Chang WS, Chen LM et al. (2009). Evodiamine stabilizes topoisomerase I-DNA cleavable complex to inhibit topoisomerase I activity. Molecules, (14):4:1342–1352.


Dong G, Sheng C, Wang CS, et al. (2010). Selection of evodiamine as a novel topoisomerase i inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as anti-tumor agents. Journal of Medicinal Chemistry, 53(21):7521–7531.


Du J, Wang XF, Zhou QM, et al. (2013). Evodiamine induces apoptosis and inhibits metastasis in MDA “American Typewriter”; “American Typewriter”;‑ MB-231 human breast cancer cells in vitro and in vivo. Oncol Rep, 30(2):685-94. doi: 10.3892/or.2013.2498.


Fei XF, Wang BX, T. Li TJ et al. (2003). Evodiamine, a constituent of Evodiae Fructus, induces anti-proliferating effects in tumor cells. Cancer Science, 94(1):92–98.


Huang YC, Guh JH, Teng CM. (2004). Induction of mitotic arrest and apoptosis by evodiamine in human leukemic T-lymphocytes. Life Sciences, 75(1):35–49.


Ji YB. (2011). Active Ingredients of Traditional Chinese Medicine: Pharmacology and Application. People's Medical Publishing House Co., LTD. Connecticut USA


Kan SF, Huang WJ, Lin LC, Wang PS. (2004). Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. International Journal of Cancer, 110(5):641–651.


Ko HC, Wang YH, Liou KT et al. (2007). Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. European Journal of Pharmacology, 555(2-3):211–217.


Kobayashi Y. (2003). The nociceptive and anti-nociceptive effects of evodiamine from fruits of Evodia rutaecarpa in mice. Planta Medica, 69(5):425–428.


Lee TJ, Kim EJ, Kim S et al. (2006). Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells. Molecular Cancer Therapeutics, 5(9):2398–2407.


Liao CH, Pan SL, Guh JH et al. (2005). Anti-tumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis, 26(5):968–975.


Ogasawara M, Matsubara T, Suzuki H. (2001). Inhibitory effects of evodiamine on in vitro invasion and experimental lung metastasis of murine colon cancer cells. Biological and Pharmaceutical Bulletin, 24(8):917–920.


Ogasawara M, Matsunaga T, Takahashi S, Saiki I, Suzuki H. (2002). Anti-invasive and metastatic activities of evodiamine. Biological and Pharmaceutical Bulletin, 25(11):1491–1493.


Rasul A, Yu B, Zhong L, et al. (2012). Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol Rep, 27(5):1481-7. doi: 10.3892/or.2012.1694


Shin YW, Bae EA, Cai XF, Lee JJ, and Kim DH. (2007). In vitro and in vivo antiallergic effect of the fructus of Evodia rutaecarpa and its constituents, Biological and Pharmaceutical Bulletin, 30(1):197–199, 2007.


Shyu KG, Lin S, Lee CC et al. (2006). Evodiamine inhibits in vitro angiogenesis: implication for anti-tumorgenicity. Life Sciences, 78(19):2234–2243.


Takada Y, Kobayashi Y, Aggarwal BB. (2005). Evodiamine Abolishes Constitutive and Inducible NF- κB Activation by Inhibiting IκBα Kinase Activation, Thereby Suppressing NF-κ B-regulated Antiapoptotic and Metastatic Gene Expression, Up-regulating Apoptosis, and Inhibiting Invasion. The Journal of Biological Chemistry, 280:17203-17212. doi: 10.1074/jbc.M500077200.


Tsai HP, Lin LW, Lai ZY et al. (2010). Immobilizing topoisomerase I on a surface plasmon resonance biosensor chip to screen for inhibitors. Journal of Biomedical Science, 17(1):49.


Wang C, Li S, Wang MW. (2010). Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF- κ B signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicology in Vitro, 24(3):898–904.


Wang KL, Hsia SM, Yeh JY, et al. (2013). Anti-Proliferative Effects of Evodiamine on Human Breast Cancer Cells. PLoS One, 8(6):e67297.


Wei WT, Chen H, Wang ZH, et al. (2012). Enhanced anti-tumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway. Int J Biol Sci, 8(1):1-14.


Yu H, Jin H, Gong W, Wang Z, Liang H. (2013). Pharmacological actions of multi-target-directed evodiamine. Molecules, 18(2):1826-43. doi: 10.3390/molecules18021826.


Yang J, Wu LJ, Tashino SI, et al. (2007). Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis. Free Radical Research, 41(10):1099–1108.


Zhang Y, Wu LJ, Tashiro SI, Onodera S, Ikejima T. (2003). Intracellular regulation of evodiamine-induced A375-S2 cell death. Biological and Pharmaceutical Bulletin, 26(11):1543–1547.


Zhang Y, Zhang QH, Wu LJ, et al. (2004). Atypical apoptosis in L929 cells induced by evodiamine isolated from Evodia rutaecarpa. Journal of Asian Natural Products Research, 6(1):19–27.

Apigenin

Cancer:
Breast, gastrointestinal., prostate, ovarian, pancreatic

Action: Anti-proliferative effect, induces apoptosis, chemo-sensitizer

Apigenin (4′,5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. There is evidence that the actions of apigenin might hinder the ability of gastrointestinal cancers to progress and spread.

Induces Apoptosis, Anti-metastatic

Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease (Lefort, 2013).

Chemo-sensitizer, Induces Apoptosis

Choi & Kim (2009) investigated the effects of combined treatment with 5-fluorouracil and apigenin on proliferation and apoptosis, as well as the underlying mechanism, in human breast cancer MDA-MB-453 cells. The MDA-MB-453 cells, which have been shown to overexpress ErbB2, were resistant to 5-fluorouracil; 5-fluorouracil exhibited a small dose-dependent anti-proliferative effect, with an IC50 of 90 microM. Interestingly, combined treatment with apigenin significantly decreased the resistance. Cellular proliferation was significantly inhibited in cells exposed to 5-fluorouracil at its IC50 and apigenin (5, 10, 50 and 100 microM), compared with proliferation in cells exposed to 5-fluorouracil alone.

This inhibition in turn led to apoptosis, as evidenced by an increased number of apoptotic cells and the activation of caspase-3. Moreover, compared with 5-fluorouracil alone, 5-fluorouracil in combination with apigenin at concentrations >10 microM exerted a pro-apoptotic effect via the inhibition of Akt expression.

Taken together, results suggest that 5-fluorouracil acts synergistically with apigenin inhibiting cell growth and inducing apoptosis via the down-regulation of ErbB2 expression and Akt signaling (Choi, 2009).

Breast Cancer, Prostate Cancer

Two flavonoids, genistein and apigenin, have been implicated as chemo-preventive agents against prostate and breast cancers; however, the mechanisms behind their respective cancer-protective effects may vary significantly. It was thought that the anti-proliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) β is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17β-estradiol, exhibited anti-proliferative effects and pro-apoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERβ transactivation, particularly at lower concentrations.

However, in mammalian assay, apigenin was found to be more ERβ-selective than genistein, which has equal potency in inducing transactivation through ERα and ERβ. Small interfering RNA-mediated down-regulation of ERβ abrogated the anti-proliferative effect of apigenin in both cancer cells but did not reverse that of genistein. These results unveil that the anti-cancer action of apigenin is mediated, in part, by ERβ. The differential use of ERα and ERβ signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anti-cancer properties (Mak, 2006).

Ovarian Cancer

Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. It has been demonstrated that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin has been found to suppress the expression of Id1 through activating transcription factor 3 (ATF3). These results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells (Li, 2009).

Pancreatic Cancer

Simultaneous treatment or pre-treatment (0, 6, 24 and 42 hours) of apigenin and chemotherapeutic drugs and various concentrations (0-50µM) were assessed using the MTS cell proliferation assay. Simultaneous treatment with apigenin (0,13, 25 or 50µM) and chemotherapeutic drugs 5-fluorouracil (5-FU, 50µM) or gemcitabine (Gem, 10µM) for 60 hours resulted in less-than-additive effect (p<0.05). Pre-treatment for 24 hours with 13µM of apigenin, followed by Gem for 36 hours was optimal to inhibit cell proliferation.

Pre-treatment of cells with 11-19µM of apigenin for 24 hours resulted in 59-73% growth inhibition when followed by Gem (10µM, 36h). Pre-treatment of human pancreatic cancer cells BxPC-3 with low concentrations of apigenin hence effectively aids in the anti-proliferative activity of chemotherapeutic drugs (Johnson, 2013).

Induces Apoptosis, Inhibits Angiogenesis and Metastasis.

Preclinical studies have also shown that Ocimum sanctum L. and some of the phytochemicals it contains (including apigenin) prevents chemical-induced skin, liver, oral., and lung cancers. These effects are thought to be mediated by increasing the anti-oxidant activity, altering gene expression, inducing apoptosis, and inhibiting angiogenesis and metastasis. The aqueous extract of Ocimum sanctum L. has been shown to protect mice against γ-radiation-induced sickness and mortality and to selectively protect the normal tissues against the tumoricidal effects of radiation. In particular, important phytochemicals like apigenin have also been shown to prevent radiation-induced DNA damage. This warrants its future research to establish its activity and utility in cancer prevention and treatment (Baliga, 2013).

Lung Cancer

Apigenin has been found to induce apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 µM for 48 hours treatment. Target identification investigations using A549 cells and in cell-free systems demonstrate that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 µM. Interestingly, apigenin also showed synergistic anti-cancer effects with another natural anti-tubulin agent, curcumin. Apigenin and curcumin synergistically induce cell death and apoptosis and also block cell-cycle progression at G2/M phase of A549 cells.

Understanding the mechanism of the synergistic effect of apigenin and curcumin could help to develop anti-cancer combination drugs from cheap and readily available nutraceuticals (Choudhury, 2013).

Induces Apoptosis

It has been shown that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by up-regulation of DR5, making it a potential cancer therapeutic agent. Apigenin has been found to enhance Apo2L/TRAIL-induced apoptosis in cancer cells by inducing DR5 expression through binding ANT2. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by up-regulating DR5 expression at the post-transcriptional level.

Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin Up-regulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. ANT2 inhibitors like apigenin may hence contribute to Apo2L/TRAIL therapy (Oishi, 2013).

Colorectal Cancer

Apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumor growth and anti-metastasis effects. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression.

This research provides direct evidence that apigenin inhibits tumor growth and metastasis both in vitro and in vivo. Apigenin up-regulates TAGLN and down-regulates MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cancer cell proliferation and migration (Chunhua, 2013).

References

Baliga MS, Jimmy R, Thilakchand KR, et al. (2013). Ocimum Sanctum L (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutr Cancer, 65(1):26-35. doi: 10.1080/01635581.2013.785010.

 

 

Choi EJ, Kim GH. (2009). 5-Fluorouracil combined with apigenin enhances anti-cancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep, 22(6):1533-7.

 

Choudhury D, Ganguli A, Dastidar DG, et al. (2013). Apigenin shows synergistic anti-cancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6):1297-309. doi: 10.1016/j.biochi.2013.02.010.

 

Chunhua L, Donglan L, Xiuqiong F, et al. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. doi: 10.1016/j.jnutbio.2013.03.006.

 

Johnson JL, Gonzalez de Mejia E. (2013). Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol, 20:83-91. doi: 10.1016/j.fct.2013.07.036.

 


Lefort ƒC, Blay J. (2013). Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res, 57(1):126-44. doi: 10.1002/mnfr.201200424.

 

Li ZD, Hu XW, Wang YT & Fang J. (2009). Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Letters, 583(12):1999-2003 doi:10.1016/j.febslet.2009.05.013.

 

Mak P, Leung YK, Tang WY, Harwood C & Ho SM. (2006). Apigenin suppresses cancer cell growth through ERβ. Neoplasia, 8(11):896–904.

 

Oishi M, Iizumi Y, Taniguchi T, et al. (2013). Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2. PLoS One, 8(2):e55922. doi: 10.1371/journal.pone.0055922.

Isoflavones

Cancer: Prostate, breast, endometrial

Action: Anti-estrogenic effects, radio-protective effect, pneumonitis, cachexia-inhibiting

Prostate Cancer, Breast Cancer

Isoflavones have been investigated in detail for their role in the prevention and therapy of prostate cancer. This is primarily because of the overwhelming data connecting high dietary isoflavone intake with reduced risk of developing prostate cancer. A number of investigations have evaluated the mechanism(s) of anti-cancer action of isoflavones such as genistein, daidzein, biochanin A, equol, etc., in various prostate cancer models, both in vitro and in vivo.

Nuclear receptors are considered to be a central goal for maximizing treatment opportunities in breast cancer. Among natural ligands for estrogen receptors (ER and ERβ), which are members of the nuclear receptors super-family, are found isoflavones. These natural compounds have a similar structure to the main female hormone 17β-estradiol. A rich source of isoflavones is soy and its products. Three isoflavones of the aglycone form (genistein, daidzein, glycitein) are predominantly found in soybean and red clover. Other important isoflavones are biochanin A and formononetin (Bialešová et al., 2013).

Breast Cancer

Soy isoflavones do not function as an estrogen, but rather exhibit anti-estrogenic properties. However, their metabolism differs between humans and animals and therefore the outcomes of animal studies may not be applicable to humans. The majority of breast cancer cases are hormone-receptor-positive; therefore, soy isoflavones should be considered a potential anti-cancer therapeutic agent (Douglas et al., 2013).

Anti-cancer Effects

Use of soy isoflavone mixture has been advocated as an alternative, wherein daidzein can negate harmful effects of genistein. Recent research indicates the novel role of genistein and other isoflavones in the potentiation of radiation therapy, epigenetic regulation of key tumor suppressors and oncogenes, and the modulation of miRNAs, epithelial-to-mesenchymal transition, and cancer stem cells, which has renewed the interest of cancer researchers in this class of anti-cancer compounds (Ahmad et al. 2013).

Radiation-induced Pneumonitis, Radiation-induced Side-effects

Radiation-induced pneumonitis and fibrosis have restricted radiotherapy for lung cancer. In a preclinical lung tumor model, soy isoflavones showed the potential to enhance radiation damage in tumor nodules and simultaneously protect normal lung from radiation injury. Soy isoflavones given pre- and post-radiation protected the lungs against adverse effects of radiation including skin injury, hair loss, increased breathing rates, inflammation, pneumonitis and fibrosis, providing evidence for a radio-protective effect of soy (Hillman et al., 2013 a).

Radio-sensitizer

Combined soy and radiation caused a significantly stronger inhibition of tumor progression compared to each modality alone in contrast to large invasive tumor nodules seen in control mice. At the same time, soy reduced radiation injury in lung tissue by decreasing pneumonitis, fibrosis and protecting alveolar septa, bronchioles and vessels (Hillman et al., 2013 b).

Endometrial Cancer

Because of their anti-oxidant and anti-mutagenic properties, flavonoids may reduce cancer risk. Some flavonoids have anti-estrogenic effects that can inhibit the growth and proliferation of endometrial cancer cells. The intake of flavanols, flavanones, flavonols, anthocyanidins, flavones, isoflavones, and proanthocyanidins was measured and high consumption of selected proanthocyanidins may reduce endometrial cancer risk (Rossi et al., 2013).

Breast Cancer Protection

The evidence to date from observational epidemiologic studies, suggests that soy food intake, in the amount consumed in Asian populations (about 10 to 20 mg isoflavones per day), may be associated with a reduction of risk of breast cancer development as well as mortality and recurrence among women with breast cancer. The large number of clinical intervention studies on soy that have investigated intermediate biomarkers of breast cancer risk, including circulating estrogen levels, mammographic density, and breast tissue changes (cell proliferation), have not shown clear beneficial or deleterious effects (Wu et al., 2013).

Cachexia-Inhibiting

Isoflavones possess anti-proliferative effects of cachexia-inducing cells (MKN45cl85 and 85As2mLuc) cancer cell lines. Isoflavone treatment on the models induced tumor cytostasis, attenuation of cachexia, and prolonged survival whereas discontinuation of the treatment resulted in progressive tumor growth and weight loss (Yanagihara et al., 2013).

Methylation Effects

There is an inverse correlation between estrogenic marker complement (C)3 and genistein, which suggests an anti-estrogenic effect. Isoflavones induced dose-specific changes in RARβ2 and CCND2 gene methylation, which correlated with genistein levels. Research by Qin & Zhu (2009) provides novel insights into estrogenic and methylation effects of dietary isoflavones.

References

Ahmad A, Biersack B, Li Y, et al. (2013). Perspectives on the Role of Isoflavones in Prostate Cancer. AAPS J, 15(4):991-1000.


Bialešová L, Brtko J, Lenko V, Macejov‡ D. (2013). Nuclear receptors – target molecules for isoflavones in cancer chemoprevention. Gen Physiol Biophys.


Douglas CC, Johnson SA, Arjmandi BH. (2013). Soy and its isoflavones: the truth behind the science in breast cancer. Anti-cancer Agents Med Chem, 13(8):1178-87.


Hillman GG, Singh-Gupta V, Lonardo F, et al [a]. (2013). Radioprotection of Lung Tissue by Soy Isoflavones. J Thorac Oncol.


Hillman GG, Singh-Gupta V, Hoogstra DJ, et al [b]. (2013). Differential effect of soy isoflavones in enhancing high intensity radiotherapy and protecting lung tissue in a preclinical model of lung carcinoma. Radiother Oncol. doi: 10.1016/j.radonc.2013.08.015.


Rossi M, Edefonti V, Parpinel M, et al. (2013). Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: a case-control study in Italy. Br J Cancer, 109(7):1914-1920. doi: 10.1038/bjc.2013.447.


Wu AH, Lee E, Vigen C. (2013). Soy isoflavones and breast cancer. Am Soc Clin Oncol Educ Book, 2013:102-6. doi: E10.1200/EdBook_AM.2013.33.102.


Yanagihara K, Takigahira M, Mihara K, et al. (2013). Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutr Cancer, 65(4):578-89. doi: 10.1080/01635581.2013.776089.

Genistein (See also Daidzien)

Cancer:
Breast, kidney, prostate, renal., liver, endometrial., ovarian

Action: Anti-angiogenesis, cell-cycle arrest, cancer stem cells, VEGF, radiotherapy, sex hormone-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1)

Genistein is a natural isoflavone phytoestrogen present in a number of plants, including soy, fava, and kudzu (Glycine max [(L.) Merr.], Vicia faba (L.), Pueraria lobata [(Willd.) Ohwi]).

Phytoestrogens

Phytoestrogens have been investigated at the epidemiological., clinical and molecular levels to determine their potential health benefits. The two major groups of phytoestrogens, isoflavones and lignans, are abundant in soy products and flax respectively, but are also present in a variety of other foods. It is thought that these estrogen-like compounds may protect against chronic diseases, such as hormone-dependent cancers, cardiovascular disease and osteoporosis (Stark & Madar, 2002).

S-Equol Production and Isoflavone Metabolism

S-Equol and Breast Cancer

Differences in ability to metabolize daidzein to equol might help explain inconsistent findings about isoflavones and breast cancer. Tseng et al. (2013) examined equol-producing status in relation to breast density, a marker of breast cancer risk, and evaluated whether an association of isoflavone intake with breast density differs by equol-producing status in a sample of Chinese immigrant women. In their sample, 30% were classified as equol producers. In adjusted linear regression models, equol producers had significantly lower mean dense tissue area (32.8 vs. 37.7 cm(2), P = 0.03) and lower mean percent breast density (32% vs. 35%, P = 0.03) than nonproducers. Significant inverse associations of isoflavone intake with dense area and percent density were apparent, but only in equol producers (interaction P = 0.05 for both).

Although these findings warrant confirmation in a larger sample, they offer a possible explanation for the inconsistent findings about soy intake and breast density and possibly breast cancer risk as well. The findings further suggest the importance of identifying factors that influence equol-producing status and exploring appropriate targeting of interventions.

S-Equol and Dietary Factors

S-(-)equol, an intestinally derived metabolite of the soy isoflavone daidzein, is proposed to enhance the efficacy of soy diets. Setchell et al. (2013) performed a comprehensive dietary analysis of 143 macro- and micro-nutrients in 159 healthy adults to determine whether the intake of specific nutrients favors equol production. Three-day diet records were collected and analyzed using Nutrition Data System for Research software and S-(-)equol was measured in urine by mass spectrometry.

Equol producers accounted for 29.6% of participants. No significant differences were observed for total protein, carbohydrate, fat, saturated fat, or fiber intakes between equol producers and nonproducers. However, principal component analysis revealed differences in several nutrients, including higher intakes of polyunsaturated fatty acids (P = 0.039), maltose (P = 0.02), and vitamins A (P = 0.01) and E (P = 0.035) and a lower intake of total cholesterol (P = 0.010) in equol producers.

Subtle differences in some nutrients may influence the ability to produce equol.

S-Equol and Dietary Factors; Fats

The soy isoflavones, daidzein and genistein, and the lignans, matairesinol and secoisolariciresinol, are phytoestrogens metabolized extensively by the intestinal microflora. Considerable important evidence is already available that shows extensive interindividual variation in isoflavone metabolism. There was a 16-fold variation in total isoflavonoid excretion in urine after the high-isoflavone treatment period. The variation in urinary equol excretion was greatest (664-fold), and subjects fell into two groups: poor equol excretors and good equol excretors (36%). A significant negative correlation was found between the proportion of energy from fat in the habitual diet and urinary equol excretion (r = -0.55; p = 0.012). Good equol excretors consumed less fat as percentage of energy than poor excretors (26 +/- 2.3% compared with 35 +/- 1.6%, p < 0.01) and more carbohydrate as percentage of energy than poor excretors (55 +/- 2.9% compared with 47 +/- 1.7%, p < 0.05).

It is suggested that the dietary fat intake decreases the capacity of gut microbial flora to synthesize equol (Rowland et al., 2000).

Isoflavones and Fermented Soy Foods

Serum concentrations of total isoflavones after 1–4 hours were significantly higher in the aglycone-rich fermented soybeans (Fsoy) group than in the glucoside-rich non-fermented soybeans (Soy) group. The Fsoy group showed significantly higher maximum concentration (Cmax: 2.79 ± 0.13 vs 1.74 ± 0.13 µmol L(-1) ) and area under the curve (AUC(0-24 h) : 23.78 ± 2.41 vs 19.95 ± 2.03 µmol day L(-1) ) and lower maximum concentration time (Tmax: 1.00 ± 0.00 vs 5.00 ± 0.67 h) compared with the Soy group. The cumulative urinary excretion of total isoflavones after 2 hours was significantly higher in the Fsoy group than in the Soy group. Individual isoflavones (daidzein, genistein and glycitein) showed similar trends to total isoflavones. Equol (a metabolite from daidzein) did not differ between the two groups.

The results of this study demonstrated that the isoflavones of aglycone-rich Fsoy were absorbed faster and in greater amounts than those of glucoside-rich Soy in postmenopausal Japanese women (Okabe et al., 2011).

Phytoestrogens and Breast Cancer; ER+/ER-, ER α /ER β

Dietary-derived Anti-angiogenic Compounds

Consumption of a plant-based diet can prevent the development and progression of chronic diseases that are associated with extensive neovascularization; however, little is known about the mechanisms. To determine whether prevention might be associated with dietary-derived angiogenesis inhibitors, the urine of healthy human subjects consuming a plant-based diet was fractionated and the fractions examined for their ability to inhibit the proliferation of vascular endothelial cells.

The isoflavonoid genistein was the most potent, and inhibited endothelial cell proliferation and in vitro angiogenesis at concentrations giving half-maximal inhibition of 5 and 150 microM, respectively. Genistein concentrations in urine of subjects consuming a plant-based diet are in the micromolar range, while those of subjects consuming a traditional Western diet are lower by a factor of > 30. The high excretion of genistein in urine of vegetarians and in addition to these results suggest that genistein may contribute to the preventive effect of a plant-based diet on chronic diseases, including solid tumors, by inhibiting neovascularization.

Thus, genistein may represent a member of a new class of dietary-derived anti-angiogenic compounds (Fotsis et al., 1993).

ERβ as a Down-regulator of ER+ Breast Cancer

The estrogen receptor (ER) isoform known as ERβ has become the focus of intense investigation as a potential drug target. The existence of clear-cut differences in ERβ and ERα expression suggests that tissues could be differentially targeted with ligands selective for either isoform (Couse et al., 1997; Enmark et al., 1997). In particular, the fact that ER β is widely expressed but not the primary estrogen receptor in, for example, the uterus (where estrogenic effects are mediated via ERα) (Harris, Katzenellenbogen, & Katzenellenbogen, 2002) opens up the possibility of targeting other tissues while avoiding certain classical estrogenic effects.

A major advance toward understanding how some phytoestrogens achieve modest ERβ selectivity was the X-ray structure determination of the ERβ ligand binding domain (LBD) complexed with genistein (GEN) (Pike et al., 1999), a 40-fold ERβ-selective ligand (Harris et al., 2002). This study clearly showed that there are only two residue substitutions in close proximity to GEN: ERα Leu384 is replaced by ER β Met336, and ERα Met421 is replaced by ER β Ile373.

ERbeta works as counter partner of ERalpha through inhibition of the transactivating function of ERalpha by heterodimerization, distinct regulation on several specific promoters by ERalpha or ERbeta, and ERbeta-specific regulated genes which are probably related to its anti-proliferative properties. Epidemiological studies of hormone replacement therapy and isoflavone (genistein) consumption indicate the possible contribution of ERbeta-specific signaling in breast cancer prevention. A selective estrogen receptor modulator, which works as an antagonist of ERalpha and an agonist of ERbeta, may be a promising chemo-preventive treatment (Saji, Hirose, & Toi, 2005).

Genistein and Apoptosis

The association between consumption of genistein containing soybean products and lower risk of breast cancer suggests a cancer chemo-preventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively.

After 6 days of incubation with 50 microM genistein, MCF-7, but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells.

In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7, but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was also studied. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner; whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18–24 hours but then increased considerably after 48 hours. Hence, the Bax:Bcl-2 ratio initially increased but later decreased.

Data suggests that at the concentration tested, MCF-7 cells, in contrast to MDA-MB-231 cells, were sensitive to the induction of apoptosis by genistein. However, the roles of Bax and Bcl-2 are unclear (Xu & Loo, 2001).

Genistein Derivatives and Breast Cancer Inhibition

Genistein binds to estrogen receptors and stimulates growth at concentrations that would be achieved by a high soy diet, but inhibits growth at high experimental concentrations.

The estrogen receptor (ER) is a major target for the treatment of breast cancer cells. Genistein, a soy isoflavone, possesses a structure similar to estrogen and can both mimic and antagonize estrogen effects although at high concentrations it inhibits breast cancer cell proliferation. Hence, to enhance the anti-cancer activity of Genistein at lower concentrations, seven structurally modified derivatives of Genistein based on the structural requirements for an optimal anti-cancer effect were synthesised. Among those seven, three derivatives showed high anti-proliferative activity with IC(50) levels in the range of 1-2.5 µM, i.e., at much lower concentrations range than Genistein itself, in three ER-positive breast cancer cell lines (MCF-7, 21PT and T47D) studied. In our analysis, we noticed that at IC(50) concentrations, the MA-6, MA-8 and MA-19 Genistein derivatives induced apoptosis, inhibited ER-α messenger RNA expression and increased the ratio of ER-β to ER-α levels in a manner comparable to that of the parent compound Genistein.

Of note, these three modified Genistein derivatives exerted their effects at concentrations 10–15 times lower than the parent compound, decreasing the likelihood of significant ER- α pathway activation, which has been a concern for Genistein. Hence these compounds might play a useful role in breast cancer chemoprevention (Marik et al., 2011).

Genistein and ER α

To determine the effects of low-dose, long-term genistein exposure MCF-7 breast cancer cells were cultured in 10nM genistein for 10-12 weeks and investigated whether or not this long-term genistein treatment (LTGT) altered the expression of estrogen receptor alpha (ERalpha) and the activity of the PI3-K/Akt signaling pathway. This is known to be pivotal in the signaling of mitogens such as oestradiol (E(2)), insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). LTGT significantly reduced the growth promoting effects of E(2) and increased the dose-dependent growth-inhibitory effect of the PI3-K inhibitor, LY 294002, compared to untreated control MCF-7 cells.

This was associated with a significant decreased protein expression of total Akt and phosphorylated Akt but not ERalpha. Rapamycin, an inhibitor of one of the downstream targets of Akt, mammalian target of rapamycin (mTOR), also dose-dependently inhibited growth but the response to this drug was similar in LTGT and control MCF-7 cells. The protein expression of liver receptor homologue-1 (LRH1), an orphan nuclear receptor implicated in tumorigenesis was not affected by LTGT.

These results show that LTGT results in a down-regulation of the PI3-K/Akt signaling pathway and may be a mechanism through which genistein could offer protection against breast cancer (Anastasius et al., 2009).

Genistein and ER+/ER-

Genistein was found to cause a dose-dependent growth inhibition of the two hormone-sensitive cell lines T47D and ZR75.1 and of the two hormone-independent cell lines MDAMB-231 and BT20. Flow cytometric analysis of cells treated for 4 days with 15 and 30 M genistein showed a dose-dependent accumulation in the G2M phase of the cell-cycle. At the highest tested concentration, there was a 7-fold increase in the percentage of cells in G2M (63%) with respect to the control (9%) in the case of T47D cells and a 2.4-fold increase in the case of BT20. An intermediate 4-fold accumulation was observed in the case of MDAMB-231 and ZR75.1. The G2M arrest was coupled with a parallel depletion of the G0/G1 phase.

To understand the mechanism of action underlying the block in G2M induced by genistein, Cappelletti et al. (2000) investigated the expression and the activity of cyclins and of cyclin-dependent kinases specifically involved in the G2M transition. As expected, p34cdc-2 expression, monitored by Western blotting, was unaffected by genistein treatment in all cell lines. With the exception of the T47D cell line, we revealed an increase in the tyrosine phosphorylated form of p34, suggesting an inactivation of the p34cdc-2 catalytic activity consequent to treatment of cells with genistein. In fact, immunoprecipitates from genistein-treated MDAMB-231 and BT20 cells displayed a 4-fold decrease in kinase activity evaluated using the histone H1 as substrate.

Conversely, no variation in kinase activity was observed between treated and untreated ZR75.1 cells despite the increase in p34 phosphorylation. In cells treated with 30 M genistein, cyclin B1 (p62) increased 2.8-,8-and 103-fold, respectively, in BT20, MDAMB-231, and ZR75.1 cells, suggesting an accumulation of the p62, which is instead rapidly degraded in cycling cells. No effects were observed on cyclin expression in T47D cells.

We therefore conclude that genistein causes a G2M arrest in breast cancer cell lines, but that such growth arrest is not necessarily coupled with deregulation of the p34cdc-2/cyclin B1 complex only in all of the studied cell lines.

Genistein and ER+/ER-; MDR

Genistein is a potent inhibitor of the growth of the human breast carcinoma cell lines, MDA-468 (estrogen receptor negative), and MCF-7 and MCF-7-D-40 (estrogen receptor positive) (IC50 values from 6.5 to 12.0 µg/ml). The presence of the estrogen receptor is not required for the isoflavones to inhibit tumor cell growth (MDA-468 vs MCF-7 cells). In addition, the effects of genistein and biochanin A are not attenuated by over expression of the multi-drug resistance gene product (MCF-7-D40 vs MCF-7 cells (Peterson et al., 1991).

Studies have shown that genistein exerts multiple suppressive effects on both estrogen receptor positive (ER+) as well as estrogen receptor negative (ER-) human breast carcinoma lines suggesting that the mechanisms of these effects may be independent of ER pathways.

In the present study however Shao et al. (2000) provide evidence that in the ER+ MCF-7, T47D and 549 lines but not in the ER-MDA-MB-231 and MDA-MB-468 lines both presumed 'ER-dependent' and 'ER-independent' actions of genistein are mediated through ER pathways. Genistein's anti-proliferative effects are estrogen dependent in these ER+ lines, being more pronounced in estrogen-containing media and in the presence of exogenous 17-beta estradiol. Genistein also inhibits the expression of ER-downstream genes including pS2 and TGF-beta in these ER+ lines and this inhibition is also dependent on the presence of estrogen. Genistein inhibits estrogen-induced protein tyrosine kinase (PTK) activity. Genistein is only a weak transcriptional activator and actually decreases ERE-CAT levels induced by 17-beta estradiol in the ER+ lines.

Genistein also decreases steady state ER mRNA only in the presence of estrogen in the ER+ lines thereby manifesting another suppression of and through the ER pathway. Their observations resurrect the hypothesis that genistein functions as a 'good estrogen' in ER+ breast carcinomas. Since chemo-preventive effects of genistein would be targeted to normal ER-positive ductal-lobular cells of the breast, this 'good estrogen' action of genistein is most relevant to our understanding of chemoprevention.

Genistein and Concentration

The anti-proliferative activity of the isoflavones daidzein and genistein were investigated in three breast cancer cell lines with different patterns of estrogen receptor (ER) and c erbB 2 protein expression (ERα positive MCF 7 cells, c erbB 2 positive SK BR 3 cells and ERα/c erbB 2 positive ZR 75 1). After treatment at various concentrations (1 200 µM for 72 hours), the effect of daidzein and genistein on the proliferation of different cell types varied; these effects were found to be associated with ERα and c erbB 2 expression. Daidzein and genistein exhibited biphasic effects (stimulatory or inhibitory) on proliferation and ERα expression in MCF 7 cells. Although 1 µM daidzein significantly stimulated cell growth, ERα expression was unaffected. However, genistein showed marked increases in proliferation and ERα expression after exposure to <10 µM genistein.

Notably, the inhibition of cell proliferation by 200 µM genistein was greater compared to that by daidzein at the same concentration. Daidzein and genistein significantly inhibited proliferation of SK BR 3 and ZR 75 1 cells in a dose-dependent manner. In addition, ERα and c erbB 2 expression was reduced by daidzein and genistein in both SK BR 3 and ZR 75 1 cells in a dose-dependent manner. However, the effect of genistein was greater compared to that of daidzein.

In conclusion, the isoflavones daidzein and genistein showed anti breast cancer activity, which was associated with expression of the ERα and c erbB 2 receptors (Choi et al., 2013).

ER- α / ER β Receptors

Isoflavones are phytoestrogens that have been linked to both beneficial as well as adverse effects in relation to cell proliferation and cancer risks. The mechanisms that could be involved in this dualistic mode of action were investigated. One mechanism relates to the different ultimate cellular effects of activation of estrogen receptor (ER) α, promoting cell proliferation, and of ERβ, promoting apoptosis, with the major soy isoflavones genistein and daidzein activating especially ERβ.

A second mode of action includes the role of epigenetics, including effects of isoflavones on DNA methylation, histone modification and miRNA expression patterns. The overview presented reveals that we are only at the start of unraveling the complex underlying mode of action for effects of isoflavones, both beneficial or adverse, on cell proliferation and cancer risks. It is evident that whatever model system will be applied, its relevance to human tissues with respect to ERα and ERβ levels, co-repressor and co-activator characteristics as well as its relevance to human exposure regimens, needs to be considered and defined (Rietjens et al., 2013).

Genistein and ER+/ER-, ER- α / ER β Receptors

A novel mechanism of adipokine, adiponectin (APN) -mediated signaling that influences mammary epithelial cell proliferation, differentiation, and apoptosis to modify breast cancer risk has been identified. It was demonstrated that early dietary exposure to soy protein isolate induced mammary tissue APN production without corresponding effects on systemic APN levels. In estrogen receptor (ER)-negative MCF-10A cells, recombinant APN promoted lobuloalveolar differentiation by inhibiting oncogenic signal transducer and activator of transcription 3 activity.

In ER-positive HC11 cells, recombinant APN increased ERβ expression, inhibited cell proliferation, and induced apoptosis. Using the estrogen-responsive 4X-estrogen response element promoter-reporter construct to assess ER transactivation and small interfering RNA targeting of ERα and ERβ, Rahal et al. (2011) show that APN synergized with the soy phytoestrogen genistein to promote ERβ signaling in the presence of estrogen (17β-estradiol) and ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and to oppose ERα signaling in the presence of the ERα-specific agonist 4,4',4'-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol.

The enhancement of ERβ signaling with APN + genistein co-treatments was associated with induction of apoptosis, increased expression of pro-apoptotic/prodifferentiation genes (Bad, p53, and Pten), and decreased anti-apoptotic (Bcl2 and survivin) transcript levels. These results suggest that mammary-derived APN can influence adjacent epithelial function by ER-dependent and ER-independent mechanisms that are consistent with reduction of breast cancer risk and suggest local APN induction by dietary factors as a targeted approach for promotion of breast health.

Genistein and Non-breast Cancer

Genistein Concentrations; Endometrial Cancer

The influence of two phytoestrogens (Genistein and Daidzein) on estrogen-related receptor-α in endometrial cancer cell line Ishikawa was investigated on the proliferation of the cells in this cell line. Ishikawa cells were incubated with different concentrations of Genistein and Daidzein (40, 20, 10, 5 µmol/L) for 24 hours or 48 hours, followed by Real-Time PCR for analyzing the expression of ERR-α mRNA in the cell line. MTT assay was then performed to evaluate the proliferation of Ishikawa cells.

The expression level of ERR-α mRNA in Ishikawa cells was higher than that of the control group after being dealt for 24 hours or 48 hours with Genistein, and the concentration 20 µmol/L was most effective. Nevertheless, this up-regulation was blocked when the cells were treated with 40 µmol/L Genistein. Lower concentration (5, 10 µmol/L) Genistein had depressant effect on proliferation of the cells, while higher concentrations (20, 40 µmol/L) had stimulant effect. After being treated with different concentrations of Daidzein, the expression of ERR- α mRNA in all experimental groups was significantly higher than that in the control group. In the 24 hour group, the concentration 40 µmol/L had most obvious effect; but in the 48 hour group, the concentration 20 µmol/L had most obvious effect, and this up-regulation was blocked when the concentration was elevated to 40 µmol/L.

Noticeably, all concentrations of Daidzein had depressant effect on the proliferation of Ishikawa cells in both 24 hour and 48 hour groups. In the 24 hour group, lower concentrations were more effective, but in the 48 hour group, concentration showed no significant effect. In lower concentrations, both Genistein and Daidzein have up-regulation effect on the expression of ERR-α, and block the proliferation of Ishikawa cells; but in higher concentrations, the up-regulation effect on ERR-α mRNA expression by these two phytoestrogens is not obvious. Genistein stimulates the proliferation of lshikawa cells in higher concentrations, while Daidzein suppresses the proliferation, especially in lower concentrations (Xin et al., 2009).

Genistein and VEGF; Ovarian Cancer

Genistein represses NF-kappaB (NF-κB), a pro-inflammatory transcription factor, and inhibits pro-inflammatory cytokines such as TNF-α and IL-6 in epithelial ovarian cancer. Additionally, it has been shown to stabilize p53 protein, sensitize TRAIL (TNF receptor apoptosis-inducing ligand) induce apoptosis, and prevent or delay chemotherapy-resistance. Recent studies further indicate that genistein potently inhibits VEGF production and suppresses ovarian cancer cell metastasis in vitro.

Based on widely published in vitro and mouse-model data, some anti-inflammatory phytochemicals appear to exhibit activity in modulating the tumor microenvironment. Specifically, apiegenin, baicalein, curcumin, EGCG, genistein, luteolin, oridonin, quercetin, and wogonin repress NF-kappaB (NF-κB, a pro-inflammatory transcription factor) and inhibit pro-inflammatory cytokines such as TNF-α and IL-6. Recent studies further indicate that apigenin, genistein, kaempferol, luteolin, and quercetin potently inhibit VEGF production and suppress ovarian cancer cell metastasis in vitro. Lastly, oridonin and wogonin were suggested to suppress ovarian CSCs as is reflected by down-regulation of the surface marker EpCAM (Chen, Michael, & Butler-Manuel, 2012).

Renal Cell Carcinoma, Prostate Cancer; Radiotherapy

The KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer. These studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more effective and safer therapeutic approach as the tumor growth and progression are inhibited both in the primary and metastatic sites (Gilda et al., 2007).

Cell-cycle Arrest

Genistein treatment increased Wee1 levels and decreased phospho-Wee1 (Ser 642). Moreover, genistein substantially decreased the Ser473 and Thr308 phosphorylation of Akt and up-regulated PTEN expression. Down-regulation of PTEN by siRNA in genistein-treated cells increased phospho-Wee1 (Ser642), whereas it decreased phospho-Cdc2 (Tyr15), resulting in decreased G2/M cell-cycle-arrest. Therefore, induction of G2/M cell-cycle arrest by genistein involved up-regulation of PTEN (Liu et al., 2013).

Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity for self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs.

Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate (Dandawate et al., 2013).

Genistein and Sex Hormone-binding Globulin (SHBG)

Studies have indicated a correlation between a high level of urinary lignans and isoflavonoid phytoestrogens, particularly genistein, and a low incidence of hormone-dependent cancers, such as breast and prostate cancer. Previously it has been observed that a vegetarian diet is associated with high plasma levels of sex hormone-binding globulin (SHBG), reducing clearance of sex hormones and probably risk of breast and prostate cancer. In the present study we investigated the in vitro effect of genistein on the production of SHBG by human hepatocarcinoma (Hep-G2) cells in culture and its effect on cell proliferation.

It has additionally been found that genistein not only significantly increases the SHBG production by Hep-G2 cells, but also suppresses the proliferation of those cancer cells already at a stage when SHBG production continues to be high. It is hence concluded that, in addition to the lignan enterolactone, the most abundant urinary isoflavonoid genistein stimulates SHBG production and inhibits Hep-G2 cancer cell proliferation (Mousavi et al., 1993).

Insulin-like Growth Factor-1 (IGF-1); Prostate Cancer

Elevated levels of insulin-like growth factor-1 (IGF-1) are associated with an increased risk of several different cancers, including prostate cancer. Inhibition of IGF-1 and the downstream signaling pathways mediated by the activation of the IGF-1 receptor (IGF-1R) may be involved in inhibiting prostate carcinogenesis. Genistein treatment caused a significant inhibition of IGF-1-stimulated cell growth. Flow cytometry analysis revealed that genistein significantly decreased the number of IGF-1-stimulated cells in the G0/G1 phase of the cell-cycle. In IGF-1-treated cells, genistein effectively inhibited the phosphorylation of IGF-1R and the phosphorylation of its downstream targets, such as Src, Akt, and glycogen synthase kinase-3β (GSk-3β). IGF-1 treatment decreased the levels of E-cadherin but increased the levels of β-catenin and cyclin D1.

However, genistein treatment greatly attenuated IGF-1-induced β-catenin signaling that correlated with increasing the levels of E-cadherin and decreasing cyclin D1 levels in PC-3 cells. In addition, genistein inhibited T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity. These results showed that genistein effectively inhibited cell growth in IGF-1-stimulated PC-3 cells, possibly by inhibiting downstream of IGF-1R activation (Lee et al., 2012).

Sex Hormone-binding Globulin (SHBG); Hepatoma

Sex hormone-binding globulin (SHBG) is the main transport binding protein for sex steroid hormones in plasma and regulates their accessibility to target cells. Plasma SHBG is secreted by the liver under the control of hormones and nutritional factors. In the human hepatoma cell line (HepG2), thyroid and estrogenic hormones, and a variety of drugs including the anti-estrogen tamoxifen, the phytoestrogen, genistein and mitotane (Op'DDD) increase SHBG production and SHBG gene promoter activity. In contrast, monosaccharides (glucose or fructose) effectively decrease SHBG expression by inducing lipogenesis, which reduces hepatic HNF-4alpha levels, a transcription factor that plays a critical role in controlling the SHBG promoter. Interestingly, diminishing hepatic lipogenesis and free fatty acid liver biosynthesis also appear to be associated with the positive effects of thyroid hormones and PPARgamma antagonists on SHBG expression.

This mechanism provides a biological explanation for why SHBG is a sensitive biomarker of insulin resistance and the metabolic syndrome, and why low plasma SHBG levels are a risk factor for developing hyperglycemia and type 2 diabetes, especially in women (Pugeat et al., 2009).

Cancer: Pancreatic

Pancreatic cancer remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Genistein is a prominent isoflavonoid found in soy products and has been proposed to be responsible for lowering the rate of pancreatic cancer in Asians. However, the molecular mechanism(s) by which genistein elicits its effects on pancreatic cancer cells has not been fully elucidated.

Wang et al., (2006) have previously shown that genistein induces apoptosis and inhibits the activation of nuclear factor kappaB (NF-kappaB) pathway. Moreover, Notch signaling is known to play a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of pancreatic cancer. Hence, in our study, they investigated whether there is any cross talk between Notch and NF-kappaB during genistein-induced apoptosis in BxPC-3 pancreatic cancer cells. They found that genistein inhibits cell growth and induces apoptotic processes in BxPC-3 pancreatic cancer cells.

This was partly due to inhibition of Notch-1 activity. BxPC-3 cells transfected with Notch-1 cDNA showed induction of NF-kappaB activity, and this was inhibited by genistein treatment. From these results, we conclude that the inhibition of Notch-1 and NF-kappaB activity and their cross talk provides a novel mechanism by which genistein inhibits cell growth and induces apoptotic processes in pancreatic cancer cells.

References

Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA. (2009). Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signaling pathway. J Steroid Biochem Mol Biol, 116(1-2):50-55.


Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G J. (2000). Genistein blocks breast cancer cells in the G2M phase of the cell-cycle. Cell. Biochem, 79(4):594-600. doi: 10.1002/1097-4644(20001215)79:4<594::AID-JCB80>3.0.CO;2-4.


Chen SS, Michael A, Butler-Manuel SA. (2012). Advances in the treatment of ovarian cancer: a potential role of anti-inflammatory phytochemicals. Discov Med, 13(68):7-17.


Choi EJ, Kim GH. (2013). Anti-proliferative activity of daidzein and genistein may be related to ERα /c-erbB-2 expression in human breast cancer cells. Mol Med Rep, 7(3):781-4. doi: 10.3892/mmr.2013.1283.


Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138(1997):4613–4621


Dandawate P, Padhye S, Ahmad A, Sarkar FH. (2013). Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res, 3(2):165-182.


Enmark E, Peltohuikko M, Grandien K, et al. (1997). Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab, 82(1997):4258–4265.


Fotsis T, Pepper M, Adlercreutz H, et al. (1993). Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci, 90(7):2690-4.


Harris HA, Albert LM, Leathurby Y, et al. (2002). Evaluation of an estrogen receptor- β agonist in animal models of human disease. Endocrinology, 144(2003):4241–4249


Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. (2002). Characterization of the biological roles of the estrogen receptors, ER alpha and ER beta, in estrogen target tissues in vivo through the use of an ER alpha-selective ligand. Endocrinology, 143(2002):4172–4177.


Hillman GG, Wang Y, Che M, et al. (2007). Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model. BMC Cancer, 7:4. doi:10.1186/1471-2407-7-4.


Lee J, Ju J, Park S, et al. (2012). Inhibition of IGF-1 Signaling by Genistein: Modulation of E-Cadherin Expression and Down-regulation of β -Catenin Signaling in Hormone Refractory PC-3 Prostate Cancer Cells. Nutrition and Cancer, 64(1). doi:10.1080/01635581.2012.630161


Liu YL, Zhang GQ, Yang Y, et al. (2013). Genistein Induces G2/M Arrest in Gastric Cancer Cells by Increasing the Tumor Suppressor PTEN Expression. Nutr Cancer.


Marik R, Allu M, Anchoori R, et al. (2011). Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer Biol Ther, 11(10):883-92.


Mousavi Y, Adlercreutz H. (1993). Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids, 58(7):301-4.


Okabe Y, Shimazu T, Tanimoto H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric, 91(4):658-63. doi: 10.1002/jsfa.4228.


Peterson G, Barnes S. (1991). Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochemical and Biophysical Research Communications, 179(1):661-667. doi:10.1016/0006-291X(91)91423-A.


Pike ACW, Brzozowski AM, Hubbard RE, et al. (1999). Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J, 18(1999): 4608–4618


Pugeat M, Nader N, Hogeveen K, et al. (2010). Sex hormone-binding globulin gene expression in the liver: Drugs and the metabolic syndrome. Mol Cell Endocrinol, 316(1):53-9. doi: 10.1016/j.mce.2009.09.020.


Rahal OM, Simmen RC. (2011). Paracrine-Acting Adiponectin Promotes Mammary Epithelial Differentiation and Synergizes with Genistein to Enhance Transcriptional Response to Estrogen Receptor β Signaling. Endocrinology, 152(9):3409-21. doi: 10.1210/en.2011-1085.


Rietjens IM, Sotoca AM, Vervoort J, Louisse J. (2013). Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res, 57(1):100-13. doi: 10.1002/mnfr.201200439.


Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. (2000). Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer, 36(1):27-32.


Saji S, Hirose M, Toi M. (2005). Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol, 56(1):21-6.


Setchell KD, Brown NM, Summer S, et al. (2013). Dietary Factors Influence Production of the Soy Isoflavone Metabolite S-(-)Equol in Healthy Adults. J Nutr.


Shao ZM, Shen ZZ, Fontana JA, Barsky SH. (2000). Genistein's ER-dependent and independent actions are mediated through ER pathways in ER-positive breast carcinoma cell lines. Anti-cancer Res, 20(4):2409-16.


Stark A, Madar Z. (2002). Phytoestrogens: a review of recent findings. J Pediatr Endocrinol Metab, 15(5):561-72.


Tseng M, Byrne C, Kurzer MS, Fang CY. (2013). Equol-producing status, isoflavone intake, and breast density in a sample of u.s. Chinese women. Cancer Epidemiol Biomarkers Prev, 22(11):1975-83. doi: 10.1158/1055-9965.EPI-13-0593.


Xin Z, Siji L, Yan D, Weijuan X, Jie S, Qianyu W. (2009). Influence of Genistein and Daidzein on estrogen-related receptor- α in an Endometrial Carcinoma Cell Line. Tong Ji Da Xue Xue Bao (Yi Xue Ban), 30(4): 12-17.


Xu J, Loo G. (2001). Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines. Journal of Cellular Biochemistry, 82(1), 78-88.

Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer. 2006 Apr 15;118(8):1930-6.

Curcumin

Cancer: Colorectal., prostate, pancreatic

Action: MDR, chemo-preventive activity, anti-inflammatory, attenuation of immune suppression

Chemo-preventive Activity

Curcumin is a naturally occurring, dietary polyphenolic phytochemical that is under preclinical trial evaluation for cancer-preventive drug development. It is derived from the rhizome of Curcuma longa L. and has both anti-oxidant and anti-inflammatory properties; it inhibits chemically-induced carcinogenesis in the skin, forestomach, and colon when it is administered during initiation and/or postinitiation stages. Chemo-preventive activity of curcumin is observed when it is administered prior to, during, and after carcinogen treatment as well as when it is given only during the promotion/progression phase (starting late in premalignant stage) of colon carcinogenesis (Kawamori et al., 1999)

Anti-inflammatory

With respect to inflammation, in vitro, it inhibits the activation of free radical-activated transcription factors, such as nuclear factor κB (NFκB) and AP-1, and reduces the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), and interleukin-8 (Chan et al., 1998)

Prostate Cancer

In addition, NF-kappaB and AP-1 may play a role in the survival of prostate cancer cells, and curcumin may abrogate their survival mechanisms (Mukhopadhyay et al., 2001).

Pancreatic Cancer

In patients suffering from pancreatic cancer, orally-administered curcumin was found to be well-tolerated and despite limited absorption, had a reasonable impact on biological activity in some patients. This was attributed to its potent nuclear factor-kappaB (NF-kappaB) and tumor-inhibitory properties, against advanced pancreatic cancer (Dhillon et al., 2008)

MDR

Curcumin, the major component in Curcuma longa (Jianghuang), inhibited the transport activity of all three major ABC transporters, i.e. Pgp, MRP1 and ABCG2 (Ganta et al., 2009).

Curcumin reversed MDR of doxorubicin or daunorubicin in K562/DOX cell line and decreased Pgp expression in a time-dependent manner (Chang et al., 2006). Curcumin enhanced the sensitivity to vincristine by the inhibition of Pgp in SGC7901/VCR cell line (Tang et al., 2005). Moreover, curcumin was useful in reversing MDR associated with a decrease in bcl-2 and survivin expression but an increase in caspase-3 expression in COC1/DDP cell line (Ying et al., 2007).

The cytotoxicity of vincristine and paclitaxel were also partially restored by curcumin in resistant KBV20C cell line. Curcumin derivatives reversed MDR by inhibiting Pgp efflux (Um et al., 2008). A chlorine substituent at the meta-or para-position on benzamide improved MDR reversal [72]. Bisdemethoxycurcumin modified from curcumin resulted in greater inhibition of Pgp expression (Limtrakul et al., 2004).

Attenuation of Immune Suppression

Curcumin (a chalcone) exhibited toxicity to human neural stem cells (hNSCs). Although oridonin (a diterpene) showed a null toxicity toward hNSCs, it repressed the enzymatic function only marginally in contrast to its potent cytotoxicity in various cancer cell lines. While the mode of action of the enzyme-polyphenol complex awaits to be investigated, the sensitivity of enzyme inhibition was compared to the anti-proliferative activities toward three cancer cell lines.

The IC50s obtained from both sets of the experiments indicate that they are in the vicinity of micromolar concentration with the enzyme inhibition slightly more active.

These results suggest that attenuation of immune suppression via inhibition of IDO-1 enzyme activity may be one of the important mechanisms of polyphenols in chemoprevention or combinatorial cancer therapy (Chen et al., 2012).

Cancer Stem Cells

In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size.

Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in 'complete' or 'partial' responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples (Reddy et al., 2011).

Multiple Cancer Effects; Cell-signaling

Curcumin has been shown to interfere with multiple cell signaling pathways, including cell-cycle (cyclin D1 and cyclin E), apoptosis (activation of caspases and down-regulation of anti-apoptotic gene products), proliferation (HER-2, EGFR, and AP-1), survival (PI3K/AKT pathway), invasion (MMP-9 and adhesion molecules), angiogenesis (VEGF), metastasis (CXCR-4) and inflammation (NF- κB, TNF, IL-6, IL-1, COX-2, and 5-LOX).

The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets (Anand et al., 2008).

Anti-inflammatory; Cell-signaling

Curcumin, a liposoluble polyphenolic pigment isolated from the rhizomes of Curcuma longa L. (Zingiberaceae), is another potential candidate for new anti-cancer drug development. Curcumin has been reported to influence many cell-signaling pathways involved in tumor initiation and proliferation. Curcumin inhibits COX-2 activity, cyclin D1 and MMPs overexpresion, NF-kB, STAT and TNF-alpha signaling pathways and regulates the expression of p53 tumor suppressing gene.

Curcumin is well-tolerated but has a reduced systemic bioavailability. Polycurcumins (PCurc 8) and curcumin encapsulated in biodegradable polymeric nanoparticles showed higher bioavailability than curcumin together with a significant tumor growth inhibition in both in vitro and in vivo studies (Cretu et al., 2012). Curcumin also sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5) (Jung et al., 2005).

Curcumin and bioavailability

Curcumin, a major constituent of the spice turmeric, suppresses expression of the enzyme cyclooxygenase 2 (Cox-2) and has cancer chemo-preventive properties in rodents. It possesses poor systemic availability. Marczylo et al. (2007) explored whether formulation with phosphatidylcholine increases the oral bioavailability or affects the metabolite profile of curcumin. Their results suggest that curcumin formulated with phosphatidylcholine furnishes higher systemic levels of parent agent than unformulated curcumin.

Curcuminoids are poorly water-soluble compounds and to overcome some of the drawbacks of curcuminoids, Aditya et al. (2012) explored the potential of liposomes for the intravenous delivery of curcuminoids. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC). Curcumin/curcuminoids were encapsulated in phosphatidylcholine vesicles with high yields. Vesicles in the size range around 200 nm were selected for stability and cell experiments. Liposomal curcumin were found to be twofold to sixfold more potent than corresponding curcuminoids. Moreover, the mixture of curcuminoids was found to be more potent than pure curcumin in regard to the anti-oxidant and anti-inflammatory activities (Basnet et al., 2012). Results suggest that the curcumin-phosphatidylcholine complex improves the survival rate by increasing the anti-oxidant activity (Inokuma et al., 2012). Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases (Wang et al., 2012). Data demonstrate that treatment with curcumin dissolved in sesame oil or phosphatidylcholine curcumin improves the peripheral neuropathy of R98C mice by alleviating endoplasmic reticulum stress, by reducing the activation of unfolded protein response (Patzk- et al., 2012).

References

Aditya NP, Chimote G, Gunalan K, et al. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol, 131(3):292-9. doi: 10.1016/j.exppara.2012.04.010.


Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. (2008). Curcumin and cancer: An 'old-age' disease with an 'age-old' solution. Cancer Letters, 267(1):133–164. doi: 10.1016/j.canlet.2008.03.025.


Basnet P, Hussain H, Tho I, Skalko-Basnet N. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci, 101(2):598-609. doi: 10.1002/jps.22785.


Chan MY, Huang HI, Fenton MR, Fong D. (1998). In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer-preventive Natural Product with Anti-Inflammatory Properties. Biochemical Pharmacology, 55(12), 1955-1962.


Chang HY, Pan KL, Ma FC, et al. (2006). The study on reversing mechanism of Multi-drug resistance of K562/DOX cell line by curcumin and erythromycin. Chin J Hem, 27(4):254-258.


Chen SS, Corteling R, Stevanato L, Sinden J. (2012). Polyphenols Inhibit Indoleamine 3,5-Dioxygenase-1 Enzymatic Activity — A Role of Immunomodulation in Chemoprevention. Discovery Medicine.


Cre ţ u E, Trifan A, Vasincu A, Miron A. (2012). Plant-derived anti-cancer agents – curcumin in cancer prevention and treatment. Rev Med Chir Soc Med Nat Iasi, 116(4):1223-9.


Dhillon N, Aggarwal BB, Newman RA, et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res,14(14):4491-9. doi: 10.1158/1078-0432.CCR-08-0024.


Ganta S, Amiji M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations To overcome Multi-drug resistance in tumor cells. Mol Pharm, 6(3):928-939. doi: 10.1021/mp800240j.


Inokuma T, Yamanouchi K, Tomonaga T, et al. (2012). Curcumin improves the survival rate after a massive hepatectomy in rats. Hepatogastroenterology, 59(119):2243-7. doi: 10.5754/hge10650.


Jung EM, Lim JH, Lee TJ, et al. (2005). Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5). Carcinogenesis, 26(11):1905-1913.


Kawamori T, Lubet R, Steele V E, et al. (1999). Chemo-preventive Effect of Curcumin, a Naturally Occurring Anti-Inflammatory Agent, during the Promotion/Progression Stages of Colon Cancer. Cancer Research, 59(3), 597-601.


Limtrakul P, Anuchapreeda S, Buddhasukh D. (2004). Modulation of human Multi-drug resistance MDR-1 gene by natural curcuminoids. BMC Cancer, 4:13.


Marczylo TH, Verschoyle RD, Cooke DN, et al. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol, 60(2):171-7.


Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, & Aggarwal., B. B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609.


Patzk- A, Bai Y, Saporta MA, et al. (2012). Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain, 135(Pt 12):3551-66. doi: 10.1093/brain/aws299.


Reddy RM, Kakarala M, Wicha MS. (2011). Clinical trial design for testing the stem cell model for the prevention and treatment of cancer. Cancers (Basel), 3(2):2696-708. doi: 10.3390/cancers3022696.


Tang XQ, Bi H, Feng JQ, Cao JG. (2005). Effect of curcumin on Multi-drug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin, 26(8):1009-1016.


Um Y, Cho S, Woo HB, et al. (2008). Synthesis of curcumin mimics with Multi-drug resistance reversal activities. Bioorg Med Chem,16(7):3608-3615.


Wang LL, Sun Y, Huang K, Zheng L. (2012). Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res, 57(9):1557-68. doi: 10.1002/mnfr.201200718.


Ying HC, Zhang SL, Lv J. (2007). Drug-resistant reversing effect of curcumin on COC1/DDP and its mechanism. J Mod Oncol, 15(5):604-607.

Ginsenoside (See also Rg3)

Cancer:
Breast, colorectal., brain, leukemia, acute myeloid leukemia (AML), melanoma, lung, glioblastoma, prostate, fibroblast carcinoma

Action: Multi-drug resistance, apoptosis, anti-cancer, chemotherapy sensitizer, CYP450 regulating, inhibits growth and metastasis, down-regulates MMP-9, enhances 5-FU, anti-inflammatory

Inhibits Growth and Metastasis

Ginsenosides, belonging to a group of saponins with triterpenoid dammarane skeleton, show a variety of pharmacological effects. Among them, some ginsenoside derivatives, which can be produced by acidic and alkaline hydrolysis, biotransformation and steamed process from the major ginsenosides in ginseng plant, perform stronger activities than the major primeval ginsenosides on inhibiting growth or metastasis of tumor, inducing apoptosis and differentiation of tumor and reversing multi-drug resistance of tumor. Therefore ginsenoside derivatives are promising as anti-tumor active compounds and drugs (Cao et al., 2012).

Ginsenoside content can vary widely depending on species, location of growth, and growing time before harvest. The root, the organ most often used, contains saponin complexes. These are often split into two groups: the Rb1 group (characterized by the protopanaxadiol presence: Rb1, Rb2, Rc and Rd) and the Rg1 group (protopanaxatriol: Rg1, Re, Rf, and Rg2). The potential health effects of ginsenosides include anti-carcinogenic, immunomodulatory, anti-inflammatory, anti-allergic, anti-atherosclerotic, anti-hypertensive, and anti-diabetic effects as well as anti-stress activity and effects on the central nervous system (Christensen, 2009).

Ginsenosides are considered the major pharmacologically active constituents, and approximately 12 types of ginsenosides have been isolated and structurally identified. Ginsenoside Rg3 was metabolized to ginsenoside Rh2 and protopanaxadiol by human fecal microflora (Bae et al., 2002). Ginsenoside Rg3 and the resulting metabolites exhibited potent cytotoxicity against tumor cell lines (Bae et al., 2002).

Screen-Shot-2014-03-28-at-11.53.41-am1

Ginseng Extracts (GE); Methanol-(alc-GE) or Water-extracted (w-GE) and ER+ Breast Cancer

Ginseng root extracts and the biologically active ginsenosides have been shown to inhibit proliferation of human cancer cell lines, including breast cancer. However, there are conflicting data that suggest that ginseng extracts (GEs) may or may not have estrogenic action, which might be contraindicated in individuals with estrogen-dependent cancers. The current study was designed to address the hypothesis that the extraction method of American ginseng (Panax quinquefolium) root will dictate its ability to produce an estrogenic response using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell model. MCF-7 cells were treated with a wide concentration range of either methanol-(alc-GE) or water-extracted (w-GE) ginseng root for 6 days.

An increase in MCF-7 cell proliferation by GE indicated potential estrogenicity. This was confirmed by blocking GE-induced MCF-7 cell proliferation with ER antagonists ICI 182,780 (1 nM) and 4-hydroxytamoxifen (0.1 microM). Furthermore, the ability of GE to bind ERalpha or ERbeta and stimulate estrogen-responsive genes was examined. Alc-GE, but not w-GE, was able to increase MCF-7 cell proliferation at low concentrations (5-100 microg/mL) when cells were maintained under low-estrogen conditions. The stimulatory effect of alc-GE on MCF-7 cell proliferation was blocked by the ER antagonists ICI 182,780 or 4-hydroxyta-moxifen. At higher concentrations of GE, both extracts inhibited MCF-7 and ER-negative MDA-MB-231 cell proliferation regardless of media conditions.

These data indicate that low concentrations of alc-GE, but not w-GE, elicit estrogenic effects, as evidenced by increased MCF-7 cell proliferation, in a manner antagonized by ER antagonists, interactions of alc-GE with estrogen receptors, and increased expression of estrogen-responsive genes by alc-GE. Thus, discrepant results between different laboratories may be due to the type of GE being analyzed for estrogenic activity (King et al., 2006).

Anti-cancer

Previous studies suggested that American ginseng and notoginseng possess anti-cancer activities. Using a special heat-preparation or steaming process, the content of Rg3, a previously identified anti-cancer ginsenoside, increased significantly and became the main constituent in the steamed American ginseng. As expected, using the steamed extract, anti-cancer activity increased significantly. Notoginseng has a very distinct saponin profile compared to that of American ginseng. Steaming treatment of notoginseng also significantly increased anti-cancer effect (Wang et al., 2008).

Steam Extraction; Colorectal Cancer

After steaming treatment of American ginseng berries (100-120 ¡C for 1 h, and 120 ¡C for 0.5-4 h), the content of seven ginsenosides, Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased; the content of five ginsenosides, Rh1, Rg2, 20R-Rg2, Rg3, and Rh2, increased. Rg3, a previously identified anti-cancer ginsenoside, increased significantly. Two h of steaming at 120 ¡C increased the content of ginsenoside Rg3 to a greater degree than other tested ginsenosides. When human colorectal cancer cells were treated with 0.5 mg/mL steamed berry extract (120 ¡C 2 hours), the anti-proliferation effects were 97.8% for HCT-116 and 99.6% for SW-480 cells.

After staining with Hoechst 33258, apoptotic cells increased significantly by treatment with steamed berry extract compared with unheated extracts. The steaming of American ginseng berries hence augments ginsenoside Rg3 content and increases the anti-proliferative effects on two human colorectal cancer cell lines (Wang et al., 2006).

Glioblastoma

The major active components in red ginseng consist of a variety of ginsenosides including Rg3, Rg5 and Rk1, each of which has different pharmacological activities. Among these, Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation.

It is essential to develop a greater understanding of this novel compound by investigating the effects of Rg3 on a human glioblastoma cell line and its molecular signaling mechanism. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. These data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of GBM (Choi et al., 2013).

Colon Cancer; Chemotherapy

Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity.

NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone.

These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent (Kim et al., 2009).

Prostate Cancer; Chemo-sensitizer

Nuclear factor-kappa (NF-kappaB) is also constitutively activated in prostate cancer, and gives cancer cells resistance to chemotherapeutic agents. Rg3 has hence also been found to increase susceptibility of prostate (LNCaP and PC-3, DU145) cells against chemotherapeutics; prostate cancer cell growth as well as activation of NF-kappaB was examined. It has been found that a combination treatment of Rg3 (50 microM) with a conventional agent docetaxel (5 nM) was more effective in the inhibition of prostate cancer cell growth and induction of apoptosis as well as G(0)/G(1) arrest accompanied with the significant inhibition of NF-kappaB activity, than those by treatment of Rg3 or docetaxel alone.

The combination of Rg3 (50 microM) with cisplatin (10 microM) and doxorubicin (2 microM) was also more effective in the inhibition of prostate cancer cell growth and NF-kappaB activity than those by the treatment of Rg3 or chemotherapeutics alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of prostate cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer agent (Kim et al., 2010).

Colon Cancer

Ginsenosides may not only be useful in themselves, but also for their downstream metabolites. Compound K (20-O-( β -D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux.

Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the anti-oxidant N-acetylcysteine.   Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K.

Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells (Kim et al., 2013b).

Lung Cancer; SCC

Korea white ginseng (KWG) has been investigated for its chemo-preventive activity in a mouse lung SCC model. N-nitroso-trischloroethylurea (NTCU) was used to induce lung tumors in female Swiss mice, and KWG was given orally. KWG significantly reduced the percentage of lung SCCs from 26.5% in the control group to 9.1% in the KWG group and in the meantime, increased the percentage of normal bronchial and hyperplasia. KWG was also found to greatly reduce squamous cell lung tumor area from an average of 9.4% in control group to 1.5% in the KWG group.

High-performance liquid chromatography/mass spectrometry identified 10 ginsenosides from KWG extracts, Rb1 and Rd being the most abundant as detected in mouse blood and lung tissue. These results suggest that KWG could be a potential chemo-preventive agent for lung SCC (Pan et al., 2013).

Leukemia

Rg1 was found to significantly inhibit the proliferation of K562 cells in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number. Rg1 can hence induce the senescence of leukemia cell line K562 and play an important role in regulating p53-p21-Rb, p16-Rb cell signaling pathway (Cai et al., 2012).

Leukemia, Lymphoma

It has been found that Rh2 inhibits the proliferation of human leukemia cells concentration- and time-dependently with an IC(50) of ~38 µM. Rh2 blocked cell-cycle progression at the G(1) phase in HL-60 leukemia and U937 lymphoma cells, and this was found to be accompanied by the down-regulations of cyclin-dependent kinase (CDK) 4, CDK6, cyclin D1, cyclin D2, cyclin D3 and cyclin E at the protein level. Treatment of HL-60 cells with Rh2 significantly increased transforming growth factor- β (TGF- β ) production, and co-treatment with TGF- β neutralizing antibody prevented the Rh2-induced down-regulations of CDK4 and CDK6, up-regulations of p21(CIP1/WAF1) and p27(KIP1) levels and the induction of differentiation. These results demonstrate that the Rh2-mediated G(1) arrest and the differentiation are closely linked to the regulation of TGF- β production in human leukemia cells (Chung et al., 2012).

NSCLC

Ginsenoside Rh2, one of the components in ginseng saponin, has been shown to have anti-proliferative effect on human NSCLC cells and is being studied as a therapeutic drug for NSCLC. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in cancer progression and prevention.

A unique set of changes in the miRNA expression profile in response to Rh2 treatment in the human NSCLC cell line A549 has been identified using miRNA microarray analysis. These miRNAs are predicted to have several target genes related to angiogenesis, apoptosis, chromatic modification, cell proliferation and differentiation. Thus, these results may assist in the better understanding of the anti-cancer mechanism of Rh2 in NSCLC (An et al., 2012).

Ginsenoside Concentrations

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. The amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP), and the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 hours. Thia work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides (Ji et al., 2012).

Chemotherapy Side-effects

Pre-treatment with American ginseng berry extract (AGBE), a herb with potent anti-oxidant capacity, and one of its active anti-oxidant constituents, ginsenoside Re, was examined for its ability to counter cisplatin-induced emesis using a rat pica model. In rats, exposure to emetic stimuli such as cisplatin causes significant kaolin (clay) intake, a phenomenon called pica. We therefore measured cisplatin-induced kaolin intake as an indicator of the emetic response.

Rats were pre-treated with vehicle, AGBE (dose range 50–150 mg/kg, IP) or ginsenoside Re (2 and 5 mg/kg, IP). Rats were treated with cisplatin (3 mg/kg, IP) 30 min later. Kaolin intake, food intake, and body weight were measured every 24 hours, for 120 hours.

A significant dose-response relationship was observed between increasing doses of pre-treatment with AGBE and reduction in cisplatin-induced pica. Kaolin intake was maximally attenuated by AGBE at a dose of 100 mg/kg. Food intake also improved significantly at this dose (P<0.05). pre-treatment ginsenoside (5 mg/kg) also decreased kaolin intake >P<0.05). In vitro studies demonstrated a concentration-response relationship between AGBE and its ability to scavenge superoxide and hydroxyl.

Pre-treatment with AGBE and its major constituent, Re, hence attenuated cisplatin-induced pica, and demonstrated potential for the treatment of chemotherapy-induced nausea and vomiting. Significant recovery of food intake further strengthens the conclusion that AGBE may exert an anti-nausea/anti-emetic effect (Mehendale et al., 2005).

MDR

Because ginsenosides are structurally similar to cholesterol, the effect of Rp1, a novel ginsenoside derivative, on drug resistance using drug-sensitive OVCAR-8 and drug-resistant NCI/ADR-RES and DXR cells. Rp1 treatment resulted in an accumulation of doxorubicin or rhodamine 123 by decreasing MDR-1 activity in doxorubicin-resistant cells. Rp1 synergistically induced cell death with actinomycin D in DXR cells. Rp1 appeared to redistribute lipid rafts and MDR-1 protein.

Rp1 reversed resistance to actinomycin D by decreasing MDR-1 protein levels and Src phosphorylation with modulation of lipid rafts. Addition of cholesterol attenuated Rp1-induced raft aggregation and MDR-1 redistribution. Rp1 and actinomycin D reduced Src activity, and overexpression of active Src decreased the synergistic effect of Rp1 with actinomycin D. Rp1-induced drug sensitization was also observed with several anti-cancer drugs, including doxorubicin. These data suggest that lipid raft-modulating agents can be used to inhibit MDR-1 activity and thus overcome drug resistance (Yun et al., 2013).

Hypersensitized MDR Breast Cancer Cells to Paclitaxel

The effects of Rh2 on various tumor-cell lines for its effects on cell proliferation, induction of apoptosis, and potential interaction with conventional chemotherapy agents were investigated. Jia et al., (2004) showed that Rh2 inhibited cell growth by G1 arrest at low concentrations and induced apoptosis at high concentrations in a variety of tumor-cell lines, possibly through activation of caspases. The apoptosis induced by Rh2 was mediated through glucocorticoid receptors. Most interestingly, Rh2 can act either additively or synergistically with chemotherapy drugs on cancer cells. Particularly, it hypersensitized multi-drug-resistant breast cancer cells to paclitaxel.

These results suggest that Rh2 possesses strong tumor-inhibiting properties, and potentially can be used in treatments for multi-drug-resistant cancers, especially when it is used in combination with conventional chemotherapy agents.

MDR; Leukemia, Fibroblast Carcinoma

It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. A cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multi-drug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux (Kwon et al., 2008).

MDR

Ginsenoside Rb1 is a representative component of panaxadiol saponins, which belongs to dammarane-type tritepenoid saponins and mainly exists in family araliaceae. It has been reported that ginsenoside Rb1 has diverse biological activities. The research development in recent decades on its pharmacological effects of cardiovascular system, anti-senility, reversing multi-drug resistance of tumor cells, adjuvant anti-cancer chemotherapy, and promoting peripheral nerve regeneration have been established (Jia et al., 2008).

Enhances Cyclophosphamide

Cyclophosphamide, an alkylating agent, has been shown to possess various genotoxic and carcinogenic effects, however, it is still used extensively as an anti-tumor agent and immunosuppressant in the clinic. Previous reports reveal that cyclophosphamide is involved in some secondary neoplasms.

C57BL/6 mice bearing B16 melanoma and Lewis lung carcinoma cells were respectively used to estimate the anti-tumor activity in vivo. The results indicated that oral administration of Rh(2) (5, 10 and 20 mg/kg body weight) alone has no obvious anti-tumor activity and genotoxic effect in mice, while Rh(2) synergistically enhanced the anti-tumor activity of cyclophosphamide (40 mg/kg body weight) in a dose-dependent manner.

Rh(2) decreased the micronucleus formation in polychromatic erythrocytes and DNA strand breaks in white blood cells in a dose-dependent way. These results suggest that ginsenoside Rh(2) is able to enhance the anti-tumor activity and decrease the genotoxic effect of cyclophosphamide (Wang, Zheng, Liu, Li, & Zheng, 2006).

Down-regulates MMP-9, Anti-metastatic

The effects of the purified ginseng components, panaxadiol (PD) and panaxatriol (PT), were examined on the expression of matrix metalloproteinase-9 (MMP-9) in highly metastatic HT1080 human fibrosarcoma cell line. A significant down-regulation of MMP-9 by PD and PT was detected by Northern blot analysis; however, the expression of MMP-2 was not changed by treatment with PD and PT. The results of the in vitro invasion assay revealed that PD and PT reduced tumor cell invasion through a reconstituted basement membrane in the transwell chamber. Because of the similarity of chemical structure between PD, PT and dexamethasone (Dexa), a synthetic glucocorticoid, we investigated whether the down-regulation of MMP-9 by PD and PT were mediated by the nuclear translocation of glucocorticoid receptor (GR). Increased GR in the nucleus of HT1080 human fibrosarcoma cells treated by PD and PT was detected by immunocytochemistry.

Western blot and gel retardation assays confirmed the increase of GR in the nucleus after treatment with PD and PT. These results suggest that GR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT1080 cells (Park et al., 1999).

Enhances 5-FU; Colorectal Cancer

Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. The possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116, have been investigated.

The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 hours. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 hours.

Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell-cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell-cycle arrest in the S phase compared to that treated by 5-FU alone.

The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol hence enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell-cycle transition and the induction of apoptotic cells (Li et al., 2009).

Colorectal Cancer

The possible synergistic anti-cancer effects of Panaxadiol (PD) and Epigallocatechin gallate (EGCG), on human colorectal cancer cells and the potential role of apoptosis in the synergistic activities, have been investigated.

Cell growth was suppressed after treatment with PD (10 and 20   µm) for 48   h. When PD (10 and 20   µm) was combined with EGCG (10, 20, and 30   µm), significantly enhanced anti-proliferative effects were observed in both cell lines. Combining 20   µm of PD with 20 and 30   µm of EGCG significantly decreased S-phase fractions of cells. In the apoptotic assay, the combination of PD and EGCG significantly increased the percentage of apoptotic cells compared with PD alone (p   <   0.01).

Data from this study suggested that apoptosis might play an important role in the EGCG-enhanced anti-proliferative effects of PD on human colorectal cancer cells (Du et al., 2013).

Colorectal Cancer; Irinotecan

Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan.

Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced anti-proliferative effects of irinotecan on human colorectal cancer cells (Du et al., 2012).

Anti-inflammatory

Ginsenoside Re inhibited IKK- β phosphorylation and NF- κ B activation, as well as the expression of pro-inflammatory cytokines, TNF- α and IL-1 β , in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF- α – or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages.

Orally administered ginsenoside Re significantly inhibited the expression of IL-1 β and TNF- α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF- κ B in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages (Lee et al., 2012).

Induces Apoptosis

Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas down-regulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression (Kim et al., 2013b).

Lung Cancer

AD-1, a ginsenoside derivative, concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell-cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger – N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor, SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis.

These data support development of AD-1 as a potential agent for lung cancer therapy (Zhang et al., 2013).

Pediatric AML

In this study, Chen et al. (2013) demonstrated that compound K, a major ginsenoside metabolite, inhibited the growth of the clinically relevant pediatric AML cell lines in a time- and dose-dependent manner. This growth-inhibitory effect was attributable to suppression of DNA synthesis during cell proliferation and the induction of apoptosis was accompanied by DNA double strand breaks. Findings suggest that as a low toxic natural reagent, compound K could be a potential drug for pediatric AML intervention and to improve the outcome of pediatric AML treatment.

Melanoma

Jeong et al. (2013) isolated 12 ginsenoside compounds from leaves of Panax ginseng and tested them in B16 melanoma cells. It significantly reduced melanin content and tyrosinase activity under alpha-melanocyte stimulating hormone- and forskolin-stimulated conditions. It significantly reduced the cyclic AMP (cAMP) level in B16 melanoma cells, and this might be responsible for the regulation down of MITF and tyrosinase. Phosphorylation of a downstream molecule, a cAMP response-element binding protein, was significantly decreased according to Western blotting and immunofluorescence assay. These data suggest that A-Rh4 has an anti-melanogenic effect via the protein kinase A pathway.

Leukemia

Rg1 can significantly inhibit the proliferation of leukemia cell line K562 in vitro and arrest the cells in G2/M phase. The percentage of positive cells stained by SA-beta-Gal was dramatically increased (P < 0.05) and the expression of cell senescence-related genes was up-regulated. The observation of ultrastructure showed cell volume increase, heterochromatin condensation and fragmentation, mitochondrial volume increase, and lysosomes increase in size and number (Cai et al., 2012).

Ginsenosides and CYP 450 Enzymes

In vitro experiments have shown that both crude ginseng extract and total saponins at high concentrations (.2000 mg/ml) inhibited CYP2E1 activity in mouse and human microsomes (Nguyen et al., 2000). Henderson et al. (1999) reported the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of a panel of cDNA-expressed CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using 96-well plate fluorometrical assay.

Of the constituents tested, Ginsenoside Rd caused weak inhibitory activity against CYP3A4, CYP2D6, CYP2C19,and CYP2C9, but ginsenoside Re and ginsenoside Rf (200 mM) produced a 70% and 54%increase in the activity of CYP2C9 and CYP3A4, respectively. The authors suggested that the activating effects of ginsenosides on CYP2C9 and CYP3A4 might be due to a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrates. Chang et al. (2002) reported the effects of two types of ginseng extract and ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) on CYP1 catalytic activities.

The ginseng extracts inhibited human recombinant CYP1A1, CYP1A2, and CYP1B1 activities in a concentration-dependent manner. Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 at low concentrations had no effect on CYP1 activities, but Rb1, Rb2, Rc, Rd, and Rf at a higher ginsenoside concentration (50 mg/ml) inhibited these activities. These results indicated that various ginseng extracts and ginsenosides inhibited CYP1 activity in an enzyme-selective and extract-specific manner (Zhou et al., 2003).

References

An IS, An S, Kwon KJ, Kim YJ, Bae S. (2012). Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small-cell lung cancer A549 cells. Oncol Rep, 29(2):523-8. doi: 10.3892/or.2012.2136.



Bae EA, Han MJ, Choo MK et al. (2002). Metabolism of 20(S)- and 20(R)-ginsenoside R-g3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull, 25:58–63.


Cai S, Zhou Y, Liu J, et al. (2012). Experimental study on human leukemia cell line K562 senescence induced by ginsenoside Rg1. Zhongguo Zhong Yao Za Zhi, 37(16):2424-8.


Cao M, Yu HS, Song XB, Ma BP. (2012) Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship. Yao Xue Xue Bao, 47(7):836-43.


Chang TKH, Chen J, Benetton SA et al. (2002). In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos, 30:378–384.


Chen Y, Xu Y, Zhu Y, Li X. (2013). Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. Cancer Cell Int, 13(1):24. doi: 10.1186/1475-2867-13-24.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep, 30(3): 1362-1370. doi: 10.3892/or.2013.2555.


Christensen LP. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res., 55:1-99. doi: 10.1016/S1043-4526(08)00401-4.


Chung KS, Cho SH, Shin JS, et al. (2013). Ginsenoside Rh2 induces Cell-cycle arrest and differentiation in human leukemia cells by upregulating TGF- β expression. Carcinogenesis, 34(2):331-40. doi: 10.1093/carcin/bgs341.


Du GJ, Wang CZ, Zhang ZY, et al. (2012) Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol, 64(5):727-34. doi: 10.1111/j.2042-7158.2012.01463.x.


Du GJ, Wang CZ, Qi LW, et al. (2013). The synergistic apoptotic interaction of panaxadiol and epigallocatechin gallate in human colorectal cancer cells. Phytother Res, 27(2):272-7. doi: 10.1002/ptr.4707.


Henderson GL, Harkey MR, Gershwin, ME, et al. (1999). Effects of ginseng components on c-DNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci, PL209–PL214.


Jeong YM, Oh WK, Tran TL, et al. (2013). Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biosci Biotechnol Biochem, 77(1):119-25.


Ji Y, Rao Z, Cui J, et al. (2012). Ginsenosides extracted from nanoscale Chinese white ginseng enhances anti-cancer effect. J Nanosci Nanotechnol, 12(8):6163-7.


Jia WW, Bu X, Philips D, et al. (2004). Rh2, a compound extracted from ginseng, hypersensitizes Multi-drug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol, 82(7):431-7.


Jia JM, Wang ZQ, Wu LJ, Wu YL. (2008). Advance of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za Zhi, 33(12):1371-7.


Kim YJ, Yamabe N, Choi P, et al. (2013a) Efficient Thermal Deglycosylation of Ginsenoside Rd and Its Contribution to the Improved Anti-cancer Activity of Ginseng. J Agric Food Chem.


Kim AD, Kang KA, Kim HS, et al. (2013b). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis, 4:e750. doi: 10.1038/cddis.2013.273.


Kim SM, Lee SY, Cho JS, et al. (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631(1-3):1-9. doi: 10.1016/j.ejphar.2009.12.018.


Kim SM, Lee SY, Yuk DY, et al. (2009). Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res, 32:755–765. doi: 10.1007/s12272-009-1515-4.


King ML, Adler SR, Murphy LL. (2006). Extraction-dependent effects of American ginseng (Panax quinquefolium) on human breast cancer cell proliferation and estrogen receptor activation. Integr Cancer Ther, 5(3):236-43.


Kwon HY, Kim EH, Kim SW, et al. (2008). Selective toxicity of ginsenoside Rg3 on Multi-drug-resistant cells by membrane fluidity modulation. Arch Pharm Res, 31(2):171-7.


Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. (2012). Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem, 60(38):9595-602.


Li XL, Wang CZ, Mehendale SR, et al. (2009). Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother Pharmacol, 64(6):1097-104. doi: 10.1007/s00280-009-0966-0.


Mehendale S, Aung H, Wang A, et al. (2005). American ginseng berry extract and ginsenoside Re attenuate cisplatin-induced kaolin intake in rats. Cancer Chemotherapy and Pharmacology, 56(1):63-9. doi: 10.1007/s00280-004-0956-1.


Nguyen TD, Villard PH, Barlatier A et al. (2000). Panax vietnamensis protects mice against carbon tetrachloride-induced hepatotoxicity without any modification of CYP2E1 gene expression. Planta Med, 66:714–719.


Pan J, Zhang Q, Li K, et al. (2013). Chemoprevention of lung squamous cell carcinoma by ginseng. Cancer Prev Res (Phila), 6(6):530-9. doi: 10.1158/1940-6207.CAPR-12-0366.


Park MT, Cha HJ, Jeong JW, et al. (1999). Glucocorticoid receptor-induced down-regulation of MMP-9 by ginseng components, PD and PT contributes to inhibition of the invasive capacity of HT1080 human fibrosarcoma cells. Mol Cells, 9(5):476-83.


Wang CZ and Yuan CS. (2008). Potential Role of Ginseng in the Treatment of Colorectal Cancer. Am. J. Chin. Med, 36:1019. doi: 10.1142/S0192415X08006545


Wang Z, Zheng Q, Liu K, Li G, Zheng R. (2006). Ginsenoside Rh(2) enhances anti-tumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol, 98(4):411-5.


Wang CZ, Zhang B, Song WX, et al. (2006). Steamed American ginseng berry: ginsenoside analyzes and anti-cancer activities. Journal of agricultural and food chemistry, 54(26):9936-42.


Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses Multi-drug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol, 85(10):1441-53. doi: 10.1016/j.bcp.2013.02.025.


Zhang LH, Jia YL, Lin XX, et al. (2013). AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta, 1830(8):4148-59. doi: 10.1016/j.bbagen.2013.04.008.


Zhou Sf, Gao Yh, Jiang Wq et al. (2003) Interactions of Herbs with Cytochrome P450. DRUG METABOLISM REVIEWS, 35(1):35–98.