Category Archives: Pathway

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Pumpkin seed extract

Cancer: Breast

Action: Down-regulates ER-α

Breast Cancer

Phytoestrogens have a controversial effect on hormone-dependent tumors. Herein, we investigated the effect of the pumpkin seed extract (PSE) on estradiol production and estrogen receptor (ER)-α/ER-β/progesterone receptor (PR) status on MCF7, Jeg3, and BeWo cells. The effect of the PSE on ER-α/ER-β/PR expression was assessed by immunocytochemistry. The PSE was found to contain both lignans and flavones. Estradiol production was elevated in MCF7, BeWo, and Jeg3 cells in a concentration-dependent manner.

In MCF7 cells, a significant ER-α down-regulation and a significant PR up-regulation were observed. The above results, after properly designed animal studies, could highlight a potential role of pumpkin seed lignans in breast cancer prevention and/or treatment (Richter et al., 2013).

Reference

Richter D, Abarzua S, Chrobak M, Vrekoussis T, et al. (2013). Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells. Nutr Cancer, 65(5):739-45. doi: 10.1080/01635581.2013.797000.

Puerarin

Cancer: Colon, breast, acute myeloid leukemia

Action: MDR, aromatase inhibition, induces apoptosis

Induces Apoptosis, Colorectal Cancer

Puerarin is isolated from Pueraria radix (Pueraria lobata [(Willd.) Ohwi]) and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders, as well as anti-cancer properties. Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has anti-thrombotic and anti-allergic properties and stimulates estrogenic activity.

Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments with ³ 25µM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. Puerarin also affects the expression of apoptosis-associated genes, revealing an increase of bax and decreases of c-myc and bcl-2.

Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemo-preventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis (Li, et al., 2006).

Induces Apoptosis, Breast Cancer

Puerarin exhibits a dose-dependent inhibition of cell growth in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell-cycle distribution and apoptosis assays revealed that puerarin induced cell apoptosis through a caspase-3-dependent pathway and mediated cell-cycle arrest in the G2/M phase. It is therefore suggested that puerarin may act as a chemo-preventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis (Lin et al., 2009).

Breast Cancer, MDR

Purearin down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation.

The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, these results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells (Hien et al., 2010).

Acute Myeloid Leukemia (AML)

The results showed that a certain concentration of puerarin (PR) could inhibit the proliferation of these four cell lines effectively in time-and dose-dependent manners, and the intensity of inhibition on four kinds of acute myeloid leukemia (AML) cell lines was from high to low as follows: NB4>Kasumi-1>U937>HL-60. Meanwhile, PR could also change cycle process, cell proportion in G1/G0 phase decreased, cells in S phase increased and Sub-diploid peak also appeared. It is concluded that PR can selectively inhibit the proliferation of four AML cell lines and block cell-cycle process, especially for NB4 cells (Shao et al., 2010).

Aromatase Inhibition

Aromatase P450 (P450 (arom)) is overexpressed in endometriosis, endometrial cancers and uterine fibroids. With weak estrogen agonists/antagonists and some other enzymatic activities, isoflavones are increasingly advocated as a natural alternative to estrogen replacement therapy (ERT) and are available as dietary supplements. Puerarin is a major isoflavonoid compound isolated from Pueraria lobata (ge gen).

Yu et al. (2008) found that puerarin exerted a time-course effect on the inhibition of c-jun mRNA, which parallelled that of P450(arom). The suppression of P450(arom) expression and activity by puerarin treatment may associate with the down-regulation of transcription factor AP-1 or c-jun.

References

Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF- κ B pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res, 54(7):918-28. doi: 10.1002/mnfr.200900146.


Lin YJ, Hou YC, Lin CH, et al. (2009). Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochemical and Biophysical Research Communications, 378(4):683-8. doi:10.1016/j.bbrc.2008.10.178


Shao HM, Tang YH, Jiang PJ, et al. (2010). Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(2):296-9.


Yu C, Li Y, Chen H, Yang S, Xie G. (2008). Decreased expression of aromatase in the Ishikawa and RL95-2 cells by the isoflavone, puerarin, is associated with inhibition of c-jun expression and AP-1 activity. Food Chem Toxicol, 46(12):3671-6. doi: 10.1016/j.fct.2008.09.045.


Yu Z, Li WJ. (2006). Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters, 238(1):53-60.

Pterostilbene

Cancer: Liver

Action: Induces apoptosis, cancer stem cells

Induces Apoptosis

Pterostilbene (PT) extracted from blueberries dose-dependently reduced the enrichment of CD133 (+) Mahlavu cells upon irradiation; PT treatment also prevented tumor sphere formation, reduced stemness gene expression, and suppressed invasion and migration abilities as well as increasing apoptosis of CD133 (+) Mahlavu CSCs (Lee et al., 2013).

CSCs

PT effectively suppresses the generation of CSCs and metastatic potential under the influence of M2 TAMs via modulating EMT associated signaling pathways, specifically NF-κB/miR488 circuit. Thus, PT could be an ideal anti-CSC agent in clinical settings (Mak et al., 2013).

References

Lee CM, Su YH, Huynh TT, et al. (2013). BlueBerry Isolate, Pterostilbene, Functions as a Potential Anti-cancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells. Evid Based Complement Alternat Med, 2013:258425. doi: 10.1155/2013/258425.


Mak KK, Wu AT, Lee WH, et al. (2013). Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κ B/microRNA 448 circuit. Mol Nutr Food Res, 57(7):1123-34. doi: 10.1002/mnfr.201200549.

Psoralen and Bakuchiol

Cancer: Breast

Action: Estrogen modulator

The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China (Lim et al., 2009).

Estrogen Modulator

The estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions, including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL, showed significant activity in activating either ERalpha or ERbeta, whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta.

The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. These data suggest that both ER subtype-selective and non-selective activities in compounds derived from PCL indicated that PCL could be a new source for selective estrogen-receptor modulators (Xin et al., 2010).

Breast Cancer

The in vitro anti-tumor activity of bakuchiol was examined, compared with tamoxifen. The result of biological activities showed that bakuchiol could inhibit human breast cancer and the IC50 values were 2.89 x 10(-5) mol L(-1) and 8.29 x 10(-3) mol L(-1) against the cells line T-47D and MDA-MB-231 respectively (Chen et al., 2010).

In vitro inhibitory effects of various concentrations of psoralen (25, 12. 5, 6. 25 and 3. 125 µg/mL respectively) on MCF-7 cells with estrogen-receptor (ER) positive and on MDA-MB-231 cells with ER negative were carried out. Psoralen had no inhibitory effect on the growth of MDA-MB-231 cells, but cell apoptosis was increased at early stage. There were 1,053 genes with differential expression in MCF-7 cells assessed by cDNA chips. Of the expression of 1,053 genes, the expression of 657 genes was down-regulated and that of 456 gene was up-regulated.

Psoralen has certain inhibitory effect on the proliferation of ER-positive MCF-7 cells, and its inhibitory mechanism on the growth of breast cancer is probably related to the arrest of the cell at G2 phase by the drug (Tan et al., 2009).

References

Chen HL, Feng HJ, Li YC. (2010). Vitro anti-tumor activity and synthesis of the key intermediate of bakuchiol. Yao Xue Xue Bao, 45(4):467-70.


Lim SH, Ha TY, Kim SR, et al. (2009). Ethanol extract of Psoralea corylifolia L. and its main constituent, bakuchiol, reduce bone loss in ovariectomised Sprague-Dawley rats. Br J Nutr., 101(7):1031-1039


Tan M, Sun J, Zhao H, et al. (2009). Comparative Study on the Anti-tumor Effects of Psoralen on Human Breast Cancer Cell Line MCF-7 and MDA-MB-231 in Vitro. Guang Zhou Zhong Yi Yao Da Xue Xue Bao, 26(4): 359-362.


Xin D, Wang H, Yang J, et al. (2010). Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine, 17(2):126-31. doi: 10.1016/j.phymed.2009.05.015.

Piperine

Cancer: Breast, prostate

Action: Autophagy inhibitor, anti-proliferative effect

Breast Cancer Stem Cells

Mammosphere formation assays were performed after curcumin, piperine and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging and percent of ALDH+ cells, by 50% at 5 µM and completely at 10 µM concentration in normal and malignant breast cells. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer-preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer-preventive agent efficacy and Wnt signaling assessment a mechanistic biomarker for use in human clinical trials (Kakarala et al., 2010).

HER-2 Overexpressing Breast Cancer

Results showed that piperine strongly inhibited proliferation and induced apoptosis of HER2-overexpressing breast cancer cells through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level.   Piperine pre-treatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression (Do et al., 2013).

Prostate Cancer

Piperine treatment resulted in a dose-dependent inhibition of the proliferation of prostate cancer DU145, PC-3 and LNCaP cell lines. Cell-cycle arrest at G₀/G₁ was induced and cyclin D1 and cyclin A were down-regulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell-cycle arrest in the former two cell lines than the latter one. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell-cycle arrest and autophagy (Ouyang et al., 2013).

References

Do MT, Kim HG, Choi JH, et al. (2013). Anti-tumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem, 141(3):2591-9. doi: 10.1016/j.foodchem.2013.04.125.


Kakarala M, Brenner DE, Korkaya H, et al. (2010). Targeting breast stem cells with the cancer-preventive compounds curcumin and piperine. Breast Cancer Res Treat, 122(3): 777–785.


Ouyang DY, Zeng LH, Pan H, et al. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell-cycle arrest and autophagy. Food Chem Toxicol, 60:424-30. doi: 10.1016/j.fct.2013.08.007.

Pinosylvin

Cancer: Colorectal, lung

Action: Anti-cancer, anti-inflammatory and anti-oxidant, chemo-preventive, anti-metastatic effect

Pinosylvin is a naturally occurring chemo-preventive trans-stilbenoid mainly found in plants of the Pinus genus (Pinus (L.) and Gnetum cleistostachyum (C. Y. Cheng)).

Anti-cancer, Anti-inflammatory and Anti-oxidant

Stilbenes are small molecular weight (approximately 200-300 g/mol), naturally occurring compounds and are found in a wide range of plant sources, aromatherapy products, and dietary supplements. These molecules are synthesized via the phenylpropanoid pathway and share some structural similarities to estrogen. Upon environmental threat, the plant host activates the phenylpropanoid pathway and stilbene structures are produced and subsequently secreted. Stilbenes act as natural protective agents to defend the plant against viral and microbial attack, excessive ultraviolet exposure, and disease. Stilbene compounds, piceatannol, pinosylvin, rhapontigenin, and pterostilbene possess potent anti-cancer, anti-inflammatory and anti-oxidant activities (Roupe et al., 2006).

Colorectal

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, has exhibited a potential cancer chemo-preventive activity. The anti-proliferative activity of pinosylvin was investigated in human colorectal HCT 116 cancer cells.

Pinosylvin was also found to attenuate the activation of proteins involved in focal adhesion kinase (FAK)/c-Src/extracellular signal-regulated kinase (ERK) signaling, and phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK-3β) signaling pathway. Subsequently, pinosylvin suppressed the nuclear translocation of β-catenin, one of downstream molecules of PI3K/Akt/GSK-3β signaling, and these events led to the sequential down-regulation of β-catenin-mediated transcription of target genes including BMP4, ID2, survivin, cyclin D1, MMP7, and c-Myc. These findings demonstrate that the anti-proliferative activity of pinosylvin might be associated with the cell-cycle arrest and down-regulation of cell proliferation regulating signaling pathways in human colorectal cancer cells (Park et al., 2013).

Anti-metastatic

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibits a potential cancer chemo-preventive activity and also inhibits the growth of various human cancer cell lines via the regulation of cell-cycle progression. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. Park et al. (2012) found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems.

The analysis of tumor in lung tissues indicated that the anti-metastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

References

Park EJ, Park HJ, Chung HJ, et al. (2012). Anti-metastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem, 23(8):946-52. doi: 10.1016/j.jnutbio.2011.04.021.


Park EJ, Chung HJ, Park HJ, et al. (2013). Suppression of Src/ERK and GSK-3/ β-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol, 55:424-33. doi:10.1016/j.fct.2013.01.007.


Roupe KA, Remsberg CM, Yá–ez JA, Davies NM. (2006). Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol, 1(1):81-101.

Piceatannol

Cancer: Esophageal, colorectal, breast

Action: Anti-inflammatory, anti-oxidative

Piceatannol, a naturally occurring analogue of resveratrol found in certain plants and berries of the Vaccinium genus, including Picea abies [(L.) H.Karst.], Aiphanes horrida [(Jacq.) Burret], Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.). It was previously identified as the active ingredient in herbal preparations in folk medicine. Piceatannol is an anti-inflammatory, immunomodulatory, and anti-proliferative stilbene that has been shown to interfere with the cytokine signaling pathway. It is isolated from various types of berries, grapes, rhubarb and sugar cane.

It has been shown that a diet containing freeze-dried black raspberries (BRB) inhibits the development of chemically-induced cancer in the rat esophagus. To provide insights into possible mechanisms by which BRB inhibit esophageal carcinogenesis, an ethanol (EtOH) extract of BRB was evaluated, and two component anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O−rutinoside) in BRB, for their effects on growth, apoptosis, and gene expression in rat esophageal epithelial cell lines. The EtOH extract and both anthocyanins selectively caused significant growth inhibition and induction of apoptosis in a highly tumorigenic cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149).

The growth-inhibitory and pro-apoptotic effects were enhanced by the daily addition of the EtOH extract and the anthocyanins to the medium.

Esophageal Cancer

This differential effect may have been related to the relative amounts of anthocyanins in the extract vs.when they were added individually to the medium. It was hence concluded that the selective effects of the EtOH extract on the growth and apoptosis of highly tumorigenic rat esophageal epithelial cells in vitro may be due to preferential uptake and retention of its component anthocyanins, and this may also be responsible for the greater inhibitory effects of freeze-dried whole berries on tumor cells in vivo (Schwartz et al., 2009).

Colorectal

The effects of piceatannol on growth, proliferation, differentiation and cell-cycle distribution profile of the human colon carcinoma cell line Caco-2 were investigated. Growth of Caco-2 and HCT-116 cells was analyzed by crystal violet assay, which demonstrated dose- and time-dependent decreases in cell numbers. Treatment of Caco-2 cells with piceatannol reduced proliferation rate. No effect on differentiation was observed.

Determination of cell-cycle distribution by flow cytometry revealed an accumulation of cells in the S phase. Immunoblotting demonstrated that cyclin-dependent kinases (cdk) 2 and 6, as well as cdc2 were expressed at steady-state levels, whereas cyclin D1, cyclin B1 and cdk 4 were down-regulated. The abundance of p27Kip1 was also reduced, whereas the protein level of cyclin E was enhanced. Cyclin A levels were enhanced only at concentrations up to 100 µmol/L. These changes also were observed in studies with HCT-116 cells. On the basis of our findings, piceatannol can be considered to be a promising chemo-preventive or anti-cancer agent (Wolter et al., 2002).

Anti-inflammatory

Treatment of human myeloid cells with piceatannol suppressed TNF-induced DNA binding activity of NF-κB. In contrast, stilbene or rhaponticin (another analog of piceatannol) had no effect, suggesting the critical role of hydroxyl groups. The effect of piceatannol was not restricted to myeloid cells, as TNF-induced NF- κB activation was also suppressed in lymphocyte and epithelial cells. Piceatannol also inhibited NF-κB activated by H2O2, PMA, LPS, okadaic acid, and ceramide.

Piceatannol abrogated the expression of TNF-induced NF-κB-dependent reporter gene and of matrix metalloprotease-9, cyclooxygenase-2, and cyclin D1. When examined for the mechanism, it was found that piceatannol inhibited TNF-induced IκBα phosphorylation, p65 phosphorylation, p65 nuclear translocation, and IκBα kinase activation, but had no significant effect on IκBα degradation. Piceatannol inhibited NF-κB in cells with deleted Syk, indicating the lack of involvement of this kinase.

Overall, these results clearly demonstrate that hydroxyl groups of stilbenes are critical and that piceatannol, a tetrahydroxystilbene, suppresses NF- κB activation induced by various inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation (Ashikawa et al., 2002).

There are multiple lines of evidence supporting that inflammation is causally linked to carcinogenesis. Abnormal up-regulation of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in the prostaglandin biosynthesis, has been implicated in carcinogenesis. Trans-3,4,3',5'-tetrahydroxystilbene (piceatannol), a naturally occurring hydroxylated stilbene with potent anti-inflammatory and anti-oxidative activities, has been shown to inhibit the proliferation of several cancer cells by inducing apoptosis or blocking cell-cycle progression. The effect of piceatannol was examined on the activation of the nuclear transcription factor NF-κB, one of the major transcription factors that regulate pro-inflammatory COX- 2 gene transcription, in human mammary epithelial (MCF-10A) cells treated with the tumor promoter 12-O-tetradecanoylphorbol- 13-acetate (TPA).

When pre-treated to MCF-10A cells, piceatannol markedly inhibited TPA-induced NF-κB DNA binding to a greater extent than resveratrol and oxyresveratrol, stilbene analogs structurally related to piceatannol. Piceatannol also inhibited TPAinduced phosphorylation and degradation of IκBα as well as nuclear translocation of the phosphorylated form of p65, the functionally active subunit of NF-κB. Likewise, TPA-induced expression of COX-2 was abrogated by piceatannol pre-treatment. The thiol reducing agent dithiothreitol abolished the inhibitory effects of piceatannol on NF-κB DNA binding activity, suggesting that piceatannol may directly modify NF-kB (Liu et al., 2009).

Breast Cancer

Piceatannol (trans-3,4,3′,5′-tetrahydroxystilbene; PIC) exhibits immunosuppressive and anti-tumorigenic activities in several cell lines, and it was found that PIC inhibited migration and anchorage-independent growth of human mammary epithelial cells (MCF-10A) treated with the prototypic tumor promoter, 12-O-tetradecanoylphorbol-13-aceate (TPA). PIC treatment suppressed the TPA-induced activation of NF-κB and expression of cyclooxygenase-2 (COX-2) in MCF-10A cells. It was speculated that an electrophilic quinone formed as a consequence of oxidation of PIC bearing the catechol moiety may directly interact with critical cysteine thiols of IKKβ, thereby inhibiting its catalytic activity.

Results show that direct modification of IKKβ by PIC, presumably at the cysteine 179 residue, blocks NF-κB activation signaling and COX-2 induction in TPA-treated MCF-10A cells and also migration and transformation of these cells (Son et al., 2010).

References

Ashikawa K, Majumdar S, Banerjee S, et al. (2002). Piceatannol inhibits TNF-induced NF- κB activation and NF- κ B-mediated gene expression through suppression of IκBα kinase and p65 phosphorylation. The Journal of Immunology, 169(11):6490-7.


Liu D, Kim DH, Park JM. (2009). Piceatannol Inhibits Phorbol Ester-Induced NF- κ B Activation and COX-2 Expression in Cultured Human Mammary Epithelial Cells. Nutrition and Cancer, 61(6):855–63. doi: 10.1080/01635580903285080.


Schwartz SJ and Stoner GD. (2009). Black Raspberry Components Inhibit Proliferation, Induce Apoptosis, and Modulate Gene Expression in Rat Esophageal Epithelial Cells. Nutrition and Cancer, 61(6):816–26. doi: 10.1080/01635580903285148


Son PS, Park SA, Na HK, et al. (2010). Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF- κ B activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKK β as a potential target. Carcinogenesis, 31(8):1442-1449. doi: 10.1093/carcin/bgq099.


Wolter F, Clausnitzer A, Akoglu B and Stein J. (2001). Down-regulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell-cycle arrest in colon cancer cell lines. J. Nutr, 132(2):298-302.

Pheophorbide

Cancer: Liver, lung, uterine sarcoma

Action: MDR

MDR

Pheoborbide is isolated from Scutellaria barbata, a Traditional Chinese Medicine native in southern China, and has been widely used for treating liver diseases.   Pheophorbide a (Pa), an active component from S. barbata, has been shown to have anti-proliferative and Multi-drug-resistant (MDR) effects on the human hepatoma cell line R-HepG2.

Significant reduction of P-glycoprotein expression on Pa-treated R-HepG2 cells was found at both transcriptional and translational levels, leading to reduction of P-glycoprotein activity. In addition, mechanistic study elucidated that Pa induced cell-cycle arrest at G2/M phase and inhibited the expressions of G2/M phase cell-cycle regulatory proteins, cyclin-A1 and cdc2 in a dose-dependent manner (Tang et al., 2007).

Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. The chemical constituents of Typhonium flagelliforme, particularly those which have anti-proliferative properties towards human cancer cell lines, have been investigated. Purification of the chemical constituents by various chromatographic procedures was guided by the anti-proliferative activity. Four pheophorbide related compounds, namely pheophorbide-a, pheophorbide-a', pyropheophorbide-a and methyl pyropheophorbide-a were identified in the most active fraction, D/F19.

These constituents exhibited anti-proliferative activity against cancer cells and activity increased following photoactivation. However, anti-proliferative activity exhibited by D/F19 alone, relative to the combined effect of pheophorbides and their subfractions, suggests some form of synergistic action between the constituents. The inhibitory effect of D/F19 and the pheophorbides was apoptotic in the absence of light. Most of the chemical constituents identified in this plant have not been reported previously (Lai, Mas, Nair, Mansor, & Navaratnam, 2010).

Prolonged cancer chemotherapy is associated with the development of multi-drug resistance (MDR), which is a major cause of treatment failure. Photodynamic therapy (PDT) has been applied as anti-cancer therapy and a means of circumventing MDR. The anti-proliferative effect of pheophorbide a-mediated photodynamic therapy (Pa-PDT) has been demonstrated in several human cancer cell lines, including the uterine sarcoma cell line, MES-SA.

Combined therapy using Pa-PDT and Dox, a common chemotherapeutic drug, was found to be synergistic in the cell line, MES-SA/Dx5. Both activity and expression of MDR1 and P-gp were reduced by Pa-PDT treatment and such reductions were attenuated by α-tocopherol, the scavenger of reactive oxygen species (ROS), suggesting that the effect of Pa-PDT was mediated by the generation of intracellular ROS (Cheung et al., 2013).

References

Cheung KK, Chan JY, Fung KP. (2013). Anti-proliferative effect of pheophorbide a-mediated photodynamic therapy and its synergistic effect with doxorubicin on multiple drug-resistant uterine sarcoma cell MES-SA/Dx5. Drug Chem Toxicol, 36(4):474-83. doi: 10.3109/01480545.2013.776584.


Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V. (2010). Chemical constituents and in vitro anti-cancer activity of Typhonium flagelliforme (Araceae).


Journal of Ethnopharmacology, 127(2), 486-94. doi: 10.1016/j.jep.2009.10.009.


Tang PM, Chan JY, Zhang DM, et al. (2007). Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated Multi-drug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther, 6(4):504-9.

Phenolics

Cancer: Prostate

Action: Chemo-preventive, anti-oxidant, modulate insulin-like growth factor-I (IGF-I)

Natural phenolic compounds play an important role in cancer prevention and treatment. Phenolic compounds from medicinal herbs and dietary plants include phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others. Various bioactivities of phenolic compounds are responsible for their chemo-preventive properties (e.g. anti-oxidant, anti-carcinogenic, or anti-mutagenic and anti-inflammatory effects) and also contribute to their inducing apoptosis by arresting cell-cycle, regulating carcinogen metabolism and ontogenesis expression, inhibiting DNA binding and cell adhesion, migration, proliferation or differentiation, and blocking signaling pathways. A review by Huang et al., (2010) covers the most recent literature to summarize structural categories and molecular anti-cancer mechanisms of phenolic compounds from medicinal herbs and dietary plants (Huang, Cai, & Zhang., 2010).

Phenolics are compounds possessing one or more aromatic rings bearing one or more hydroxyl groups with over 8,000 structural variants, and generally are categorized as phenolic acids and analogs, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others based on the number of phenolic rings and of the structural elements that link these rings (Fresco et al., 2006).

Phenolic Acids

Phenolic acids are a major class of phenolic compounds, widely occurring in the plant kingdom.   Predominant phenolic acids include hydroxybenzoic acids (e.g. gallic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, and syringic acid) and hydroxycinnamic acids (e.g. ferulic acid, caffeic acid, p-coumaric acid, chlorogenic acid, and sinapic acid). Natural phenolic acids, either occurring in the free or conjugated forms, usually appear as esters or amides.

Due to their structural similarity, several other polyphenols are considered as phenolic acid analogs such as capsaicin, rosmarinic acid, gingerol, gossypol, paradol, tyrosol, hydroxytyrosol, ellagic acid, cynarin, and salvianolic acid B (Fresco et al., 2006; Han et al., 2007).

Gallic acid is widely distributed in medicinal herbs, such as Barringtonia racemosa, Cornus officinalis, Cassia auriculata, Polygonum aviculare, Punica granatum, Rheum officinale, Rhus chinensis, Sanguisorba officinalis, and Terminalia chebula as well as dietary spices, for example, thyme and clove. Other hydroxybenzoic acids are also ubiquitous in medicinal herbs and dietary plants (spices, fruits, vegetables).

For example, Dolichos biflorus, Feronia elephantum, and Paeonia lactiflora contain hydroxybenzoic acid; Cinnamomum cassia, Lawsonia inermis, dill, grape, and star anise possess protocatechuic acid; Foeniculum vulgare, Ipomoea turpethum, and Picrorhiza scrophulariiflora have vanillic acid; Ceratostigma willmottianum and sugarcane straw possess syringic acid (Cai et al., 2004; Shan et al., 2005; Sampietro & Vattuone, 2006; Stagos et al., 2006; Surveswaran et al., 2007).

Ferulic, caffeic, and p-coumaric acid are present in many medicinal herbs and dietary spices, fruits, vegetables, and grains (Cai et al., 2004). Wheat bran is a good source of ferulic acids. Free, soluble-conjugated, and bound ferulic acids in grains are present in the ratio of 0.1:1:100. Red fruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, sweet cherry, sour cherry, elderberry, black currant, and red currant) are rich in hydroxycinnamic acids (caffeic, ferulic, p-coumaric acid) and p-hydroxybenzoic, ellagic acid, which contribute to their anti-oxidant activity (Jakobek et al., 2007).

Chlorogenic acids are the ester of caffeic acids and are the substrate for enzymatic oxidation leading to browning, particularly in apples and potatoes. Chlorogenic acid is a major phenolic acid from medicinal plants especially in the species of Apocynaceae and Asclepiadaceae (Huang et al., 2007).

Salvianolic acid B is a major water-soluble polyphenolic acid extracted from Radix salviae miltiorrhizae, which is a common herbal medicine clinically used as an anti-oxidant agent for thousands of years in China. There are 9 activated phenolic hydroxyl groups that may be responsible for the release of active hydrogen to block lipid peroxidation reaction. Rosmarinic acid is an anti-oxidant phenolic compound, which is found in many dietary spices such as mint, sweet basil, oregano, rosemary, sage, and thyme.

Gossypol, a polyphenolic aldehyde, derived from the seeds of the cotton plant (genus Gossypium, family Malvaceae), has contraceptive activity and can cause hypokalemia in some men. Gingerol, a phenolic substance, is responsible for the spicy taste of ginger.

Polyphenols

Polyphenols are a structural class of mainly natural, organic chemicals characterized by the presence of large multiples of phenol structural units. The number and characteristics of these phenol structures underlie the unique physical, chemical, and biological (metabolic, toxic, therapeutic, etc.) properties of particular members of the class. They may be broadly classified as phenolic acids, flavonoids, stilbenes, and lignans (Manach et al., 2004).

Initial evidence on cancer came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers.

Polyphenolic cancer action can be attributed not only to their ability to act as anti-oxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery – from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components – and provide insights into their beneficial health effects (Kampa et al., 2007).

Polyphenols and Copper

Anti-cancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as anti-oxidants, but can be pro-oxidants in the presence of copper ions. Through multiple assays, Khan et al. (2013) show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition.

Since the concentration of copper is significantly elevated in cancer cells, their results strengthen the idea that an important anti-cancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this pro-oxidant chemo-preventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.

IGF-1; Prostate Cancer

The ability of polyphenols from tomatoes and soy (genistein, quercetin, kaempferol, biochanin A, daidzein and rutin) were examined for their ability to modulate insulin-like growth factor-I (IGF-I)–induced in vitro proliferation and apoptotic resistance in the AT6.3 rat prostate cancer cell line. IGF-I at 50 µg/L in serum-free medium produced maximum proliferation and minimized apoptosis. Genistein, quercetin, kaempferol and biochanin A exhibited dose-dependent inhibition of growth with a 50% inhibitory concentration (IC50) between 25 and 40 µmol/L, whereas rutin and daidzein were less potent with an IC50 of >60 µmol/L. Genistein and kaempferol potently induced G2/M cell-cycle arrest.

Genistein, quercetin, kaempferol and biochanin A, but not daidzein and rutin, counteracted the anti-apoptotic effects of IGF-I. Human prostate epithelial cells grown in growth factor-supplemented medium were also sensitive to growth inhibition by polyphenols. Genistein, biochanin A, quercetin and kaempferol reduced the insulin receptor substrate-1 (IRS-1) content of AT6.3 cells and prevented the down-regulation of IGF-I receptor β in response to IGF-I binding.

Several polyphenols suppressed phosphorylation of AKT and ERK1/2, and more potently inhibited IRS-1 tyrosyl phosphorylation after IGF-I exposure. In summary, polyphenols from soy and tomato products may counteract the ability of IGF-I to stimulate proliferation and prevent apoptosis via inhibition of multiple intracellular signaling pathways involving tyrosine kinase activity (Wang et al., 2003).

Flavonoids

Flavonoids have been linked to reducing the risk of major chronic diseases including cancer because they have powerful anti-oxidant activities in vitro, being able to scavenge a wide range of reactive species (e.g. hydroxyl radicals, peroxyl radicals, hypochlorous acid, and superoxide radicals) (Hollman & Katan, 2000).

Flavonoids are a group of more than 4,000 phenolic compounds that occur naturally in plants (Ren et al., 2003). These compounds commonly have the basic skeleton of phenylbenzopyrone structure (C6-C3-C6) consisting of 2 aromatic rings (A and B rings) linked by 3 carbons that are usually in an oxygenated central pyran ring, or C ring (12). According to the saturation level and opening of the central pyran ring, they are categorized mainly into flavones (basic structure, B ring binds to the 2 position), flavonols (having a hydroxyl group at the 3 position), flavanones (dihydroflavones) and flavanonols (dihydroflavonols; 2–3 bond is saturated), flavanols (flavan-3-ols and flavan-3,4-diols; C-ring is 1-pyran), anthocyanins (anthocyanidins; C-ring is 1-pyran, and 1–2 and 3–4 bonds are unsaturated), chalcones (C-ring is opened), isoflavonoids (mainly isoflavones; B ring binds to the 3 position), neoflavonoids (B ring binds to the 4-position), and biflavonoids (dimer of flavones, flavonols, and flavanones) (Iwashina, 2000; Cai et al., 2004; Cai et al., 2006; Ren et al., 2003)

Tannins

Tannins are natural, water-soluble, polyphenolic compounds with molecular weight ranging from 500 to 4,000, usually classified into 2 classes: hydrolysable tannins (gallo- and ellagi-tannins) and condensed tannins (proanthocyanidins) (Cai et al., 2004).

The former are complex polyphenols, which can be degraded into sugars and phenolic acids through either pH changes or enzymatic or nonenzymatic hydrolysis. The basic units of hydrolysable tannins of the polyster type are gallic acid and its derivatives (Fresco et al., 2006). Tannins are commonly found combined with alkaloids, polysaccharides, and proteins, particularly the latter (Han et al., 2007).

Stilbenes

Stilbenes are phenolic compounds displaying 2 aromatic rings linked by an ethane bridge, structurally characterized by the presence of a 1,2-diarylethene nucleus with hydroxyls substituted on the aromatic rings. They are distributed in higher plants and exist in the form of oligomers and in monomeric form (e.g. resveratrol, oxyresveratrol) and as dimeric, trimeric, and polymeric stilbenes or as glycosides.

The well-known compound, trans-resveratrol, a phytoalexin produced by plants, is the member of this chemical famil most abundant in the human diet (especially rich in the skin of red grapes), possessing a trihydroxystilben skeleton (Han et al., 2007). There are monomeric stilbenes in 4 species of medicinal herbs, that is, trans-resveratrol in root of Polygonum cuspidatum, Polygonum multiflorum, and P. lactiflora; piceatannol in root of P. multiflorum; and oxyresveratrol in fruit of Morus alba (Cai et al., 2006).

It was reported that dimeric stilbenes and stilbene glycosides were identified from these species (Xiao et al., 2002). In addition, 40 stilbene oligomers were isolated from 6 medicinal plant species (Shorea hemsleyana, Vatica rassak, Vatica indica, Hopea utilis, Gnetum parvifolium, and Kobresia nepalensis). Other stilbenes that have recently been identified in dietary sources, such as piceatannol and its glucoside (usually named astringin) and pterostilbene, are also considered as potential chemo-preventive agents. These and other in vitro and in vivo studies provide a rationale in support of the use of stilbenes as phytoestrogens to protect against hormone-dependent tumors (Athar et al., 2007).

Curcuminoids

Curcuminoids are ferulic acid derivatives, which contain 2 ferulic acid molecules linked by a methylene with a β -diketone structure in a highly conjugated system. Curcuminoids and ginerol analogues are natural phenolic compounds from plants of the family Zingiberaceae. Curcuminoids include 3 main chemical compounds: curcumin, demethoxycurcumin, and bisdemethoxycurcumin (Cai et al., 2006). All 3 curcuminoids impart the characteristic yellow color to turmeric, particularly to its rhizome, and are also major yellow pigments of mustard. Curcuminoids containing Curcuma longa (turmeric) and ginerol analogues containing Zingiber officinale (ginger) are not only used as Chinese traditional medicines but also as natural color agents or ordinary spices.

In addition, curcuminoids with anti-oxidant properties have been isolated from various Curcuma or Zingiber species, such as the Indian medicinal herb Curcuma xanthorrhiza.

Coumarins

Coumarins are lactones obtained by cyclization of cis-ortho-hydroxycinnamic acid, belonging to the phenolics with the basic skeleton of C6+ C3. This precursor is formed through isomerization and hydroxylation of the structural analogs trans-hydroxycinnamic acid and derivatives. Coumarins are present in plants in the free form and as glycosides. In general, coumarins are characterized by great chemical diversity, mainly differing in the degree of oxygenation of their benzopyrane moiety.

In nature, most coumarins are C7-hydroxylated (Fresco et al., 2006; Cai et al., 2006). Major coumarin constituents included simple hydroxylcoumarins (e.g. aesculin, esculetin, scopoletin, and escopoletin), furocoumarins and isofurocoumarin (e.g. psoralen and isopsoralen from Psoralea corylifolia), pyranocoumarins (e.g. xanthyletin, xanthoxyletin, seselin, khellactone, praeuptorin A), bicoumarins, dihydro-isocoumarins (e.g. bergenin), and others (e.g. wedelolactone from Eclipta prostrata) (Shan et al., 2005).

Plants, fruits, vegetables, olive oil, and beverages (coffee, wine, and tea) are all dietary sources of coumarins; for example, seselin from fruit of Seseli indicum, khellactone from fruit of Ammi visnaga, and praeuptorin A from Peucedanum praeruptorum (Sonnenberg et al., 1995). In previous studies, it was found that coumarins occurred in the medicinal herbs Umbelliferae, Asteraceae, Convolvulaceae, Leguminosae, Magnoliaceae, Oleaceae, Rutaceae, and Ranunculaceae, such as simple coumarins from A. annua, furocoumarins (5-methoxyfuranocoumarin) from Angelica sinensis, pyranocoumarins from Citrus aurantium, and isocoumarins from Agrimonia pilosa. Coumarins have also been detected in some Indian medicinal plants (e.g. Toddalia aculeata, Murraya exotica, Foeniculum vulgare, and Carum copticum) and dietary spices (e.g. cumin and caraway). In addition, coumestans, derivatives of coumarin, including coumestrol, a phytoestrogen, are found in a variety of medicinal and dietary plants such as soybeans and Pueraria mirifica (Chansakaow et al., 2000).

Lignans

Lignans are also derived from cis-o-hydroxycinnamic acid and are dimers (with 2 C6-C3 units) resulting from tail–tail linkage of 2 coniferl or sinapyl alcohol units (Cai et al., 2007). Lignans are mainly present in plants in the free form and as glycosides in a few (Fresco et al., 2006). Main lignan constituents are lignanolides (e.g. arctigenin, arctiin, secoisolariciresinol, and matairesinol from Arctium lappa), cyclolignanolides (e.g. chinensin from Polygala tenuifolia), bisepoxylignans (e.g. forsythigenol and forsythin from Forsythia suspensa), neolignans (e.g. magnolol from Cedrus deodara and Magnolia officinalis), and others (e.g. schizandrins, schizatherins, and wulignan from Schisandra chinensis; pinoresinol from Pulsatilla chinensis; and furofuran lignans from Cuscuta chinensis) (Surveswaran et al., 2007).

The famous tumor therapy drug podophyllotoxin (cyclolignanolide) was first identified in Podophyllum peltatum, which Native Americans used to treat warts, and also found in a traditional medicinal plant Podophyllum emodi var. chinense (Efferth et al., 2007). Two new lignans (podophyllotoxin glycosides) were isolated from the Chinese medicinal plant, Sinopodophyllum emodi (Zhao et al., 2002). Different lignans (e.g. cubebin, hinokinin, yatein, and isoyatein) were identified from leaves, berries, and stalks of Piper cubeba L. (Piperaceae), an Indonesian medicinal plant (Elfahmi et al., 2007).

Milder et al. (2005) established a lignan database from Dutch plant foods by quantifying lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol in 83 solid foods and 26 beverages commonly consumed in The Netherlands. They reported that flaxseed (mainly secoisolariciresinol), sesame seeds, and Brassica vegetables (mainly pinoresinol and lariciresinol) contained unexpectedly high levels of lignans. Sesamol, sesamin, and their glucosides are also good examples of this type of compound, which comes from sesame oil and sunflower oil.

Quinones

Natural quinones in medicinal plants fall into 4 categories: anthraquinones, phenanthraquinones, naphthoquinones, and benzoquinones (Cai et al., 2004). Anthraquinones are the largest class of natural quinones and occur more widely in medicinal and dietary plants than other natural quinones (Cai et al., 2006). The hydroxyanthraquinones normally have 1 to 3 hydroxyl groups on the anthraquinone structure. Previous investigation found that quinones were distributed in 12 species of medicinal herbs from 9 families such as Polygalaceae, Rubiaceae, Boraginaceae, Labiatae, Leguminosae, Myrsinaceae, and so forth (Surveswaran et al., 2007).

For example, high content benzoquinones and derivatives (embelin, embelinol, embeliaribyl ester, embeliol) are found in Indian medicinal herb Embelia ribes; naphthoquinones (shikonin, alkannan, and acetylshikonin) come from Lithospermum erythrorhizon and juglone comes from Juglans regia; phenanthraquinones (tanshinone I, II A, and II B ) were detected in Salvia miltiorrhiza; denbinobin was detected in Dendrobium nobile; and many anthraquinones and their glycosides (e.g. rhein, emodin, chrysophanol, aloe-emodin, physcion, purpurin, pseudopurpurin, alizarin, munjistin, emodin-glucoside, emodin-malonyl-glucoside, etc.) were identified in the rhizomes and roots from P. cuspidatum (also in leaves), P. multiflorum, and R. officinale in the Polygalaceae and Rubia cordifolia in the Rubiaceae (Surveswaran et al., 2007; Huang et al., 2008). In addition, some naphthoquinones were isolated from maize (Zea mays L.) roots (Luthje et al., 1998).

References:

Athar M, Back JH, Tang XW, et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharm, 224:274–283.


Cai YZ, Luo Q, Sun M and Corke H. (2004). Anti-oxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74:2157–2184.


Cai YZ, Sun M, Xing J, Luo Q and Corke H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci, 78:2872–2888.


Chansakaow S, Ishikawa T, Seki H, et al. (2000). Identification of deoxymiroestrol as the actual rejuvenating principle of 'Kwao Keur', Pueraria mirifica. J. Nat. Prod, 63(2):173–5. doi:10.1021/np990547v.


Efferth T, Li P CH, Konkimalla V and Kaina B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends Mol Med, 13:353–361.


Elfahmi, Ruslan K, Batterman S, et al. (2007). Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem Syst Ecol, 35:397–402.


Fresco P, Borges F, Diniz C and Marques M PM. (2006). New insights on the anti-cancer properties of dietary polyphenols. Med Res Rev, 26:747–766.


Han XZ, Shen T and Lou HX. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci, 8:950–988


Hollman P and Katan M B. (2000). Flavonols, flavones, and flavanols—nature, occurrence, and dietary burden. J Sci Food Agric, 80:1081–1093.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2007). A potential anti-oxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot, 61:14–30.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2008). Comparative analysis of bioactivities of four Polygonum species. Planta Med, 74:43–49.


Huang WH, Cai YZ, Zhang Y. (2010). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1):1–20 doi: 10.1080/01635580903191585


Iwashina T. (2000). The structure and distribution of the flavonoids in plants. J Plant Res, 113:287–299.


Jakobek L, Seruga M, Novak I and Medvidovic-Kosanovic M. (2007). Flavonols, phenolic acids, and anti-oxidant activity of some red fruits. Deut Lebensm-Runsch, 103:369–378.


Kampa M, Nifli AP, Notas G, Castanas E. (2007). Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol, 159:79-113.


Khan HY, Zubair H, Faisal M, et al. (2013). Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemo-preventive action. Mol Nutr Food Res. doi: 10.1002/mnfr.201300417.


Luthje S, Van Gestelen P, Cordoba-Pedregosa MC, et al. (1998). Quinones in plant plasma membranes—a missing link?. Protoplasma, 205:43–51.


Manach C, Scalbert A, Morand C, RŽmŽsy C, JimŽnez L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727–47.


Milder I, Arts I, van de Putte B, Venema DP and Hollman P. (2005). Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Brit J Nutr, 93:393–402.


Ren WY, Qiao ZH, Wang HW, Zhu L and Zhang L. (2003). Flavonoids: promising anti-cancer agents. Med Res Rev, 23:519–534.


Sampietro DA and Vattuone MA. (2006). Sugarcane straw and its phytochemicals as growth regulators of weed and crop plants. Plant Growth Regul, 48: 21–27.


Shan B, Cai YZ, Sun M and Corke H. (2005). Anti-oxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53:7749–7759.


Sonnenberg H, Kaloga M, Eisenbac N and Fromming KK. (1995). Isolation and characterization of an angular-type dihydropyranocoumaringlycoside from the fruits of Ammi visnaga (L) Lam (Apiaceae). Zeitschrift Natur C-A J BioSci, 50: 729–731.


Stagos D, Kazantzoglou, G, Theofanidou, D, Kakalopoulou, G, Magiatis, P. (2006). Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat Res-Gen Tox En, 609:165–175.


Surveswaran S, Cai YZ, Corke H and Sun M. (2007). Systematic evaluation of natural phenolic anti-oxidants from 133 Indian medicinal plants. Food Chem, 102:938–953.


Wang SH, DeGroff VL, Clinton SK. (2003). Tomato and Soy Polyphenols Reduce Insulin-Like Growth Factor-I–Stimulated Rat Prostate Cancer Cell Proliferation and Apoptotic Resistance In Vitro via Inhibition of Intracellular Signaling Pathways Involving Tyrosine Kinase. J. Nutr, 133(7):2367-2376


Xiao K, Xuan LJ, Xu YM, Bai D, Zhong DX. (2002). Dimeric stilbene glycosides from Polygonum cuspidatum. Eur J Org Chem, 3:564–568.


Zhao C, Nagatsu A, Hatano K, Shirai N, Kato S. (2003). New lignan glycosides from Chinese medicinal plant, Sinopodophyllum emodi. Chem Pharm Bull, 51:255–261.

Periplocin

Cancer: Lung, colorectal, leukemia

Action: Apoptosis-inducing, cytostatic effect

Apoptosis

The anti-tumor component of Cortex periplocae is periplocin. Periplocin is one of the cardenolides isolated from cortex periplocae which is used for treatment of rheumatoid arthritis and reinforcement of bones and tendons in traditional medicine.

Periplocin has been reported to inhibit many cell lines, including MCF-7, TE-13, QG-56, SMMC-7721, T24, Hela, K562, TE-13 and Eca-109 cells. Studies have shown that periplocin reduces the expression of survivin, an inhibitor of apoptosis. It also releases caspases-3 and -7 from complexes and thereby increases their activities, ultimately inducing tumor cell apoptosis (Zhao et al., 2009).

Lung Cancer

The anti-tumor activity of periplocin was investigated in lung cancer cells both in vitro and in vivo, and its anti-cancer mechanism was explored. Periplocin inhibited the growth of lung cancer cells and induced their apoptosis in a time- and dose-dependent manner by cell-cycle arrest in G0/G1 phase. Periplocin exhibited anti-tumor activity both in human (A549) and mouse (LL/2) lung cancer xenograft models. Immunohistochemical analysis revealed that intratumoral angiogenesis was significantly suppressed.

Furthermore, anti-cancer activity mediated by periplocin was associated with decreased level of phosphorylated AKT and ERK both in vitro and in vivo, which are important for cell growth and survival. Moreover, periplocin induced apoptosis by down-regulating Bcl-2 and up-regulating Bax, leading to activation of caspase-3 and caspase-9.

These findings suggest that periplocin could inhibit the growth of lung cancer both in vitro and in vivo, which could be attributed to the inhibition of proliferation and the induction of apoptosis signaling pathways, such as AKT and ERK. These observations provide further evidence on the anti-tumor effect of periplocin, and it may be of importance to further explore its potential role as a therapeutic agent for cancer (Lu et al., 2010).

Colorectal Carcinomas

The Wnt/beta-catenin signaling pathway plays an important role in the development and progression of human cancers, especially in colorectal carcinomas. Periplocin extracted from cortex periplocae (CPP) significantly inhibited the proliferation of SW480 cells in a time-and dose-dependent manner (P<0.01). CPP (0.5 microg/mL) also caused G0/G1 cell-cycle arrest of SW480 cells and induced cell apoptosis (P<0.05). Compared to untreated control cells, after the treatment with CPP, the protein levels of beta-catenin in total cell lysates, cytosolic extracts, and nuclear extracts were reduced (P<0.01); the binding activity of the TCF complex in nucleus to its specific DNA binding site was suppressed; mRNAs of the downstream target genes survivin, c-myc and cyclin D1 were decreased (P<0.01) while beta-catenin mRNA remained unchanged.

CPP could significantly inhibit the proliferation of SW480 cells, which may be through down-regulating the Wnt/beta-catenin signaling pathway (Du et al., 2009).

Pro-apoptotic and Cytostatic Effect/Leukemia

Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na(+)/K(+)-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L., and the mechanisms underlying such an effect.

The pro-apoptotic and cytostatic effect of the compounds was tested in U937 (monocytic leukemia) and PC3 (prostate adenocarcinoma). Characterization of apoptosis and cell-cycle impairment was obtained by cytofluorimetry and WB. Periplocymarin and periplocin were the most active compounds, periplocymarin being more effective than the reference compound ouabain. The reduction of cell number by these two cardenolides was due in PC3 cells mainly to the activation of caspase-dependent apoptotic pathways, while in U937 cells to the induction of cell-cycle impairment without extensive cell death. Interestingly, periplocymarin, at cytostatic but non-cytotoxic doses, was shown to sensitize U937 cells to TRAIL. Taken together, these data outline that cardiac glycosides are promising anti-cancer drugs and contribute to the identification of new natural cardiac glycosides to obtain chemically modified non-cardioactive/low toxic derivatives with enhanced anti-cancer potency (Bloise et al., 2009).

References

Bloise E, Braca A, De Tommasi N, Belisario MA. (2009). Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol, 64(4):793-802. doi: 10.1007/s00280-009-0929-5.


Du YY, Liu X, Shan BE. (2009). Periplocin extracted from cortex periplocae induces apoptosis of SW480 cells through inhibiting the Wnt/beta-catenin signaling pathway. Ai Zheng, 28(5):456-60.


Lu ZJ, Zhou Y, Song Q, et al. (2010). Periplocin inhibits growth of lung cancer in vitro and in vivo by blocking AKT/ERK signaling pathways. Cell Physiol Biochem, 26(4-5):609-18. doi: 10.1159/000322328.


Zhao LM, Ai J, Zhang Q, et al. (2009). Periplocin (a sort of ethanol from Cortex periplocae) induces apoptosis of esophageal carcinoma cells by influencing expression of related genes. Tumor (Chin), 29:1025-1030.

Paeoniflorin

Cancer: Hepatocellular carcinoma, colorectal, liver

Action: Radio-protective, ameliorated myelosuppression, MDR

Radio-protective

The radio-protective effect of paeoniflorin (PF), a main bioactive component in the traditional Chinese herb peony, on irradiated thymocytes and the possible mechanisms of protection have been investigated. Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS).

It was found 60Co γ-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pre-treatment of thymocytes with PF (50–200 µg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and up-regulate Bcl-2 and down-regulate Bax in 4 Gy-irradiated thymocytes, were determined.

Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase, were activated by 4 Gy irradiation, with their activation partly blocked by pre-treatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4 Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases (Li et al., 2007).

Liver Cancer

Prostaglandin E2 (PGE2) has been shown to play an important role in tumor development and progression. PGE2 mediates its biological activity by binding any one of four prostanoid receptors (EP1 through EP4). Paeoniflorin, a monoterpene glycoside, significantly inhibited the proliferation of HepG2 and SMMC-7721 cells stimulated by butaprost at multiple time points (24, 48, and 72 hours). Paeoniflorin induced apoptosis in HepG2 and SMMC-7721 cells, which was quantified by annexin-V and propidium iodide staining. Our results indicate that the expression of the EP2 receptor and Bcl-2 was significantly increased, whereas that of Bax and cleaved caspase-3 was decreased in HepG2 and SMMC-7721 cells.

Paeoniflorin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in hepatocellular carcinoma cells by down-regulating EP2 expression and also increased the Bax-to-Bcl-2 ratio, thus up-regulating the activation of caspase-3 (Hu et al., 2013).

Colorectal Cancer

Results showed that positive cells of Proliferating Cell Nuclear Antigen (PCNA) in paeoniflorin (PF) and docetaxel-treated group was decreased to 30% and 15% respectively, compared with control group of tumors. But apoptosis cells in docetaxel treated groups studied by TUNEL is increased to 40 ± 1.2% and 30 ± 1.5% respectively, compared with 24 ± 2.3% in negative control. Furthermore, the efficiency of tumor-bearing mice treated by PF was superior to docetaxel in vivo. Overall, PF may be an effective chemo-preventive agent against colorectal cancer HT29 (Wang et al., 2012).

Ameliorates Myelosuppression

The administration of paeoniflorin and albiflorin (CPA) extracted from Paeonia radix, significantly ameliorated myelosuppression in all cases. For the X-ray irradiated mice and the chemotherapy treated mice and rabbits, high dosages of CPA resulted in the recovery of, respectively, 94.4%, 95.3% and 97.7% of hemoglobin content; 67.7%, 92.0% and 94.3% of platelet numbers; 26.8%, 137.1% and 107.3% of white blood cell counts; as well as a reversal in the reduction of peripheral differential white blood cell counts.

There was also a recovery of 50.9%, 146.1% and 92.3%, respectively, in the animals' relative spleen weight. Additionally, a recovery of 35.7% and 87.2% respectively in the number of bone marrow nucleated cells was observed in the radio- and chemo -therapy-treated mice. Bone marrow white blood cell counts also resumed to normal levels (Xu et al., 2011).

MDR

Studies have shown that NF-κB activation may play an essential role in the development of chemotherapy resistance in carcinoma cells. Paeonißorin, a principal bioactive component of the root of Paeonia lactißora, has been reported to exhibit various pharmacological effects. In the present study, Fanh et al. (2012) reported for the first time that paeoniflorin at non-toxic concentrations may effectively modulate multi-drug resistance (MDR) of the human gastric cancer cell line SGC7901/vincristine (VCR) via the inhibition of NF-κB activation and, at least partly, by subsequently down-regulating its target genes MDR1, BCL-XL and BCL-2.

References

Fang S, Zhu W, Zhang Y, Shu Y, Liu P. (2012). Paeoniflorin modulates Multi-drug resistance of a human gastric cancer cell line via the inhibition of NF- κB activation. Mol Med Rep, 5(2):351-6. doi: 10.3892/mmr.2011.652.


Hu S, Sun W, Wei W, et al. (2013). Involvement of the prostaglandin E receptor EP2 in paeoniflorin-induced human hepatoma cell apoptosis. Anti-cancer Drugs, 24(2):140-9. doi: 10.1097/CAD.0b013e32835a4dac.


Li CR, Zhou Z, Zhu D, et al. (2007). Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases. The International Journal of Biochemistry & Cell Biology, 39(2):426–438


Wang H, Zhou H, Wang CX, et al. (2012). Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol, 50(5):1560-7. doi: 10.1016/j.fct.2012.01.035.


Xu W, Zhou L, Ma X, et al. (2011). Therapeutic effects of combination of paeoniflorin and albiflorin from Paeonia radix on radiation and chemotherapy-induced myelosuppression in mice and rabbits. Asian Pac J Cancer Prev, 12(8):2031-7.

Paenol

Cancer: Gastric

Action: Attenuates nephrotoxicity, anti-inflammatory, anti-oxidant, inhibits TNF- α , induces apoptosis, COX-2 down-regulation

Inhibits TNF- α

Moutan Cortex, the root bark of Paeonia suffruticosa Andrews, has been used extensively as a traditional medicine for treatment of various diseases such as atherosclerosis, infection, and inflammation. Previous studies have revealed that the extracts of Moutan Cortex can inhibit nitric oxide and TNF- α in activated mouse peritoneal macrophages (Chung et al., 2007).

A variety of compounds including paeonoside, paeonolide, apiopaeonoside, paeoniflorin, oxypaeoniflorin, benzoyloxypaeoniflorin, benzoylpaeoniflorin, paeonol, and sugars have been identified in Moutan Cortex (Chen et al., 2006).

Attenuates Nephrotoxicity

Paeonol, a major compound of Moutan Cortex, has been found to attenuate cisplatin-induced nephrotoxicity in mice. Cisplatin is an effective chemotherapeutic agent that is used for the treatment of a variety of cancers; however, its nephrotoxicity limits the use of this drug.

Balb/c mice (6 to 8  w of age, weighing 20 to 25  g) were administered with Moutan Cortex (300  mg/kg) or paeonol (20 mg/kg) once a day. At day 4, mice received cisplatin (30, 20, or 10   mg/kg) intraperitoneally.

The paeonol-treated group showed marked attenuation of serum creatine and blood urea nitrogen levels as well as reduced levels of pro-inflammatory cytokines and nitric oxide when compared to the control group. In addition, the paeonol-treated group showed prolonged survival and marked attenuation of renal tissue injury. Taken together, these results demonstrated that paeonol can prevent the renal toxic effects of cisplatin (Lee et al., 2013).

Paeonol, a major phenolic component of Moutan Cortex, has various biological activities such as anti-aggregatory, anti-oxidant, anxiolytic-like, and anti-inflammatory functions (Ishiguro et al., 2006). In this study, paeonol treatment significantly reduced the elevated levels of serum creatinine and BUN. In addition, the role of pro-inflammatory cytokines in cisplatin-induced acute renal failure has been well documented (Faubel et al., 2007; Ramesh & Reeves, 2002), and elevation of the pro-inflammatory cytokines TNF-α and IL-1β as well as that of IL-6 has been demonstrated in humans with acute renal failure (Simmons et al., 2004).

Apoptosis-inducing & Gastric Cancer

Paeonol has significantly growth-inhibitory and apoptosis-inducing effects in gastric cancer cells both in vitro and in vivo. In vitro, paeonol caused dose-dependent inhibition on cell proliferation and induced apoptosis. Cell cycle analysis revealed a decreased proportion of cells in G0/G1 phase, with arrest at S. Paeonol treatment in gastric cancer cell line MFC and SGC-790 cells significantly reduced the expression of Bcl-2 and increased the expression of Bax in a concentration-related manner. Administration of paeonol to MFC tumor-bearing mice significantly lowered the tumor growth and caused tumor regression (Li et al., 2010).

COX-2 Down-regulation

One of the apoptotic mechanisms of paeonol is down-regulation of COX-2. p27 is up-regulated simultaneously and plays an important part in controlling cell proliferation and is a crucial factor in the Fas/FasL apoptosis pathway. Cell proliferation was inhibited by different concentrations of paeonol. By immunocytochemical staining, Ye et al. (2009) found that HT-29 cells treated with paeonol (0.024-1.504 mmol/L) reflected reduced expression of COX-2 and increased expression of p27 in a dose-dependent manner. RT-PCR showed that paeonol down-regulated COX-2 and up-regulated p27 in a dose- and time-dependent manner in HT-29 cells.

References

Chen G, Zhang L, Zhu Y. (2006). Determination of glycosides and sugars in moutan cortex by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 41(1):129–134.


Chung HS, M. Kang, C. Cho et al. (2007). Inhibition of nitric oxide and tumor necrosis factor-alpha by moutan cortex in activated mouse peritoneal macrophages. Biological and Pharmaceutical Bulletin, 30(5):912–916.


Faubel F, Lewis EC, Reznikov L et al. (2007). Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1 β , IL-18, IL-6, and neutrophil infiltration in the kidney. Journal of Pharmacology and Experimental Therapeutics, 322(1):8–15.


Ishiguro K, Ando T, Maeda O et al. (2006). Paeonol attenuates TNBS-induced colitis by inhibiting NF- κ B and STAT1 transactivation. Toxicology and Applied Pharmacology, 217(1):35–42.


Lee HJ, Lee GY, Kim Hs, Bae Hs. (2013). Paeonol, a Major Compound of Moutan Cortex, Attenuates Cisplatin-Induced Nephrotoxicity in Mice. Evidence-Based Complementary and Alternative Medicine, 2013(2013), http://dx.doi.org/10.1155/2013/310989


Li N, Fan LL, Sun GP, et al. (2010). Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World J Gastroenterol., 16(35):4483-90.


Ramesh G, Reeves wb. (2002). TNF- α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. Journal of Clinical Investigation, 110(6):835–842.


Simmons EM, Himmelfarb j, Sezer MT et al. (2004). Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney International, 65(4):1357–1365.


Ye JM, Deng T, Zhang JB. (2009) Influence of paeonol on expression of COX-2 and p27 in HT-29 cells. World J Gastroenterol, 15(35):4410-4.

Oxymatrine (Ku Shen)

Cancer:
Sarcoma, pancreatic, breast, liver, lung, oral, colorectal, stomach, gastric, adenoid cystic carcinoma

Action: Anti-angiogenesis, anti-inflammatory, anti-proliferative, chemo-sensitizer, chemotherapy support, cytostatic, radiation support, immunotolerance, induces apoptosis, decreases side-effects of Intensity Modulated Radiation Therapy (IMRT), Transcatheter Hepatic Arterial Chemoembolization (TACE)

Anti-cancer

Oxymatrine, isolated from the dried roots of Sophora flavescens (Aiton), has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anti-cancer drugs. More potent anti-tumor activities were identified in KS-Fs than in KS-As in vitro and in vivo (Sun et al., 2012).

Angiogenesis

Oxymatrine has been found to inhibit angiogenesis when administered by injection. The tumor-inhibitory rate and the vascular density were tested in animal tumor model with experimental treatment. The expression of VEGF and bFGF were measured by immunistological methods. When high doses were used, the tumor-inhibitory rate of oxymatrine was 31.36%, and the vascular density of S180 sarcoma was lower than that in the control group, and the expression of VEGF and bFGF was down-regulated. Oxymatrine hence has an inhibitory effect on S180 sarcoma and strong inhibitory effects on angiogenesis. Its mechanism may be associated with the down-regulating of VEGF and bFGF expression (Kong et al., 2003).

Immunotolerance

Matrine, a small molecule derived from the root of Sophora flavescens AIT, was demonstrated to be effective in inducing T cell anergy in human Jurkat cells. Induction of immunotolerance has become a new strategy for treating autoimmune conditions in recent decades. However, so far there is no ideal therapeutics available for clinical use. Medicinal herbs are a promising potential source of immunotolerance inducers. Bioactive compounds derived from medicinal plants were screened for inducing T cell anergy in comparison with the effect of well-known T cell anergy inducer, ionomycin.

The results showed that passage of the cells, and concentration and stimulation time of ionomycin on the cells, could influence the ability of T cell anergy induction. The cells exposed to matrine showed markedly decreased mRNA expression of interleukin-2, an indicator of T cell anergy, when the cells were stimulated by antigens, anti-OKT3 plus anti-CD28. Mechanistic study showed that ionomycin and matrine could up-regulate the anergy-associated gene expressions of CD98 and Jumonji and activate nuclear factor of activated T-cells (NFAT) nuclear translocation in absence of cooperation of AP-1 in Jurkat cells. Pre-incubation with matrine or ionomycin could also shorten extracellular signal-regulated kinase (ERK) and suppress c-Jun NH(2)-terminal kinase (JNK) expression on the anergic Jurkat cells when the cells were stimulated with anti-OKT-3 plus anti-CD28 antibodies. Thus, matrine is a strong candidate for further investigation as a T cell immunotolerance inducer (Li et al., 2010).

Induces Apoptosis

The cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential ( Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit.

Results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax.

Oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality (Zhang et al., 2013).

Pancreatic Cancer

Cell viability assay showed that treatment of PANC-1 pancreatic cancer cells with oxymatrine resulted in cell growth inhibition in a dose- and time-dependent manner. Oxymatrine decreased the expression of angiogenesis-associated factors, including nuclear factor κB (NF-κB) and vascular endothelial growth factor (VEGF). Finally, the anti-proliferative and anti-angiogenic effects of oxymatrine on human pancreatic cancer were further confirmed in pancreatic cancer xenograft tumors in nude mice (Chen et al., 2013).

Induces Apoptosis in Pancreatic Cancer

Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was up-regulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c, and activation of caspase-3 (Ling et al., 2011).

Decreases Side-effects of Intensity Modulated Radiation Therapy (IMRT)

The levels of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer were measured after treatment with the compound matrine, in combination with radiation. Eighty-four patients diagnosed with rectal carcinoma were randomly divided into two groups: therapeutic group and control group.

The patients in the therapeutic group were treated with compound matrine and intensity- modulated radiation therapy (IMRT) (30 Gy/10 f/2 W), while the patients in control group were treated with IMRT. The clinical effects and the levels of IL-8 and sIL-2R tested by ELISA pre-radiation and post-radiation were compared. In addition, 42 healthy people were singled out from the physical examination center in the People's Hospital of Yichun city, which were considered as healthy controls.

The clinical effect and survival rate in the therapeutic group was significantly higher (47.6%) than those in the control group (21.4%). All patients were divided by improvement, stability, and progression of disease in accordance with Karnofsky Performance Scale (KPS). According to the KPS, 16 patients had improvement, 17 stabilized and 9 had disease progress, in the therapeutic group. However, the control group had 12 improvements, 14 stabilized, and 16 progress.

The quality of life in the therapeutic group was higher than tthat in the control group, by rank sum test. SIL-2R and IL-8 examination found that serum levels of sIL-2R and IL-8 were higher in rectal cancer patients before treatments than those in the healthy groups, by student test.

However, sIL-2R and IL-8 serum levels were found significantly lower in the 84 rectal cancer patients after radiotherapy. The level of sIL-2R and IL-8 in the therapeutic group was lower on the first and 14th day, post-radiation, when compared to the control group. However, there was no significant difference on the first day and 14th day, between both experimental groups post- therapy, according to the student test. Side-effects of hepatotoxicity (11.9%) and radiation proctitis (9.52%) were fewer in the therapeutic group.

Compound matrine can decrease the side-effects of IMRT, significantly inhibit sIL-2R and IL-8 in peripheral blood from radiation, and can improve survival quality in patients with rectal cancer (Yin et al., 2013).

Gastric Cancer

The clinical effect of matrine injection, combined with S-1 and cisplatin (SP), in the treatment of advanced gastric cancer was investigated. Seventy-six cases of advanced gastric cancer were randomly divided into either an experimental group or control group. Patients in the two groups were treated with matrine injection combined with SP regimen, or SP regimen alone, respectively.

The effectiveness rate of the experimental group and control group was 57.5% and 52.8% respectively. Therapeutic effect of the two groups of patients did not differ significantly. Occurrence rate of symptom indexes in the treatment group were lower than those of control group, with exception of nausea and vomiting, in which there was no significant difference.

The treatment of advanced gastric cancer with matrine injection, combined with the SP regimen, can significantly improve levels of white blood cells and hemoglobin, liver function, incidence of diarrhea and constipation, and neurotoxicity, to improve the quality of life in patients with advanced gastric cancer (Xia, 2013).

Adenoid Cystic Carcinoma

The effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells was investigated.

Compound radix Sophorae flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro, and the dosage effect relationship was significant (P < 0.01). IC50 of ACC-2 was 0.84 g/ml. Flow cytometry indicated that radix Sophorae flavescentis injection could arrest ACC-2 cells at the G0/G1 phase, with a gradual decrease of presence in the G2/M period and S phase. With an increase in dosage, ACC-2 cell apoptosis rate increased significantly (P < 0.05 or P < 0.01).

Radix Sophorae flavescentis injection could enhance ACC-2 cells Caspase-3 protein expression (P < 0.05 or P < 0.01), in a dose-dependent manner. It also could effectively restrain human adenoid cystic carcinoma ACC-2 cells Caspases-3 protein expression, and induce apoptosis, inhibiting tumor cell proliferation (Shi & Hu, 2012).

Breast Cancer Post-operative Chemotherapy

A retrospective analysis of oncological data of 70 post-operative patients with breast cancer from January 2008 to August 2011 was performed. According to the treatment method, the patients were divided into a therapy group (n=35) or control group (n=35). Patients in the control group were treated with the taxotere, adriamycin and cyclophosphamide regimen (TAC). The therapy group was treated with a combination of TAC and sophora root injection. Improved quality of life and incidence of adverse events, before and after treatment, for 2 cycles (21 days to a cycle) were compared.

The objective remission rate of therapy group compared with that of control group was not statistically significant (P > 0.05), while the difference of the disease control rate in two groups was statistically significant (P < 0.05). The improvement rate of total quality of life in the therapy group was higher than that of the control group (P < 0.05). The drop of white blood cells and platelets, gastrointestinal reaction, elevated SGPT, and the incidence of hair loss in the therapy group were lower than those of the control group (P < 0.05).

Sophora root injection combined with chemotherapy in treatment of breast cancer can enhance the effect of chemotherapy, reduce toxicity and side-effects, and improve quality of life (An, An & Wu, 2012).

Lung Cancer Pleural Effusions

The therapeutic efficiency of fufangkushen injection, IL-2, α-IFN on lung cancer accompanied with malignancy pleural effusions, was observed.

One hundred and fifty patients with lung cancer, accompanied with pleural effusions, were randomly divided into treatment and control groups. The treatment group was divided into three groups: injected fufangkushen plus IL-2, fufangkushen plus α-tFN, and IL-2 plus α-IFN, respectively. The control group was divided into three groups and injected fufangkushen, IL-2 and α-IFN, respectively. Therapeutic efficiency and adverse reactions were observed after four weeks.

The effective rate of fufangkushen, IL-2, and α-IFN in a combination was significantly superior to single pharmacotherapy. The effective rate of fufangkushen plus ct-IFN was highest. In adverse reactions, the incidence of fever, chest pains, and the reaction of gastrointestinal tract in the treatment group were significantly less than in the matched group.

The effect of fufangkushen, IL-2, and α-IFN, in a combination, on lung cancer with pleural effusions was significantly better than single pharmacotherapy. Moreover, the effect of fufangknshen plus IL-2 or α-IFN had the greatest effect (Hu & Mei, 2012).

Colorectal Cancer Immunologic Function

The effects of compound Kushen (Radix sophorae flavescentis) injection on the immunologic function of patients after colorectal cancer resection, were studied.

Eighty patients after colorectal cancer resection were randomly divided into two groups: 40 patients in the control group were treated with routine chemotherapy including 5-fluorouridine(5-FU), calcium folinate(CF) and oxaliplatin, and 40 patients in the experimental group were treated with the same chemotherapy regime combined with 20 mL·d-1 compound Kushen injection, for 10 days during chemotherapy.

In the control group the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio significantly declined relative to prior to chemotherapy (P < 0.05), while CD8+T lymphocyte number increased significantly. In the experimental group, there were no significant differences between the numbers of CD3+,CD4+,CD8+T cells, NK cells, and CD4+/CD8+ ratio, before and after chemotherapy (P > 0.05).

After chemotherapy, the numbers of CD3+,CD4+T cells, NK cells and CD4+/CD8+ ratio were higher in the experimental group than in the control group (P0.05), while the number of CD8+T lymphocyte was similar between two groups. Compound Kushen injection can improve the immunologic function of patients receiving chemotherapy after colorectal cancer resection (Chen, Yu, Yuan, & Yuan, 2009).

Stage III and IV non-small-cell lung cancer (NSCLC)

A total of 286 patients with advanced NSCLC were enrolled for study. The patients were treated with either compound Kushen injection in combination with NP (NVB + CBP) chemotherapy (vinorelbine and carboplatin, n = 144), or with NP (NVB + CBP) chemotherapy alone (n = 142). The chemotherapy was performed for 4 cycles of 3 weeks, and the therapeutic efficacy was evaluated every 2 weeks. The following indicators were observed: levels of Hb, WBC, PLT and T cell subpopulations in blood, serum IgG level, short-term efficacy, adverse effects and quality of life.

The gastrointestinal reactions and the myelosuppression in the combination chemotherapy group were alleviated when compared with the chemotherapy alone group, showing a significant difference. (P < 0.05). CD (8)(+) cells were markedly declined in the combination chemotherapy group, and the CD (4)(+)/CD (8)(+) ratio showed an elevation trend in the chemotherapy alone group.

The Karnofsky Performance Scale (KPS) scores and serum IgM and IgG levels were higher in the combination chemotherapy group than those in the chemotherapy alone group (P < 0.01 and P < 0.05). The serum lgA levels were not significantly different in the two groups.

The compound Kushen injection plus NP chemotherapy regimen showed better therapeutic effect, reduced adverse effects of chemotherapy and improved the quality of life in patients with stage III and IV NSCLC (Fan et al., 2010).

Lung Adenocarcinoma

Suppression effects of different concentrations of matrine injection and matrine injection combined with anti-tumor drugs on lung cancer cells were measured by methyl thiazolyl tetrazolium (MTT) colorimetric assay.

Different concentrations of matrine injection could inhibit the growth of SPCA/I human lung adenocarcinoma cells. There was a positive correlation between the inhibition rate and the drug concentration. Different concentrations of matrine injection combined with anti-tumor drugs had a higher growth inhibition rate than anti-tumor drugs alone.

Matrine injection has direct growth suppression effect on SPCA/I human lung adenocarcinoma cells and SS+ injection combined with anti-tumor drugs shows a significant synergistic effect on tumor cells (Zhu, Jiang, Lu, Guo, & Gan, 2008).

Transcatheter Hepatic Arterial Chemoembolization (TACE)

The effect of composite Kushen injection combined with transcatheter hepatic arterial chemoembolization (TACE) on unresectable primary liver cancer, was studied.

Fifty-seven patients with unresectable primary liver cancer were randomly divided into two groups. The treatment group with 27 cases was treated by TACE combined with composite Kushen injection, and the control group with 30 cases was treated by TACE alone. The clinical curative effects were observed after treatment in both groups.

One-, 2-, and 3-year survival rates of the treatment group were 67%, 48%, and 37% respectively, and those of control group were 53%, 37%, and 20% respectively. There were significant differences between both groups (P < 0.05).

Combined TACE with composite Kushen injection can increase the efficacy of patients with unresectable primary liver cancer (Wang & Cheng, 2009).

References

An AJ, An GW, Wu YC. (2012). Observation of compound recipe light yellow Sophora root injection combined with chemotherapy in treatment of 35 postoperative patients with breast cancer. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 24(10), 43-46. doi: 10.3969/j.issn.2095-140X.2012.10.016.


Chen G, Yu B, Yuan SJ, Yuan Q. (2009). Effects of compound Kushen injection on the immunologic function of patients after colorectal cancer resection. Evaluation and Analysis of Drug-Use in Hospitals of China, 2009(9), R735.3. doi: cnki:sun:yypf.0.2009-09-025.


Chen H, Zhang J, Luo J, et al. (2013) Anti-angiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF- κ B-mediated VEGF signaling pathway. Oncol Rep, 30(2):589-95. doi: 10.3892/or.2013.2529.


Fan CX, Lin CL, Liang L, et al. (2010). Enhancing effect of compound Kushen injection in combination with chemotherapy for patients with advanced non-small-cell lung cancer. Chinese Journal of Oncology, 32(4), 294-297.


Hu DJ, Mei, XD. (2012). Observing therapeutic efficiency of fufangkushen injection, IL-2, α -IFN on lung cancer accompanied with malignancy pleural effusions. Journal of Clinical Pulmonology, 17(10), 1844-1845.


Kong QZ, Huang DS, Huang T, et al. (2003). Experimental study on inhibiting angiogenesis in mice S180 by injections of three traditional Chinese herbs. Chinese Journal of Hospital Pharmacy, 2003-11. doi: CNKI:SUN:ZGYZ.0.2003-11-002


Li T, Wong VK, Yi XQ, et al. (2010). Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression. Biol Pharm Bull, 33(1):40-6.


Ling Q, Xu X, Wei X, et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res, 30:66. doi: 10.1186/1756-9966-30-66.


Shi B, Xu H. (2012). Effects of compound radix Sophorae flavescentis injection on proliferation, apoptosis and caspase-3 expression in adenoid cystic carcinoma ACC-2 cells. Chinese Pharmacological Bulletin, 5(10), 721-724.


Sun M, Cao H, Sun L, et al. (2012). Anti-tumor activities of kushen: literature review. Evid Based Complement Alternat Med, 2012;2012:373219. doi: 10.1155/2012/373219.


Wang HM, Cheng XM. (2009). Composite Ku Shen injection combined with hepatic artery embolism on unresectable primary liver cancer. Modern Journal of Integrated Traditional Chinese and Western Medicine, 18(2), 1334–1335.


Xia G. (2013). Clinical observation of compound matrine injection combined with SP regimen in advanced gastric cancer. Journal of Liaoning Medical University, 2013(1), 37-38.


Yin WH, Sheng JW, Xia HM, et al. (2013). Study on the effect of compound matrine on the level of sIL-2R and IL-8 in peripheral blood cells of patients with rectal cancer to radiation. Global Traditional Chinese Medicine, 2013(2), 100-104.


Zhang Y, Sun S, Chen J, et al. (2013). Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol.


Zhu MY, Jiang ZH, Lu YW, Guo Y, Gan JJ. (2008). Matrine and anti-tumor drugs in inhibiting the growth of human lung cancer cell line. Journal of Chinese Integrative Medicine, 6(2), 163-165. doi: 10.3736/jcim20080211.

Oleanolic Acid (OA)

Cancer:
Pancreatic, hepatocellular carcinoma, prostate, lung, gastric, breast

Action: Radio-sensitizer, pro-apoptotic with 5-FU

Oleanolic acid (OA), a pentacyclic triterpenoid isolated from several plants, including Rosa woodsii (Lindl.), Prosopis glandulosa (Torr.), Phoradendron juniperinum (Engelm. ex A. Gray), Syzygium claviflorum (Roxburgh), Hyptis capitata (Jacq.) and Ternstromia gymnanthera (L.) exhibits potential anti-tumor activity against many tumor cell lines. Mistletoe contains water-insoluble triterpenoids, mainly oleanolic acid, that have anti-tumorigenic effects (StrŸh et al., 2013).

Pancreatic Cancer

Results of a study by Wei et al. (2012) showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml−1. The study also showed that OA could induce remarkable apoptosis and revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells.

These results provide evidence that OA arrests the cell-cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cell.

The effects of the combination of OA and 5-fluorouracil (5-FU) on Panc-28 human pancreatic cells showed that combined use synergistically potentiated cell death effects on these cells, and that the pro-apoptotic effects were also increased. The expression of apoptosis related proteins was also affected in cells treated with the combination of OA and 5-FU, including activation of caspases-3 and the expression of Bcl-2/Bax, survivin and NF-κB (Wei et al., 2012).

Radio-sensitizer

The combined treatment of radiation with OA significantly decreased the clonogenic growth of tumor cells and enhanced the numbers of intracellular MN compared to irradiation alone. Furthermore, it was found that the synthesis of cellular GSH was inhibited concomitantly with the down-regulation of γ-GCS activity. Therefore, the utilization of OA as a radio-sensitizing agent for irradiation-inducing cell death offers a potential therapeutic approach to treat cancer (Wang et al., 2013).

Prostate Cancer, Lung Cancer, Gastric Cancer, Breast Cancer

Twelve derivatives of oleanolic acid (OA) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50=0.39 µM) and compound 28 displayed the best activity against A549 cell line (IC50=0.22 µM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines (Hao et al., 2013).

Hepatocellular Carcinoma

OA induced G2/M cell-cycle arrest through p21-mediated down-regulation of cyclin B1/cdc2. Cyclooxygenase-2 (COX-2) and p53 were involved in OA-exerted effect, and extracellular signal-regulated kinase-p53 signaling played a central role in OA-activated cascades responsible for apoptosis and cell-cycle arrest. OA demonstrated significant anti-tumor activities in hepatocellular carcinoma (HCC) in vivo and in vitro models. These data provide new insights into the mechanisms underlying the anti-tumor effect of OA (Wang et al., 2013).

References

Hao J, Liu J, Wen X, Sun H. (2013). Synthesis and cytotoxicity evaluation of oleanolic acid derivatives. Bioorg Med Chem Lett, 23(7):2074-7. doi: 10.1016/j.bmcl.2013.01.129.


StrŸh CM, JŠger S, Kersten A, et al. (2013). Triterpenoids amplify anti-tumoral effects of mistletoe extracts on murine B16.f10 melanoma in vivo. PLoS One, 8(4):e62168. doi: 10.1371/journal.pone.0062168.


Wang J, Yu M, Xiao L, et al. (2013). Radio-sensitizing effect of oleanolic acid on tumor cells through the inhibition of GSH synthesis in vitro. Oncol Rep, 30(2):917-24. doi: 10.3892/or.2013.2510.


Wang X, Bai H, Zhang X, et al. (2013). Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell-cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis, 34(6):1323-30. doi: 10.1093/carcin/bgt058.


Wei JT, Liu M, Liuz, et al. (2012). Oleanolic acid arrests cell-cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 33(8):756–765. doi: 10.1002/jat.2725


Wei J, Liu H, Liu M, et al. (2012). Oleanolic acid potentiates the anti-tumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol Rep, 28(4):1339-45. doi: 10.3892/or.2012.1921.

Nomilin

Cancer: Melanoma, breast cancer

Action: Anti-angiogenic

Nomilin is a triterpenoid present in common edible citrus fruits (Citrus grandis [(L.) Osb.], Citrus unshiu [(Swingle) Marcow.] and Citrus reticulata (Blanco)) with putative anti-cancer properties.

Melanoma

Nomilin possess anti-metastatic action, inducing metastasis in C57BL/6 mice through the lateral tail vein using highly metastatic B16F-10 melanoma cells. Administration of nomilin inhibited tumor nodule formation in the lungs (68%) and markedly increased the survival rate of the metastatic tumor–bearing animals. Nomilin showed an inhibition of tumor cell invasion and activation of matrix metalloproteinases. Treatment with nomilin induced apoptotic response.

Nomilin treatment also exhibited a down-regulated Bcl-2 and cyclin-D1 expression and up-regulated p53, Bax, caspase-9, caspase-3, p21, and p27 gene expression in B16F-10 cells. Pro-inflammatory cytokine production and gene expression were found to be down-regulated in nomilin-treated cells. The study also reveals that nomilin could inhibit the activation and nuclear translocation of anti-apoptotic transcription factors such as nuclear factor (NF)-κB, CREB, and ATF-2 in B16F-10 cells (Pratheeshkumar et al., 2011).

Breast Cancer; ER+

A panel of 9 purified limonoids, including limonin, nomilin, obacunone, limonexic acid (LNA), isolimonexic acid (ILNA), nomilinic acid glucoside (NAG), deacetyl nomilinic acid glucoside (DNAG), limonin glucoside (LG) and obacunone glucoside (OG) as well as 4 modified compounds such as limonin methoxime (LM), limonin oxime (LO), defuran limonin (DL), and defuran nomilin (DN), were screened for their cytotoxicity on estrogen receptor (ER)-positive (MCF-7) or ER-negative (MDA-MB-231) human breast cancer cells. Findings indicated that the citrus limonoids may have potential for the prevention of estrogen-responsive breast cancer (MCF-7) via caspase-7 dependent pathways (Lin et al., 2013).

Blocks Angoigenesis

Nomilin significantly inhibited tumor-directed capillary formation. Serum pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and GM-CSF and also serum NO levels were significantly reduced by the treatment of nomilin. Administration of nomilin significantly reduced the serum level of VEGF, a pro-angiogenic factor and increased the anti-angiogenic factors IL-2 and TIMP-1. Nomilin significantly retarded endothelial cell proliferation, migration, invasion and tube formation. These data clearly demonstrate the anti-angiogenic potential of nomilin by down-regulating the activation of MMPs, production of VEGF, NO and pro-inflammatory cytokines as well as up-regulating IL-2 and TIMP (Pratheeshkumar et al., 2011).

References

Kim J, Jayaprakasha GK, Patil BS. (2013). Limonoids and their anti-proliferative and anti-aromatase properties in human breast cancer cells. Food Funct, 4(2):258-65. doi: 10.1039/c2fo30209h.


Pratheeshkumar P, Raphael TJ & Kuttan G. (2011). Nomilin Inhibits Metastasis via Induction of Apoptosis and Regulates the Activation of Transcription Factors and the Cytokine Profile in B16F-10 Cells. Integr Cancer Ther. doi: 10.1177/1534735411403307


Pratheeshkumar P, Kuttan G. (2011). Nomilin inhibits tumor-specific angiogenesis by down-regulating VEGF, NO and pro-inflammatory cytokine profile and also by inhibiting the activation of MMP-2 and MMP-9. Eur J Pharmacol, 668(3):450-8. doi: 10.1016/j.ejphar.2011.07.029.

Nelumbo Extract (NLE):Neferine

Cancer: Liver, osteosarcoma, breast, melanoma

Action: Anti-angiogenic, cytostatic

Neferine is a major bis-benzylisoquinoline alkaloid derived from the green seed embryos of the Indian lotus (Nelumbo nucifera (Gaertn.)).

Identification of natural products that have anti-tumor activity is invaluable to the chemo-prevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. Neferine is a major alkaloid component in lotus embryos.

Hepatitis

Experimental results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. Results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment.

These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes (Yoon et al., 2013).

Osteosarcoma

It was found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell-cycle arrest at G1. The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. Zhang et al. (2012) showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Their results for the first time showed a direct anti-tumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

Breast Cancer

Qualitative analysis showed that NLE contained several compounds, including polyphenols. The polyphenols identified in NLE consisted primarily of gallic acid, rutin, and quercetin. Cell cycle analysis revealed that breast cancer MCF-7 cells treated with NLE were arrested at the G0/G1 phase. In an in vivo analysis, treatment with NLE (0.5 and 1%) effectively reduced tumor volume and tumor weight in mice inoculated with MCF-7 cells compared to the control samples.

These results confirmed that cell-cycle arrest was sufficient to elicit tumor regression following NLE treatment (Yang et al., 2011).

Melanoma

Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. 3-30 µM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 µM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 µM nuciferine inhibited the expression of TRP-2 mRNA (Nakamura et al., 2013).

References

Nakamura S, Nakashima S, Tanabe G, et al. (2013). Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem, 21(3):779-87. doi: 10.1016/j.bmc.2012.11.038.


Yang MY, Chang YC, Chan KC et al. (2011). Flavonoid-enriched extracts from Nelumbo nucifera leaves inhibits proliferation of breast cancer in vitro and in vivo. European Journal of Integrative Medicine, 3(3):153-163. doi:10.1016/j.eujim.2011.08.008


Yoon JS, Kim HM, Yadunandam AK, et al. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell-cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11):1013–1022. doi:10.1016/j.phymed.2013.03.024.


Zhang XY, Liu ZJ, Xu B, et al. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3):47–54.

Naringin

Cancer: TNBCa, melanoma, breast, colon, cervical

Action: Anti-inflammatory, anti-carcinogenic

Citrus plants are known to possess beneficial biological activities for human health. The total phenolics and flavonoids from a methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts of Citrus aurantium. The anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract.

Breast Cancer, Colon Cancer

The anti-cancer activity of the methanolic extract of Citrus aurantium was investigated in vitro against human cancer cell lines; breast cancer MCF-7; MDA-MB-231 cell lines, human colon adenocarcinoma HT-29 cell line and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to appreciable activities against all cell lines tested and the compounds present in the extracts are non-toxic which make them suitable as potential therapeutics (Karimi et al., 2012).

Triple Negative (ER-/PR-/HER2-)

Breast Cancer (TNBCa)

Camargo et al. (2012) demonstrated that naringin inhibited cell proliferation, and promoted cell apoptosis and G1 cycle arrest, accompanied by increased p21 and decreased survivin. Meanwhile, β-catenin signaling pathway was found to be suppressed by naringin.

Levels of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) are raised in patients with TNBCa. Inhibition of tumor growth, survival increase and the reduction of TNF-α and IL-6 levels in rats bearing W256 treated with naringin strongly suggest that this compound has potential as an anti-carcinogenic drug.

Results indicate that naringin could inhibit growth potential of Triple-negative (ER-/PR-/HER2-) breast cancer (TNBC) by modulating -catenin pathway, which suggests naringin might be used as a potential supplement for the prevention and treatment of breast cancer (Li et al., 2013).

Cervical Cancer

Fruit-based cancer prevention entities, such as flavonoids and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Ramesh & Alshatwi (2013) looked at the role of naringin-mediated chemo-prevention in relation to cervical carcinogenesis. The results suggest that the induction of apoptosis by naringin is through both death-receptor and mitochondrial pathways. Taken together, our results suggest that naringin might be an effective agent to treat human cervical cancer.

Melanoma

A study by Huang, Yang, Chiou (2011) investigated the molecular events of melanogenesis induced by naringenin in murine B16-F10 melanoma cells. Melanin content, tyrosinase activity and Western blot analysis were performed to elucidate the possible underlying mechanisms. Exposure of melanoma cells to naringenin resulted in morphological changes accompanied by the induction of melanocyte differentiation-related markers, such as melanin synthesis, tyrosinase activity, and the expression of tyrosinase and microphthalmia-associated transcription factor (MITF). They concluded that naringenin induced melanogenesis through the Wnt-β-catenin-signaling pathway.

References

Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H. (2013). Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with Walker 256 carcinosarcoma. Anti-cancer Res, 32(1):129-33.


Huang YC, Yang CH, Chiou YL. (2011). Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/ β -catenin signaling in mouse melanoma cells. Phytomedicine. 18(14):1244-9. doi: 10.1016/j.phymed.2011.06.028.


Karimi E, Oskoueian E, Hendra R, Oskoueian A, Jaafar HZ. (2012). Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules, 17(2):1203-18. doi: 10.3390/molecules17021203.


Li HZ, Yang B, Huang J, et al. (2013). Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting -catenin signaling pathway. Toxicology Letters, 220(2013):219-228


Ramesh E, Alshatwi AA. (2013). Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 51:97-105. doi: 10.1016/j.fct.2012.07.033.

Moscatilin

Cancers:
Colon, lung, placenta, stomach, breast metastasis

Action: Anti-angiogenic, anti-metastatic, anti-tubulin, cytostatic, cytotoxic, cell-cycle arrest, anti-inflammatory

Stomach Cancer, Lung Cancer, Placental

The efficacy of using moscatilin, a natural anti-platelet agent extracted from the stems of Dendrobrium loddigesii, as an anti-cancer agent was studied. Results demonstrated that moscatilin exerts potent cytotoxic effect against cancer cell lines derived from different tissue origins, including those from the placenta, stomach, and lung, but not those from the liver. In addition, the mechanism of action of moscatilin may be related to its ability to induce a G2 phase arrest in responsive cells.

However, unlike some G2 arresting agents, moscatilin has no detectable inhibitory effect on cyclin B–cdc-2 kinase activity. Thus, the precise nature of its cytotoxic mechanism remains to be determined.

Results suggest that moscatilin is potentially efficacious for chemo-prevention and/or chemotherapy against some types of cancer (Ho & Chen, 2003).

Colorectal Cancer

The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on colorectal HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Moscatilin induced a time-dependent arrest of the cell-cycle at G2/M, with an increase of cells at sub-G1. Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. A parallel experiment showed that SP600125 significantly inhibits Taxol and vincristine induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents.

Collectively, results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage leading to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway (Chen et al., 2008).

Anti-inflammatory

Results showed that moscatilin (10-100 microM) had a significant inhibition in a concentration-dependent manner on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS (100 ng/mL) treatment.

Hypoxia-inducible factor 1 (HIF-1) alpha was reported to initiate inflammation under cytokine stimulation or hypoxic conditions. Moscatilin had significant inhibition on HIF-1 expression via down-regulation of HIF-1 mRNA without affecting cell viability, translation machinery, or proteasome-mediated degradation of HIF-1. Collective data demonstrarted that moscatilin inhibited both COX-2 and iNOS expressions after LPS treatment in RAW264.7. Furthermore, moscatilin's inhibitory effect appears to be dependent on the repression of HIF-1alpha accumulation and NF-kappaB activation (Liu et al., 2010).

Lung Cancer; Angiogenesis

Moscatilin significantly inhibited growth of lung cancer cell line A549 (NSCLC) and suppressed growth factor-induced neovascularization. In addition, VEGF- and bFGF-induced cell proliferation, migration, and tube formation of HUVECs was markedly inhibited by moscatilin. Western blotting analysis of cell signaling molecules indicated that moscatilin inhibited ERK1/2, Akt, and eNOS signaling pathways in HUVECs.

Results suggest that inhibition of angiogenesis by moscatilin may be a major mechanism in cancer therapy (Tsai et al., 2010).

Lung Cancer

Investigation demonstrated that non-toxic concentrations of moscatilin were able to inhibit human non-small-cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS), in which hydroxyl radical was identified as a dominant species in the suppression of filopodia formation.

Results indicate a novel molecular basis of moscalitin inhibiting lung cancer cell motility and invasion. Moscalitin may have promising anti-metastatic potential as an agent for lung cancer therapy (Kowitdamrong, Chanvorachote, Sritularak & Pongrakhananon, 2013).

Breast Cancer; Metastasis

Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anti-cancer activity. The mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo was evaluated.

Moscatilin was found to significantly inhibit breast cancer MDA-MB-231 cell migration by using scratch assays and Boyden chambers.

In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity.

Results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways, consistent with moscatilin's anti-metastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis (Pai et al., 2013).

References

Chen TH, Pan SL, Guh JH, et al. (2008). Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clinical Cancer Research, 14(13), 4250-4258. doi: 10.1158/1078-0432.CCR-07-4578.


Ho CK, Chen CC. (2003). Moscatilin from the orchid Dendrobrium loddigesii is a potential anti-cancer agent. Cancer Investigation, 21(5), 729-736.


Kowitdamrong A, Chanvorachote P, Sritularak B, Pongrakhananon V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Research International., 2013, 765894. doi: 10.1155/2013/765894.


Liu YN, Pan SL, Peng CY, et al. (2010). Moscatilin repressed lipopolysaccharide-induced HIF-1alpha accumulation and NF-kappaB activation in murine RAW264.7 cells. Shock, 33(1), 70-5. doi: 10.1097/SHK.0b013e3181a7ff4a.


Pai HC, Chang LH, Peng CY, et al. (2013). Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway.

Journal of Molecular Medicine (Berlin), 91(3), 347-56. doi: 10.1007/s00109-012-0945-5.

Tsai AC, Pan SL, Liao CH, et al. (2010). Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Letters, 292(2), 163-70. doi: 10.1016/j.canlet.2009.11.020.

Magnolol

Cancer:
Bladder, breast, colon, prostate, glioblastoma, ovarian, leukemia, lung

Action: Anti-inflammatory, apoptosis, inhibits angiogenesis, anti-metastatic

Magnolol (Mag), an active constituent isolated from the Chinese herb hou po (Magnolia officinalis (Rehder & Wilson)) has long been used to suppress inflammatory processes. It has anti-cancer activity in colon, hepatoma, and leukemia cell lines.

Anti-inflammatory

Magnolol (Mag) suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. Pre-treatment of ECs with Mag dose-dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pre-treatment of these ECs dose-dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs).

In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis (Chen et al., 2006).

Bladder Cancer; Inhibits Angiogenesis

In the present study, Chen et al. (2013) demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo, evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane, and Matrigel plug.

In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the downstream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model.

Collectively, these findings strongly indicate that the anti-angiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy.

Colon Cancer; Induces Apoptosis

Emerging evidence has suggested that activation of AMP-activated protein kinase (AMPK), a potential cancer therapeutic target, is involved in apoptosis in colon cancer cells. However, the effects of magnolol on human colon cancer through activation of AMPK remain unexplored.

Magnolol displayed several apoptotic features, including propidium iodide labeling, DNA fragmentation, and caspase-3 and poly(ADP-ribose) polymerase cleavages. Park et al. (2012) showed that magnolol induced the phosphorylation of AMPK in dose- and time-dependent manners.

Magnolol down-regulated expression of the anti-apoptotic protein Bcl2, up-regulated expression of pro-apoptotic protein p53 and Bax, and caused the release of mitochondrial cytochrome c. Magnolol-induced p53 and Bcl2 expression was abolished in the presence of compound C. Magnolol inhibited migration and invasion of HCT-116 cells through AMPK activation. These findings demonstrate that AMPK mediates the anti-cancer effects of magnolol through apoptosis in HCT-116 cells.

Ovarian Cancer

Treatment of HER-2 overexpressing ovarian cancer cells with magnolol down-regulated the HER-2 downstream PI3K/Akt signaling pathway, and suppressed the expression of downstream target genes, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2) and cyclin D1. Consistently, magnolol-mediated inhibition of MMP2 activity could be prevented by co-treatment with epidermal growth factor. Migration assays revealed that magnolol treatment markedly reduced the motility of HER-2 overexpressing ovarian cancer cells. These findings suggest that magnolol may act against HER-2 and its downstream PI3K/Akt/mTOR-signaling network, thus resulting in suppression of HER-2mediated transformation and metastatic potential in HER-2 overexpressing ovarian cancers. These results provide a novel mechanism to explain the anti-cancer effect of magnolol (Chuang et al., 2011).

Lung Cancer

Magnolol has been found to inhibit cell growth, increase lactate dehydrogenase release, and modulate cell cycle in human lung carcinoma A549 cells. Magnolol induced the activation of caspase-3 and cleavage of Poly-(ADP)-ribose polymerase, and decreased the expression level of nuclear factor-κB/Rel A in the nucleus. In addition, magnolol inhibited basic fibroblast growth factor-induced proliferation and capillary tube formation of human umbilical vein endothelial cells. These data indicate that magnolol is a potential candidate for the treatment of human lung carcinoma (Seo et al., 2011).

Prostate Cancer; Anti-metastatic

Matrix metalloproteinases (MMPs) are enzymes involved in various steps of metastasis development. The objective of this study was to study the effects of magnolol on cancer invasion and metastasis using PC-3 human prostate carcinoma cells. Magnolol inhibited cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, magnolol showed 33 and 98% inhibition of cancer cell at 10 microM and 20 microM concentrations, respectively, compared to the control. The protein and mRNA levels of both MMP-2 and MMP-9 were down-regulated by magnolol treatment in a dose-dependent manner.

These results demonstrate the anti-metastatic properties of magnolol in inhibiting the adhesion, invasion, and migration of PC-3 human prostate cancer cells (Hwang et al., 2010).

Glioblastoma Cancer

Magnolol has been found to concentration-dependently (0-40 microM) decrease the cell number in a cultured human glioblastoma cancer cell line (U373) and arrest the cells at the G0/G1 phase of the cell-cycle.

Pre-treatment of U373 with p21/Cip1 specific antisense oligodeoxynucleotide prevented the magnolol-induced increase of p21/Cip1 protein levels and the decrease of DNA synthesis. Magnolol at a concentration of 100 microM induced DNA fragmentation in U373. These findings suggest the potential applications of magnolol in the treatment of human brain cancers (Chen et al. 2011).

Inhibits Angiogenesis

Magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs.

In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases (Kim et al., 2013).

References

Chen LC, Liu YC, Liang YC, Ho YS, Lee WS. (2009). Magnolol inhibits human glioblastoma cell proliferation through up-regulation of p21/Cip1. J Agric Food Chem, 57(16):7331-7. doi: 10.1021/jf901477g.


Chen MC, Lee CF, Huang WH, Chou TC. (2013). Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1 α /VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol, 85(9):1278-87. doi: 10.1016/j.bcp.2013.02.009.


Chen SC, Chang YL, Wang DL, Cheng JJ. (2006). Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol, 148(2): 226–232. doi: 10.1038/sj.bjp.0706647


Chuang TC, Hsu SC, Cheng YT, et al. (2011). Magnolol down-regulates HER2 gene expression, leading to inhibition of HER2-mediated metastatic potential in ovarian cancer cells. Cancer Lett, 311(1):11-9. doi: 10.1016/j.canlet.2011.06.007.


Hwang ES, Park KK. (2010). Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem, 74(5):961-7.


Kim KM, Kim NS, Kim J, et al. (2013). Magnolol Suppresses Vascular Endothelial Growth Factor-Induced Angiogenesis by Inhibiting Ras-Dependent Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase/Akt Signaling Pathways. Nutr Cancer.


Park JB, Lee MS, Cha EY, et al. (2012). Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull, 35(9):1614-20.


Seo JU, Kim MH, Kim HM, Jeong HJ. (2011). Anti-cancer potential of magnolol for lung cancer treatment. Arch Pharm Res, 34(4):625-33. doi: 10.1007/s12272-011-0413-8.