Category Archives: Chapter 7 Isolates and Cancer Research

Schisandrin

Cancer: Leukemia, breast

Action: Anti-metastatic, cardio-protective, MDR, CYP3A, cell-cycle arrest

Leukemia

Schisandrin B (Sch B) has previously been demonstrated to be a novel P-glycoprotein (P-gp) inhibitor. Recent investigation revealed that Sch B was also an effective inhibitor of the multi-drug resistance-associated protein 1 (MRP1). Sch B's ability to reverse MRP1-mediated drug resistance was tested using HL60/ADR and HL60/MRP human promyelocytic leukemia cell lines, with the overexpression of MRP1 but not P-gp. At the equimolar concentration, Sch B demonstrated significantly stronger potency than the drug probenecid, a MRP1 inhibitor (Sun, Xu, Lu, Pan & Hu, 2007).

Up-regulates CYP3A

The ability of Schisandrin B (Sch B) to modulate cytochrome P450 3A activity (CYP3A) and alter the pharmacokinetic profiles of CYP3A substrate (midazolam) was investigated in vivo in treated rats. Rats were routinely administered with physiological saline (negative control group), ketoconazole (75mg/kg, positive control group), or varying doses of Sch B (experimental groups) for 3 consecutive days. Thereafter, changes in hepatic microsomal CYP3A activity and the pharmacokinetic profiles of midazolam and 1′-hydroxy midazolam in plasma were studied to evaluate CYP3A activity.

The results indicated that Sch B had a significant dose-dependent effect on inhibition of rat hepatic microsomal CYP3A activity. These results suggest that a 3-day treatment of Sch B could increase concentration and oral bioavailability of drugs metabolized by CYP3A (Li, Xin, Yu, & Wu, 2013).

Attenuates Metastasis

NADPH oxidase 4 (NOX4) is a potential target for intervention of cancer metastasis, as reactive oxygen species (ROS) generated by this enzyme plays important roles in TGF-β signaling, an important inducer of cancer metastasis. Zhang, Liu & Hu (2013) show that TGF-β induces ROS production in breast cancer 4T1 cells and enhances cell migration; that the effect of TGF- β depends on NOX4 expression; and that knockdown of NOX4 via RNAi significantly decreases the migration ability of 4T1 cells in the presence or absence of TGF-β and significantly attenuates distant metastasis of 4T1 cells to lung and bone.

Sch B significantly suppresses the lung and bone metastasis of 4T1 cells via inhibiting EMT, suggesting its potential application in targeting the process of cancer metastasis. Sch B significantly suppressed the spontaneous lung and bone metastasis of 4T1 cells inoculated s.c. without significant effect on primary tumor growth and significantly extended the survival time of the mice. Sch B did not inhibit lung metastasis of 4T1 cells that were injected via tail vein. Delayed start of treatment with Sch B in mice with pre-existing tumors did not reduce lung metastasis. These results suggested that Sch B acted at the step of local invasion (Liu et al., 2012).

Cardiotoxicity Protective/ Attenuates Metastasis

Sch B is capable of protecting Dox-induced chronic cardiotoxicity and enhancing its anti-cancer activity. To the best of our knowledge, Sch B is the only molecule ever proved to function as a cardio-protective agent as well as a chemotherapeutic sensitizer, which is potentially applicable for cancer treatment.

Pre-treatment with Sch B significantly attenuated Dox-induced loss of cardiac function and damage of cardiomyocytic structure. Sch B substantially enhanced Dox cytotoxicities toward S180 in vitro and in vivo in mice, and increased Dox cytotoxcity against 4T1 in vitro. Although we did not observe this enhancement against the implanted 4T1 primary tumor, the spontaneous metastasis to lung was significantly reduced in combined treatment group compared to Dox alone group (Xu et al., 2011).

Cell-cycle Arrest/Breast Cancer

Schizandrin inhibits cell proliferation through the induction of cell-cycle arrest with modulating cell-cycle-related proteins in human breast cancer cells. Schizandrin exhibited growth-inhibitory activities in cultured human breast cancer cells, and the effect was the more profound in estrogen receptor (ER)-positive T47D cells than in ER-negative MDA-MB-231 cells. When treated with the compound in T47D cells, schizandrin induced the accumulation of a cell population in the G0/G1 phase, which was further demonstrated by the induction of CDK inhibitors p21 and p27 and the inhibition of the expression of cell-cycle checkpoint proteins including cyclin D1, cyclin A, CDK2 and CDK4 (Kim et al., 2010).

References

Kim SJ, Min HY, Lee EJ, et al. (2010). Growth inhibition and cell-cycle arrest in the G0/G1 by schizandrin, a dibenzocyclooctadiene lignan isolated from Schisandra chinensis, on T47D human breast cancer cells. Phytother Res, 24(2):193-7. doi: 10.1002/ptr.2907.


Li WL, Xin HW, Yu AR, Wu XC. (2013). In vivo effect of Schisandrin B on cytochrome P450 enzyme activity. Phytomedicine, 20(8), 760-765


Liu Z, Zhang B, Liu K, Ding Z, Hu X. (2012). Schisandrin B attenuates cancer invasion and metastasis via inhibiting epithelial-mesenchymal transition. PLoS One, 7(7):e40480. doi: 10.1371/journal.pone.0040480.


Sun M, Xu X, Lu Q, Pan Q, Hu X. (2007). Schisandrin B: A dual inhibitor of P-glycoprotein and Multi-drug resistance-associated protein 1. Cancer Letters, 246(1-2), 300-307.


Xu Y, Liu Z, Sun J, et al. (2011). Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anti-cancer activity in vivo. PLoS One, 6(12):e28335. doi: 10.1371/journal.pone.0028335.


Zhang B, Liu Z, Hu X. (2013). Inhibiting cancer metastasis via targeting NAPDH oxidase 4. Biochem Pharmacol, 86(2):253-66. doi: 10.1016/j.bcp.2013.05.011.

Sanguinarine (See also chelerythrine)

Cancer:
Prostate, bladder, breast, colon, melanoma, leukemia

Action: Pro-oxidative, anti-inflammatory, apoptosis induction

AR+/AR- Prostate Cancer

Sanguinarine, a benzophenanthridine alkaloid derived from the bloodroot plant Sanguinaria canadensis (L.), has been shown to possess anti-microbial, anti-inflammatory, anti-cancer and anti-oxidant properties. It has been shown that sanguinarine possesses strong anti-proliferative and pro-apoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, the anti-proliferative properties of sanguinarine against prostate cancer were also examined.

The mechanism of the anti-proliferative effects of sanguinarine against prostate cancer were examined by determining the effect of sanguinarine on critical molecular events known to regulate the cell-cycle and the apoptotic machinery.

A highlight of this study was the fact that sanguinarine induced growth-inhibitory and anti-proliferative effects in human prostate carcinoma cells irrespective of their androgen status. To our knowledge, this is the first study showing the involvement of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery during cell-cycle arrest and apoptosis of prostate cancer cells by sanguinarine. These results suggest that sanguinarine may be developed as an agent for the management of prostate cancer (Adhami et al., 2004).

Breast Cancer

The effects of this compound were examined on reactive oxygen species (ROS) production and its association with apoptotic tumor cell death using a human breast carcinoma MDA-MB-231 cell line. Cytotoxicity was evaluated by trypan blue exclusion methods. Apoptosis was detected using DAPI staining, agarose gel electrophoresis and flow cytometer. The expression levels of proteins were determined by Western blot analyzes and caspase activities were measured using colorimetric assays.

These observations clearly indicate that ROS is involved in the early molecular events in the sanguinarine-induced apoptotic pathway. Data suggests that sanguinarine-induced ROS are key mediators of MMP collapse, which leads to the release of cytochrome c followed by caspase activation, culminating in apoptosis (Choi, Kim, Lee & Choi, 2008).

Leukemia

Sanguinarine, chelerythrine and chelidonine are isoquinoline alkaloids derived from the greater celandine. They possess a broad spectrum of pharmacological activities. It has been shown that their anti-tumor activity is mediated via different mechanisms, which can be promising targets for anti-cancer therapy.

This study focuses on the differential effects of these alkaloids upon cell viability, DNA damage, and nucleus integrity in mouse primary spleen and lymphocytic leukemic cells, L1210. Sanguinarine and chelerythrine produced a dose-dependent increase in DNA damage and cytotoxicity in both primary mouse spleen cells and L1210 cells. Chelidonine did not show a significant cytotoxicity or damage DNA in both cell types, but completely arrested growth of L1210 cells.

Data suggests that cytotoxic and DNA-damaging effects of chelerythrine and sanguinarine are more selective against mouse leukemic cells and primary mouse spleen cells, whereas chelidonine blocks proliferation of L1210 cells. The action of chelidonine on normal and tumor cells requires further investigation (Kaminsky, Lin, Filyak, & Stoika, 2008).

T-lymphoblastic Leukemia

Apoptogenic and DNA-damaging effects of chelidonine (CHE) and sanguinarine (SAN), two structurally related benzophenanthridine alkaloids isolated from Chelidonium majus, were compared. Both alkaloids induced apoptosis in human acute T-lymphoblastic leukemia MT-4 cells. Apoptosis induction by CHE and SAN in these cells were accompanied by caspase-9 and -3 activation and an increase in the pro-apoptotic Bax protein. An elevation in the percentage of MT-4 cells possessing caspase-3 in active form after their treatment with CHE or SAN was in parallel to a corresponding increase in the fraction of apoptotic cells.

The involvement of the mitochondria in apoptosis induction by both alkaloids was supported by cytochrome C elevation in cytosol, with an accompanying decrease in cytochrome C content in the mitochondrial fraction. At the same time, two alkaloids under study differed drastically in their cell-cycle phase-specific effects, since only CHE arrested MT-4 cells at the G2/M phase. It was previously demonstrated, that CHE, in contrast to SAN, does not interact directly with DNA. (Philchenkov, Kaminskyy, Zavelevich, & Stoika, 2008).

Sanguinarine, chelerythrine and chelidonine possess prominent apoptotic effects towards cancer cells. This study found that sanguinarine and chelerythrine induced apoptosis in human CEM T-leukemia cells, accompanied by an early increase in cytosolic cytochrome C that precedes caspases-8, -9 and -3 processing. Effects of sanguinarine and chelerythrine on mitochondria were confirmed by clear changes in morphology (3h), however chelidonine did not affect mitochondrial integrity.

Sanguinarine and chelerythrine also caused marked DNA damage in cells after 1h, but a more significant increase in impaired cells occurred after 6h. Chelidonine induced intensive DNA damage in 15–20% cells after 24h. Results demonstrated that rapid cytochrome C release in CEM T-leukemia cells exposed to sanguinarine or chelerythrine was not accompanied by changes in Bax, Bcl-2 and Bcl-X((L/S)) proteins in the mitochondrial fraction, and preceded activation of the initiator caspase-8 (Kaminskyy, Kulachkovskyy & Stoika, 2008).

Colorectal Cancer

The effects of sanguinarine, a benzophenanthridine alkaloid, was examined on reactive oxygen species (ROS) production, and the association of these effects with apoptotic cell death, in a human colorectal cancer HCT-116 cell line. Sanguinarine generated ROS, followed by a decrease in mitochondrial membrane potential (MMP), activation of caspase-9 and -3, and down-regulation of anti-apoptotic proteins, such as Bcl2, XIAP and cIAP-1. Sanguinarine also promoted the activation of caspase-8 and truncation of Bid (tBid).

Observations clearly indicate that ROS, which are key mediators of Egr-1 activation and MMP collapse, are involved in the early molecular events in the sanguinarine-induced apoptotic pathway acting in HCT-116 cells (Han, Kim, Yoo, & Choi, 2013).

Bladder Cancer

Although the effects of sanguinarine, a benzophenanthridine alkaloid, on the inhibition of some kinds of cancer cell growth have been established, the underlying mechanisms are not completely understood. This study investigated possible mechanisms by which sanguinarine exerts its anti-cancer action in cultured human bladder cancer cell lines (T24, EJ, and 5637). Sanguinarine treatment resulted in concentration-response growth inhibition of the bladder cancer cells by inducing apoptosis.

Taken together, the data provide evidence that sanguinarine is a potent anti-cancer agent, which inhibits the growth of bladder cancer cells and induces their apoptosis through the generation of free radicals (Han et al., 2013).

Melanoma

Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Current study has found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨ m), released cytochrome C and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Thus, pre-treatment with the thiol anti-oxidants NAC and GSH abrogated the killing activity of sanguinarine. Collectively, data suggests that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress (Burgeiro, Bento, Gajate, Oliveira, & Mollinedo, 2013).

References

Adhami YM, Aziz MH, Reagan-Shaw SR, et al. (2004). Sanguinarine causes cell-cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther, 3:933


Burgeiro A, Bento AC, Gajate C, Oliveira PJ, Mollinedo F. (2013). Rapid human melanoma cell death induced by sanguinarine through oxidative stress. European Journal of Pharmacology, 705(1-3), 109-18. doi: 10.1016/j.ejphar.2013.02.035.


Choi WY, Kim GY, Lee WH, Choi YH. (2008). Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy, 54(4), 279-87. doi: 10.1159/000149719.


Han MH, Kim GY, Yoo YH, Choi YH. (2013). Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicology Letters, 220(2), 157-66. doi: 10.1016/j.toxlet.2013.04.020.


Han MH, Park C, Jin CY, et al. (2013). Apoptosis induction of human bladder cancer cells by sanguinarine through reactive oxygen species-mediated up-regulation of early growth response gene-1. PLoS One, 8(5), e63425. doi: 10.1371/journal.pone.0063425.


Kaminskyy V, Lin KW, Filyak Y, Stoika R. (2008). Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biology International, 32(2), 271-277.


Kaminskyy V, Kulachkovskyy O, Stoika R. (2008) A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicology Letters, 177(3), 168-81. doi: 10.1016/j.toxlet.2008.01.009.


Philchenkov A, Kaminskyy V, Zavelevich M, Stoika R. (2008). Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA-damaging effects. Toxicology In Vitro, 22(2), 287-95.

Salvianolic acid-B / Salvinal

Cancer:
Head and neck squamous cell carcinoma, oral squamous cell carcinoma, glioma

Action: MDR, reduction of cardiotoxicity, COX-2 inhibitor, inflammatory-associated tumor development, anti-cancer

Salvia miltiorrhiza contains a variety of anti-tumor active ingredients, such as the water-soluble components, salvianolic acid A, salvianolic acid B, salvinal, and liposoluble constituents, tanshinone I, tanshinone IIA, dihydrotanshinone I, miltirone, cryptotanshinone, ailantholide, neo-tanshinlactone, and nitrogen-containing compounds. These anti-tumor active components play important roles in the different stages of tumor evolution, progression and metastasis (Zhang & Lu, 2010).

Anti-cancer/MDR

Aqueous extracts of Salvia miltiorrhizae Bunge have been extensively used in the treatment of cardiovascular disorders and cancer in Asia. Recently, a compound, 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde (salvinal), isolated from this plant showed inhibitory activity against tumor cell growth and induced apoptosis in human cancer cells. In the present study, we investigated the cytotoxic effect and mechanisms of action of salvinal in human cancer cell lines. Salvinal caused inhibition of cell growth (IC50 range, 4-17 microM) in a variety of human cancer cell lines.

In particular, salvinal exhibited similar inhibitory activity against parental KB, P-glycoprotein-overexpressing KB vin10 and KB taxol-50 cells, and multi-drug resistance-associated protein (MRP)-expressing etoposide-resistant KB 7D cells.

Taken together, our data demonstrate that salvinal inhibits tubulin polymerization, arrests cell-cycle at mitosis, and induces apoptosis. Notably, Salvinal is a poor substrate for transport by P-glycoprotein and MRP. Salvinal may be useful in the treatment of human cancers, particularly in patients with drug resistance (Chang et al., 2004).

Glioma

Salvianolic acid B (SalB) has been shown to exert anti-cancer effect in several cancer cell lines. SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment.

These findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anti-cancer agent for glioma prevention and treatment (Wang et al., 2013).

Reduced Cardiotoxicity

Clinical attempts to reduce the cardiotoxicity of arsenic trioxide (ATO) without compromising its anti-cancer activities remain an unresolved issue. In this study, Wang et al., (2013b) determined that Sal B can protect against ATO-induced cardiac toxicity in vivo and increase the toxicity of ATO toward cancer cells.

The combination treatment significantly enhanced the ATO-induced cytotoxicity and apoptosis of HepG2 cells and HeLa cells. Increases in apoptotic marker cleaved poly (ADP-ribose) polymerase and decreases in procaspase-3 expressions were observed through Western blot. Taken together, these observations indicate that the combination treatment of Sal B and ATO is potentially applicable for treating cancer with reduced cardiotoxic side effects.

Oral Cancer

Sal B has inhibitory effect on oral squamous cell carcinoma (OSCC) cell growth. The anti-tumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma.

Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited; expression of THBS2 was up-regulated (Yang et al., 2011).

Head and Neck Cancer

Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a non-steroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer-preventive agent. Concerns about the cardiotoxicity of celecoxib limit its use in long-term chemo-prevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China.

Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p < 0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E(2) synthesis, either with or without lipopolysaccharide stimulation. Taking these results together, Sal-B shows promise as a COX-2 targeted anti-cancer agent for HNSCC prevention and treatment (Hao et al., 2009).

Inflammatory-associated tumor development

A half-dose of daily Sal-B (40 mg/kg/d) and celecoxib (2.5 mg/kg/d) significantly inhibited JHU-013 xenograft growth relative to mice treated with a full dose of Sal-B or celecoxib alone. The combination was associated with profound inhibition of COX-2 and enhanced induction of apoptosis. Taken together, these results strongly suggest that a combination of Sal-B, a multifunctional anti-cancer agent, with low-dose celecoxib holds potential as a new preventive strategy in targeting inflammatory-associated tumor development (Zhao et al., 2010).

Squamous Cell Carcinoma

The results showed that Sal B significantly decreased the squamous cell carcinoma (SCC) incidence from 64.7 (11/17) to 16.7% (3/18) (P=0.004); angiogenesis was inhibited in dysplasia and SCC (P<0.01), with a simultaneous decrease in the immunostaining of hypoxia-inducible factor 1alpha and vascular endothelium growth factor protein (P<0.05). The results suggested that Sal B had inhibitory effect against the malignant transformation of oral precancerous lesion and such inhibition may be related to the inhibition of angiogenesis (Zhou, Yang, & Ge, 2006).

References

Chang JY, Chang CY, Kuo CC, et al. (2004). Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in Multi-drug-sensitive and -resistant human tumor cells. Mol Pharmacol, 65(1):77-84.


Hao Y, Xie T, Korotcov A, et al. (2009). Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer, 124(9):2200-9. doi: 10.1002/ijc.24160.


Wang ZS, Luo P, Dai SH, et al., (2013a). Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol, 33(7):921-8. doi: 10.1007/s10571-013-9958-z.


Wang M, Sun G, Wu P, et al. (2013b). Salvianolic Acid B prevents arsenic trioxide-induced cardiotoxicity in vivo and enhances its anti-cancer activity in vitro. Evid Based Complement Alternat Med, 2013:759483. doi: 10.1155/2013/759483.


Yang Y, Ge PJ, Jiang L, Li FL, Zhum QY. (2011). Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement Altern Med, 11:54. doi: 10.1186/1472-6882-11-54.


Zhang W, Lu Y. (2010). Advances in studies on anti-tumor activities of compounds in Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi, 35(3):389-92.


Zhao Y, Hao Y, Ji H, Fang Y, et al. (2010). Combination effects of salvianolic acid B with low-dose celecoxib on inhibition of head and neck squamous cell carcinoma growth in vitro and in vivo. Cancer Prev Res (Phila), 3(6):787-96. doi: 10.1158/1940-6207.CAPR-09-0243.


Zhou ZT, Yang Y, Ge JP. (2006). The preventive effect of salvianolic acid B on malignant transformation of DMBA-induced oral premalignant lesion in hamsters. Carcinogenesis, 27(4):826-32.

Saikosaponin

Cancers:
Cervical, colon, liver, lung, ovarian, liver, breast, hepatocellular

Action: Anti-angiogenic, anti-metastatic, chemo-sensitizer, pro-oxidative, cell-cycle arrest

T cell-mediated autoimmune, induces apoptosis, immune regulating, radio-sensitizer

Induces Apoptosis

Long dan xie gan tang, a well known Chinese herbal formulation, is commonly used by patients with chronic liver disease in China. Accumulated anecdotal evidence suggests that Long dan tang may have beneficial effects in patients with hepatocellular carcinoma. Long dan tang is comprised of five herbs: Gentiana root, Scutellaria root, Gardenia fruit, Alisma rhizome, and Bupleurum root. The cytotoxic effects of compounds from the five major ingredients isolated from the above plants, i.e. gentiopicroside, baicalein, geniposide, alisol B acetate and saikosaponin-d, respectively, on human hepatoma Hep3B cells, were investigated.

Annexin V immunofluorescence detection, DNA fragmentation assays and FACScan analysis of propidium iodide-staining cells showed that gentiopicroside, baicalein, and geniposide had little effect, whereas alisol B acetate and saikosaponin-d profoundly induced apoptosis in Hep3B cells. Alisol B acetate, but not saikosaponin-d, induced G2/M arrest of the cell-cycle as well as a significant increase in caspase-3 activity. Interestingly, baicalein by itself induced an increase in H(2)O(2) generation and the subsequent NF-kappaB activation; furthermore, it effectively inhibited the transforming growth factor-beta(1) (TGF-beta(1))-induced caspase-3 activation and cell apoptosis.

Results suggest that alisol B acetate and saikosaponin-d induced cell apoptosis through the caspase-3-dependent and -independent pathways, respectively. Instead of inducing apoptosis, baicalein inhibits TGF-beta(1)-induced apoptosis via increase in cellular H(2)O(2) formation and NF-kappaB activation in human hepatoma Hep3B cells (Chou, Pan, Teng & Guh, 2003).

Breast

Saikosaponin-A treatment of MDA-MB-231 for 3 hours and of MCF-7 cells for 2 hours, respectively, caused an obvious increase in the sub G1 population of cell-cycles.

Apoptosis in MDA-MB-231 cells was independent of the p53/p21 pathway mechanism and was accompanied by an increased ratio of Bax to Bcl-2 and c-myc levels and activation of caspase-3. In contrast, apoptosis of MCF-7 cells may have been initiated by the Bcl-2 family of proteins and involved p53/p21 dependent pathway mechanism, and was accompanied by an increased level of c-myc protein. The apoptosis of both MDA-MB-231 and MCF-7 cells showed a difference worthy of further research (Chen, Chang, Chung, & Chen, 2003).

Hepatocellular Carcinoma

The signaling pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herbal compund Saikosaponin A was investigated.

Expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin A between 30 minutes to 6 hours of treatment. Pre-treatment of 20 microg/ml PD98059, an inhibitor of MEK (the upstream kinase of ERK), prevents the TPA and Saikosaponin A triggered HepG2 growth inhibition by 50% and 30%, respectively. In addition, AP-1 DNA-binding assay, using non-isotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF), demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin A, which can be reduced by PD98059 pre-treatment.

Results suggest that activation of ERK, together with its downstream transcriptional machinery, mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition (Wen-Sheng, 2003).

The effects of Saikosaponin D (SSd) on syndecan-2, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in livers of rats with hepatocellular carcinoma (HCC) was investigated.

The model group had more malignant nodules than the SSd group. Model-group HCC cells were grade III; SSd-group HCC cells were grades I-II. Controls showed normal hepatic cell phenotypes and no syndecan-2+ staining. Syndecan-2+ staining was greater in the model group (35.2%, P < or = 0.001) than in controls or the SSd group (16.5%, P < or = 0.001). The model group had more intense MMP-2+ staining than controls (0.37 vs 0.27, P< or =0.01) or the SSd group (0.31 vs 0.37, P< or =0.05); and higher MMP-13+ staining (72.55%) than in controls (12.55%, P< or =0.001) and SSd group (20.18%, P< or =0.01).

The model group also had more TIMP-2+ staining (57.2%) than controls (20.9%, P< or =0.001) and SSd group (22.7%, P< or=0.001). Controls and SSd group showed no difference in TIMP-2+ rates.

SSd inhibited HCC development, and downregulated expression of syndecan-2, MMP-2, MMP-13 and TIMP-2 in rat HCC liver tissue (Jia et al., 2012).

T Cell-mediated Autoimmune

Saikosaponin-d (Ssd) is a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae). Previous findings showed that Ssd exhibits a variety of pharmacological and immunomodulatory activities including anti-inflammatory, anti-bacterial, anti-viral and anti-cancer effects.

Results demonstrated that Ssd not only suppressed OKT3/CD28-costimulated human T cell proliferation, it also inhibited PMA, PMA/Ionomycin and Con A-induced mouse T cell activation in vitro. The inhibitory effect of Ssd on PMA-induced T cell activation was associated with down-regulation of NF-kappaB signaling through suppression of IKK and Akt activities. In addition, Ssd suppressed both DNA binding activity and the nuclear translocation of NF-AT and activator protein 1 (AP-1) of the PMA/Ionomycin-stimulated T cells. The cell surface markers, such as IL-2 receptor (CD25), were also down-regulated along with decreased production of pro-inflammatory cytokines of IL-6, TNF-alpha and IFN-gamma.

Results indicate that the NF-kappaB, NF-AT and AP-1 (c-Fos) signaling pathways are involved in the T cell inhibition evoked by Ssd. Ssd could be a potential candidate for further study in treating T cell-mediated autoimmune conditions (Wong, Zhou, Cheung, Li, & Liu, 2009).

Cervical Cancer

Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of a combination of saikosaponins with chemotherapeutic drugs have never been addressed. Investigated as to whether these two saikosaponins have chemo-sensitization effect on cisplatin-induced cancer cell cytotoxicity was carried out.

Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small-cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death.

Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation.

Results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy (Wang et al., 2010).

Colon Cancer

Saikosaponin-a (SSa)-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation.

Results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis (Kim & Hong, 2011).

Immune Regulating

Tumor necrosis factor-alpha (TNF- α ) was reported as an anti-cancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF- α on activating NF- κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF- α -mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), exhibited a variety of pharmacological activities such as anti-inflammatory, anti-bacterial, anti-viral and anti-cancer.

Investigation found that Ssd could potentially inhibit activated T lymphocytes via suppression of NF- κ B, NF-AT and AP-1 signaling. Ssd significantly potentiated TNF- α -mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF- α -induced NF- κ B activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency in abolishing TNF- α -induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells.

Collectively, findings indicate that Ssd has significant potential to be developed as a combined adjuvant remedy with TNF- α for cancer patients (Wong et al., 2013).

Radio-sensitizer

Saikosaponin-d (SSd), a monomer terpenoid purified from the Chinese herbal drug Radix bupleuri, has multiple effects, including anti-cancer properties. Treatment with SSd alone and radiation alone inhibited cell growth and increased apoptosis rate at the concentration used. These effects were enhanced when SSd was combined with radiation. Moreover, SSd potentiated the effects of radiation to induce G0/G1 arrest in SMMC-7721 hepatocellular carcinoma cells, and reduced the G2/M-phase population under hypoxia. SSd potentiates the effects of radiation on SMMC-7721 cells; thus, it is a promising radio-sensitizer. The radio-sensitizing effect of SSd may contribute to its effect on the G0/G1 and G2/M checkpoints of the cell-cycle (Wang et al., 2013).

References

Chen JC, Chang NW, Chung JG, Chen KC. (2003). Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. The American Journal of Chinese Medicine, 31(3), 363-77.


Chou CC, Pan SL, Teng CM, Guh JH. (2003). Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. European Journal of Pharmaceutical Sciences, 19(5), 403-12.


Jia X, Dang S, Cheng Y, et al. (2012). Effects of saikosaponin-d on syndecan-2, matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 in rats with hepatocellular carcinoma. Journal of Traditional Chinese Medicine, 32(3), 415-22.


Kim BM, Hong SH. (2011). Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 16(2), 184-197. doi: 10.1007/s10495-010-0557-x.


Wang BF, Dai ZJ, Wang XJ, et al. (2013). Saikosaponin-d increases the radiosensitivity of smmc-7721 hepatocellular carcinoma cells by adjusting the g0/g1 and g2/m checkpoints of the cell-cycle. BMC Complementary and Alternative Medicine, 13:263. doi:10.1186/1472-6882-13-263


Wang Q, Zheng XL, Yang L, et al. (2010). Reactive oxygen species-mediated apoptosis contributes to chemo-sensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental & Clinical Cancer Research, 9(29), 159. doi: 10.1186/1756-9966-29-159.


Wen-Sheng, W. (2003). ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin A. Oncogene, 22(7), 955-963.


Wong VK, Zhang MM, Zhou H, et al. (2013). Saikosaponin-d Enhances the Anti-cancer Potency of TNF- α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signaling in Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2013(2013), 745295. doi: 10.1155/2013/745295.


Wong VK, Zhou H, Cheung SS, Li T, Liu L. (2009). Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. Journal of Cellular Biochemistry, 107(2), 303-15. doi: 10.1002/jcb.22126.

Rosmarinic Acid

Cancer: Leukemia

Action: Anti-oxidative, MDR

Leukemia

Because tumor necrosis factor-alpha (TNF-alpha) is well known to induce inflammatory responses, its clinical use is limited in cancer treatment. Rosmarinic acid (RA), a naturally occurring polyphenol flavonoid, has been reported to inhibit TNF-alpha-induced NF-kappaB activation in human dermal fibroblasts. Investigation found that RA treatment significantly sensitizes TNF-alpha-induced apoptosis in human leukemia U937 cells through the suppression of nuclear transcription factor-kappaB (NF-kappaB) and reactive oxygen species (ROS). This inhibition was correlated with suppression of NF-kappaB-dependent anti-apoptotic proteins (IAP-1, IAP-2, and XIAP). RA treatment also normalized TNF-alpha-induced ROS generation. Additionally, ectopic Bcl-2 expressing U937 reversed combined treatment-induced cell death, cytochrome c release into cytosol, and collapse of mitochondrial potential.

Results demonstrated that RA inhibits TNF-alpha-induced ROS generation and NF-kappaB activation, and enhances TNF-alpha-induced apoptosis (Moon, Kim, Lee, Choi, & Kim, 2010).

MDR

The intracellular accumulation of adriamycin, rhodamine123 (Rh123), and the expression of P-glycoprotein (P-gp) were assayed by flow cytometry. The influence of RA on the transcription of MDR1 gene was determined by reverse transcription-polymerase chain reaction. The results showed that RA could reverse the MDR of SGC7901/Adr cells, increase the intracellular accumulation of Adr and Rh123, and decrease the transcription of MDR1 gene and the expression of P-gp in SGC7901/Adr cells (Li et al., 2013).

Anti-cancer

Rosmarinic acid (RA), one of the major components of polyphenol, possesses attractive remedial features. Supplementation with RA significantly reduced the formation of aberrant crypt foci (ACF) and ACF multiplicity in 1,2-dimethylhydrazine (DMH) treated rats. Moreover RA supplementation prevented the alterations in circulatory anti-oxidant enzymes and colonic bacterial enzymes activities. Overall, results showed that all three doses of RA inhibited carcinogenesis, though the effect of the intermediary dose of 5 mg/kg b.w. was more pronounced (Karthikkumar et al., 2012).

References

Karthikkumar V, Sivagami G, Vinothkumar R, Rajkumar D, Nalini N. (2012). Modulatory efficacy of rosmarinic acid on premalignant lesions and anti-oxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Environ Toxicol Pharmacol, 34(3):949-58. doi: 10.1016/j.etap.2012.07.014.


Li FR, Fu YY, Jiang DH, et al. (2013). Reversal effect of rosmarinic acid on Multi-drug resistance in SGC7901/Adr cell. J Asian Nat Prod Res, 15(3):276-85. doi: 10.1080/10286020.2012.762910.


Moon DO, Kim MO, Lee JD, Choi YH, Kim GY. (2010). Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Letters, 288(2), 183-191. doi: 10.1016/j.canlet.2009.06.033.

RG3 (See also Ginsenosides)

Cancer: Glioblastoma, prostate, breast, colon

Action: Anti-angiogenesis, MDR, enhances chemotherapy, MDR, enhanced paclitaxel absorption, anti-metastatic

RG3 is a ginsenoside isolated from red ginseng (Panax ginseng (L.)), after being peeled, heated, and dried.

Angiosuppressive Activity

Aberrant angiogenesis is an essential step for the progression of solid tumors. Thus anti-angiogenic therapy is one of the most promising approaches to control tumor growth.

Rg3 was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) with an IC50 of 10 nM in Trypan blue exclusion assay.

Rg3 (1-10(3) nM) also dose-dependently suppressed the capillary tube formation of HUVEC on the Matrigel in the presence or absence of 20 ng/ml vascular endothelial growth factor (VEGF). The Matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which play an important role in the degradation of basement membrane in angiogenesis and tumor metastasis present in the culture supernatant of Rg3-treated aortic ring culture were found to decrease in their gelatinolytic activities. Taken together, these data underpin the anti-tumor properties of Rg3 through its angiosuppressive activity (Yue et al., 2006).

Glioblastoma

Rg3 has been reported to exert anti-cancer activities through inhibition of angiogenesis and cell proliferation. The mechanisms of apoptosis by ginsenoside Rg3 were related with the MEK signaling pathway and reactive oxygen species. Our data suggest that ginsenoside Rg3 is a novel agent for the chemotherapy of glioblastoma multiforme (GBM) (Choi et al., 2013).

Sin, Kim, & Kim (2012) report that chronic treatment with Rg3 in a sub-lethal concentration induced senescence-like growth arrest in human glioma cells. Rg3-induced senescence was partially rescued when the p53/p21 pathway was inactivated. Data indicate that Rg3 induces senescence-like growth arrest in human glioma cancer through the Akt and p53/p21-dependent signaling pathways.

MDR/Enhanced Paclitaxel Absorption

The penetration of paclitaxel through the Caco-2 monolayer from the apical side to the basal side was facilitated by 20(s)-ginsenoside Rg3 in a concentration-dependent manner. Rg3 also inhibited P-glycoprotein (P-gp), and the maximum inhibition was achieved at 80 µM (p < 0.05). The relative bioavailability (RB)% of paclitaxel with 20(s)-ginsenoside Rg3 was 3.4-fold (10 mg/kg) higher than that of the control. Paclitaxel (20 mg/kg) co-administered with 20(s)-ginsenoside Rg3 (10 mg/kg) exhibited an effective anti-tumor activity with the relative tumor growth rate (T/C) values of 39.36% (p <0.05).

The results showed that 20(s)-ginsenoside Rg3 enhanced the oral bioavailability of paclitaxel in rats and improved the anti-tumor activity in nude mice, indicating that oral co-administration of paclitaxel with 20(s)-ginsenoside Rg3 could provide an effective strategy in addition to the established i.v. route (Yang et al., 2012).

Prostate Cancer

The anti-proliferation effect of Rg3 on prostate cancer cells has been well reported. Rg3 treatment triggered the activation of p38 MAPK; and SB202190, a specific inhibitor of p38 MAPK, antagonized the Rg3-induced regulation of AQP1 and cell migration, suggesting a crucial role for p38 in the regulation process. Rg3 effectively suppresses migration of PC-3M cells by down-regulating AQP1 expression through p38 MAPK pathway and some transcription factors acting on the AQP1 promoter (Pan et al., 2012).

Enhances Chemotherapy

The clinical use of cisplatin (cis-diamminedichloroplatinum II) has been limited by the frequent emergence of cisplatin-resistant cell populations and numerous other adverse effects. Therefore, new agents are required to improve the therapy and health of cancer patients. Oral administration of ginsenoside Rg3 significantly inhibited tumor growth and promoted the anti-neoplastic efficacy of cisplatin in mice inoculated with CT-26 colon cancer cells. In addition, Rg3 administration remarkably inhibited cisplatin-induced nephrotoxicity, hepatotoxicity and oxidative stress.

Rg3 promotes the efficacy of cisplatin by inhibiting HO-1 and NQO-1 expression in cancer cells and protects the kidney and liver against tissue damage by preventing cisplatin-induced intracellular ROS generation (Lee et al., 2012).

Colon Cancer

Rg3-induced apoptosis in HT-29 cells is mediated via the AMPK signaling pathway, and that 20(S)-Rg3 is capable of inducing apoptosis in colon cancer. Rg3-treated cells displayed several apoptotic features, including DNA fragmentation, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) and morphological changes. 20(S)-Rg3 down-regulated the expression of anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl2), up-regulated the expression of pro-apoptotic protein of p53 and Bcl-2-associated X protein (Bax), and caused the release of mitochondrial cytochrome c, PARP, caspase-9 and caspase-3 (Yuan et al., 2010).

Anti-metastatic

Studies have linked Rg3 with anti-metastasis of cancer in vivo and in vitro and the CXC receptor 4 (CXCR4) is a vital molecule in migration and homing of cancer to the docking regions. At a dosage without obvious cytotoxicity, Rg3 treatment elicits a weak CXCR4 stain color, decreases the number of migrated cells in CXCL12-elicited chemotaxis and reduces the width of the scar in wound healing and Rg3 is a new CXCR4 inhibitor (Chen et al., 2011).

References

Chen XP, Qian LL, Jiang H, Chen JH. (2011). Ginsenoside Rg3 inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol, 16(5):519-23. doi: 10.1007/s10147-011-0222-6.


Choi YJ, Lee HJ, Kang DW, et al. (2013). Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep. doi: 10.3892/or.2013.2555.


Lee CK, Park KK, Chung AS, Chung WY. (2012). Ginsenoside Rg3 enhances the chemosensitivity of tumors to cisplatin by reducing the basal level of nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1/NAD(P)H quinone oxidoreductase-1 and prevents normal tissue damage by scavenging cisplatin-induced intracellular reactive oxygen species. Food Chem Toxicol, 50(7):2565-74. doi: 10.1016/j.fct.2012.01.005.


Pan XY, Guo H, Han J, et al. (2012). Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol, 683(1-3):27-34. doi: 10.1016/j.ejphar.2012.02.040.


Sin S, Kim SY, Kim SS. (2012). Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol., 41(5):1669-74. doi: 10.3892/ijo.2012.1604.


Yang LQ, Wang B, Gan H, et al. (2012). Enhanced oral bioavailability and anti-tumor effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos., 33(8):425-36. doi: 10.1002/bdd.1806.


Yuan HD, Quan HY, Zhang Y, et al. (2010). 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep., 3(5):825-31. doi: 10.3892/mmr.2010.328.


Yue PY, Wong DY, Wu PK, et al. (2006). The angiosuppressive effects of 20 (R)-ginsenoside Rg3. Biochem Pharmacol, 72(4):437-45.

Retinoids

Cancer: none noted

Action: Down-regulates,epidermal growth factor receptor

Human papillomavirus (HPV) is an important etiological agent in the genesis of cervical cancer. HPV-positive cervical tumors and human papillomavirus-positive cell lines display increased epidermal growth factor receptor (EGFR) expression, which is associated with increased cell proliferation. ECE16-1 cells are an HPV-immortalized human ectocervical epithelial cell line that is a model of HPV-associated cervical neoplasia and displays elevated EGFR levels.

The effects of receptor-selective retinoid ligands on EGFR-associated signal transduction were examined. It has been shown that retinoic acid receptor (RAR)-selective ligands reduce EGFR level and the magnitude and duration of EGFR activation in EGF-stimulated cells.

These effects are reversed by co-treatment with an RAR antagonist. To identify the mechanism, Sah et al. (2002) examined the effects of retinoid treatments on EGF-dependent signaling. Stimulation with EGF causes a biphasic activation of the ERK1/2 MAPK.

This effect is specific as retinoid treatment does not alter the level or activity of other EGFR-regulated kinases, including AKT and the MAPKs p38 and JNK. Retinoid X receptor-selective ligands, in contrast, did not regulate these responses. These results suggest that RAR ligand-associated down-regulation of EGFR activity reduces cell proliferation by reducing the magnitude and duration of EGF-dependent ERK1/2 activation.

All-trans retinoic acid (RA), through binding to the retinoic acid receptors (RARs), alters interactions of the RARs with various protein components of the transcription complex at numerous genes in stem cells, and some of these protein components of the transcription complex then either place or remove epigenetic marks on histones or on DNA, altering chromatin structure and leading to an exit from the self-renewing, pluripotent stem cell state.

Different epigenetic mechanisms, i.e. first, primarily H3K27me3 marks and then DNA methylation, may be employed by embryonic stem cells and other stem cells for control of early vs. late stages of cell differentiation. Creating these stable epigenetic changes requires the actions of many molecules, including tet1, polycomb protein complexes (PRCs), miRNAs, DNA methyltransferases (DNMTs), and telomerase reverse transcriptase (Gudas, 2013).

References

Gudas LJ. (2013). Retinoids induce stem cell differentiation via epigenetic changes. Semin Cell Dev Biol, S1084-9521(13)00102-X. doi: 10.1016/j.semcdb.2013.08.002.


Sah JF, Eckert RL, Chandraratna RA, Rorke EA. (2002). Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem, 277(12):9728-35.

Resveratrol 98%

Cancer:
Breast, lymphoma, breast, gastric, colorectal, esophageal, prostate, pancreatic, leukemia, skin, lung

Action: Chemoprevention, anti-inflammatory, MDR, chemotherapy-induced cytotoxicity, radio-sensitizer, enhances chemo-sensitivity

Resveratrol (RSV) is a phytoalexin found in food products including berries and grapes, as well as plants (including Fallopia japonica (Houtt.), Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.)

Although resveratrol is ubiquitous in nature, it is found in a limited number of edible substances, most notably in grapes. In turn, due to the peculiar processing methodology, resveratrol is found predominantly in red wines. Thus, resveratrol received intense and immediate attention. A large number of resveratrol anti-cancer activities were reported, affecting all the steps of cancerogenesis, namely initiation, promotion, and progression. Thereafter, an exponential number of reports on resveratrol accumulated and, so far, more than 5,000 studies have been published (Borriello et al., 2014).

Up to the end of 2011, more than 50 studies analyzed the effect of resveratrol as an anti-cancer compound in animal models of different cancers, including skin cancer (non-melanoma skin cancer and melanoma); breast, gastric, colorectal, esophageal, prostate, and pancreatic cancers; hepatoma, neuroblastoma, fibrosarcoma, and leukemia (Ahmad et al., 2004; Hayashibara et al., 2002; Pozo-Guisado et al., 2005; Mohan et al., 2006; Tang et al., 2006). In general, these preclinical studies suggest a positive activity of the molecule in lowering the progression of cancer, reducing its dimension, and decreasing the number of metastases (Vang et al., 2011).

Breast

Resveratrol was shown to have cancer chemo-preventive activity in assays representing three major stages of carcinogenesis. It has been found to mediate anti-inflammatory effects and inhibit cyclooxygenase and hydroperoxidase functions (anti-promotion activity). It has also been found to inhibit the development of pre-neoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model (Jang et al., 1997).

In addition, resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells (Lu et al., 1999).

Besides chemo-preventive effects, resveratrol appears to exhibit therapeutic effects against cancer itself. Limited data in humans have revealed that RSV is pharmacologically safe (Aggarwal et al., 2004).

Chemotherapy-Induced Cytotoxicity

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells (Kim et al., 2013).

Radio-sensitizer/Lung Cancer

Previous studies indicated that resveratrol (RV) may sensitize tumor cells to chemotherapy and ionizing radiation (IR). However, the mechanisms by which RV increases the radiation sensitivity of cancer cells have not been well characterized. Here, we show that RV treatment enhances IR-induced cell killing in non-small-cell lung cancer (NSCLC) cells through an apoptosis-independent mechanism. Further studies revealed that the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive senescent cells was markedly higher in cells treated with IR in combination with RV compared with cells treated either with IR or RV alone, suggesting that RV treatment enhances IR-induced premature senescence in lung cancer cells.

Collectively, these results demonstrate that RV-induced radio-sensitization is associated with significant increase of ROS production, DNA-DSBs and senescence induction in irradiated NSCLC cells, suggesting that RV treatment may sensitize lung cancer cells to radiotherapy via enhancing IR-induced premature senescence (Luo et al., 2013).

Lymphoma

Ko et al. (2011) examined the effects of resveratrol on the anaplastic large-cell lymphoma (ALCL) cell line SR-786. Resveratrol inhibited growth and induced cellular differentiation, as demonstrated by morphological changes and elevated expression of T cell differentiation markers CD2, CD3, and CD8. Resveratrol also triggered cellular apoptosis, as demonstrated by morphological observations, DNA fragmentation, and cell-cycle analyzes. Further, the surface expression of the death receptor Fas/CD95 was increased by resveratrol treatment. Our data suggest that resveratrol may have potential therapeutic value for ALCL.

Skin Cancer

Treatment with combinations of resveratrol and black tea polyphenol (BTP) also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemo-prevention using dietary agents will be more beneficial against cancer (George et al., 2011).

Prostate Cancer

Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major pro-apoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer (Shankar et al., 2007).

Breast Cancer

Scarlatti et al. (2008) demonstrate that resveratrol acts via multiple pathways to trigger cell death, induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, induces only caspase-independent cell death in MCF-7vc cells, and stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, they demonstrated that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. They also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cell.

References

Aggarwal BB, Bhardwaj A, Aggarwal RS et al. (2004). Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anti-cancer Research, 24(5A): 2783-2840.


Ahmad KA, Clement MV, Hanif IM, et al (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res, 64:1452–1459


Borriello A, Bencivenga D, Caldarelli I, et al. (2014). Resveratrol: from basic studies to bedside. Cancer Treat Res, 159:167-84. doi: 10.1007/978-3-642-38007-5_10.


George J, Singh M, Srivastava AK, et al (2011). Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE, 6:e23395


Hayashibara T, Yamada Y, Nakayama S, et al (2002). Resveratrol induces down-regulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer, 44:193–201


Jang M, Cai L, Udeani GO, et al. (1997). Cancer Chemo-preventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science, 275(5297):218-220.


Kim TH, Shin YJ, Won AJ, et al. (2013). Resveratrol enhances chemosensitivity of doxorubicin in Multi-drug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, S0304-4165(13)00463-7. doi: 10.1016/j.bbagen.2013.10.023.


Ko YC, Chang CL, Chien HF, et al (2011). Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett, 309:46–53


Lu R, Serrero G. (1999). Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. Journal of Cellular Physiology, 179(3):297-304.


Luo H, Wang L, Schulte BA, et al. (2013). Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int J Oncol, 43(6):1999-2006. doi: 10.3892/ijo.2013.2141.


Mohan J, Gandhi AA, Bhavya BC, et al. (2006). Caspase-2 triggers Bax-Bak-dependent and – independent cell death in colon cancer cells treated with resveratrol. J Biol Chem, 281:17599–17611


Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. (2005). Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with down-regulation of Bcl-2 and NF-kappaB. Int J Cancer, 115:74–84.


Scarlatti F, Maffei R, Beau I, et al (2008). Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ, 8:1318–1329


Shankar S, Siddiqui I, Srivastava RK. (2007). Molecular mechanisms of resveratrol (3,4,5- trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem, 304:273–285


Tang HY, Shih A, Cao HJ, et al. (2006). Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther, 5:2034–2042


Vang O, Ahmad N, Baile CA, et al. (2011). What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE, 6:e19881

Quxie Extract (QXC)

Cancer: Colorectal

Action: Raises immune function, increased QoL

Colorectal Carcinoma

Forty patients with advanced colorectal carcinoma were observed in a randomized controlled clinical trial (RCT). Out of them, the 37 evaluable patients were assigned into the treatment group (18 patients) and the control group (19 patients). They were all treated by the routine treatment for cancer, including chemotherapy and radiotherapy, while those in the treatment group were administered with QXC additionally. The scores of TCM symptom, QOF and KPS in the treatment group were 15.59 +/- 3.78, 54.06 +/- 3.96 and 64.71 +/- 6.24 before treatment, and 10.53 +/- 5.57, 58.65 +/- 4.03, 69.41 +/- 4.29 after treatment, respectively, showing significant improvement (P<0.05).

While the three scores in the control group were 16.11 +/- 3.99, 54.06 +/- 4.39 and 64.44 +/- 5.11 before treatment, and 19.61 +/- 7.78, 50.17 +/- 8.26 and 60.00 +/- 9.70 after treatment, respectively, showing a statistically significant worsening tendency in the latter two (P <0.05). QXC can reduce the FR, prolong the ST, mST, mCFPT, and improve the QOF in patients with advanced colorectal carcinoma (Yang et al., 2008).

Forty four patients chosen from 48 patients with colorectal cancer at post-operational period (with 2 dropped out and 2 loss of follow-up) were assigned into two groups (A and B) according to randomized block design and received intervention treatment with QXC and placebo, respectively, which started after terminating the post-operational adjuvant treatment and lasted for 6 m. Out of the 44 patients, 28 were of stage H (15 in Group A and 13 in Group B) and 16 of stage Ill (8 in Group A and 8 in Group B). The relapse-metastasis (R-M) rate, median time of R- M, changes of symptoms, Karnofsky (KPS) score and immune function before and after intervention, as well as the safety of QXC, were observed.

The symptoms and KPS score in Group A were obviously better (P< 0.05), with improvement in B lymphocyte (P< 0.05) superior to that in Group B. No obvious adverse reaction to QXC was found. QXC might be effective in delaying the R-M of colorectal cancer, but the ultimate confirmation only could be obtained through 1– 2 y observation. Post-operational intervention with QXC in patients with colorectal cancer could apparently improve the quality of life and raise the immune function of patients; it is safe and might have some clinical significance in preventing the R-M of cancer (Yang et al., 2007).

Formula

Semen Crotonis (ba dou), Fructus Evodiae Rutaecarpae (wu zhu yu), Rhizoma Zingiberis Officinalis (gan jiang), Cortex Cinnamomi Cassiae (rou gui), Radix Aconiti Carmichaeli (chuan wu), Rhizoma Pinelliae Ternatae (ban xia), Exocarpium Citri Erythrocarpae (ju hong)

References

Yang YF, Xu Y, Wu Y, Wang L, Li Z, Zhang L, Zhu Y, Guo Z, Guo Q, Yan X. (2007). Clinical Randomized Double-blinded Controlled Study on Quxie Capsule in Reducing Post-operational Relapse and Metastasis of Colorectal Cancer. Zhong Guo Zhong Xi Yi Jie He Za Zhi, 27(10):879-892.


Yang Y, Chen Z, Xu Y, Wu Y. Wu X, Zhu Y, Li P, Shudi G. (2008). Randomized Controlled Study on Effect of Quxie Capsule on the Median Survival Time and Qualify of Life in Patients with Advanced Colorectal Carcinoma. Zhong Guo Zhong Xi Yi Jie He Za Zhi, 28(2):111-114.

Pumpkin seed extract

Cancer: Breast

Action: Down-regulates ER-α

Breast Cancer

Phytoestrogens have a controversial effect on hormone-dependent tumors. Herein, we investigated the effect of the pumpkin seed extract (PSE) on estradiol production and estrogen receptor (ER)-α/ER-β/progesterone receptor (PR) status on MCF7, Jeg3, and BeWo cells. The effect of the PSE on ER-α/ER-β/PR expression was assessed by immunocytochemistry. The PSE was found to contain both lignans and flavones. Estradiol production was elevated in MCF7, BeWo, and Jeg3 cells in a concentration-dependent manner.

In MCF7 cells, a significant ER-α down-regulation and a significant PR up-regulation were observed. The above results, after properly designed animal studies, could highlight a potential role of pumpkin seed lignans in breast cancer prevention and/or treatment (Richter et al., 2013).

Reference

Richter D, Abarzua S, Chrobak M, Vrekoussis T, et al. (2013). Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells. Nutr Cancer, 65(5):739-45. doi: 10.1080/01635581.2013.797000.

Puerarin

Cancer: Colon, breast, acute myeloid leukemia

Action: MDR, aromatase inhibition, induces apoptosis

Induces Apoptosis, Colorectal Cancer

Puerarin is isolated from Pueraria radix (Pueraria lobata [(Willd.) Ohwi]) and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders, as well as anti-cancer properties. Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has anti-thrombotic and anti-allergic properties and stimulates estrogenic activity.

Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments with ³ 25µM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. Puerarin also affects the expression of apoptosis-associated genes, revealing an increase of bax and decreases of c-myc and bcl-2.

Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemo-preventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis (Li, et al., 2006).

Induces Apoptosis, Breast Cancer

Puerarin exhibits a dose-dependent inhibition of cell growth in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell-cycle distribution and apoptosis assays revealed that puerarin induced cell apoptosis through a caspase-3-dependent pathway and mediated cell-cycle arrest in the G2/M phase. It is therefore suggested that puerarin may act as a chemo-preventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis (Lin et al., 2009).

Breast Cancer, MDR

Purearin down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Multi-drug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation.

The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, these results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells (Hien et al., 2010).

Acute Myeloid Leukemia (AML)

The results showed that a certain concentration of puerarin (PR) could inhibit the proliferation of these four cell lines effectively in time-and dose-dependent manners, and the intensity of inhibition on four kinds of acute myeloid leukemia (AML) cell lines was from high to low as follows: NB4>Kasumi-1>U937>HL-60. Meanwhile, PR could also change cycle process, cell proportion in G1/G0 phase decreased, cells in S phase increased and Sub-diploid peak also appeared. It is concluded that PR can selectively inhibit the proliferation of four AML cell lines and block cell-cycle process, especially for NB4 cells (Shao et al., 2010).

Aromatase Inhibition

Aromatase P450 (P450 (arom)) is overexpressed in endometriosis, endometrial cancers and uterine fibroids. With weak estrogen agonists/antagonists and some other enzymatic activities, isoflavones are increasingly advocated as a natural alternative to estrogen replacement therapy (ERT) and are available as dietary supplements. Puerarin is a major isoflavonoid compound isolated from Pueraria lobata (ge gen).

Yu et al. (2008) found that puerarin exerted a time-course effect on the inhibition of c-jun mRNA, which parallelled that of P450(arom). The suppression of P450(arom) expression and activity by puerarin treatment may associate with the down-regulation of transcription factor AP-1 or c-jun.

References

Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. (2010). Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF- κ B pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res, 54(7):918-28. doi: 10.1002/mnfr.200900146.


Lin YJ, Hou YC, Lin CH, et al. (2009). Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochemical and Biophysical Research Communications, 378(4):683-8. doi:10.1016/j.bbrc.2008.10.178


Shao HM, Tang YH, Jiang PJ, et al. (2010). Inhibitory effect of flavonoids of puerarin on proliferation of different human acute myeloid leukemia cell lines in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(2):296-9.


Yu C, Li Y, Chen H, Yang S, Xie G. (2008). Decreased expression of aromatase in the Ishikawa and RL95-2 cells by the isoflavone, puerarin, is associated with inhibition of c-jun expression and AP-1 activity. Food Chem Toxicol, 46(12):3671-6. doi: 10.1016/j.fct.2008.09.045.


Yu Z, Li WJ. (2006). Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Letters, 238(1):53-60.

Pterostilbene

Cancer: Liver

Action: Induces apoptosis, cancer stem cells

Induces Apoptosis

Pterostilbene (PT) extracted from blueberries dose-dependently reduced the enrichment of CD133 (+) Mahlavu cells upon irradiation; PT treatment also prevented tumor sphere formation, reduced stemness gene expression, and suppressed invasion and migration abilities as well as increasing apoptosis of CD133 (+) Mahlavu CSCs (Lee et al., 2013).

CSCs

PT effectively suppresses the generation of CSCs and metastatic potential under the influence of M2 TAMs via modulating EMT associated signaling pathways, specifically NF-κB/miR488 circuit. Thus, PT could be an ideal anti-CSC agent in clinical settings (Mak et al., 2013).

References

Lee CM, Su YH, Huynh TT, et al. (2013). BlueBerry Isolate, Pterostilbene, Functions as a Potential Anti-cancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells. Evid Based Complement Alternat Med, 2013:258425. doi: 10.1155/2013/258425.


Mak KK, Wu AT, Lee WH, et al. (2013). Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κ B/microRNA 448 circuit. Mol Nutr Food Res, 57(7):1123-34. doi: 10.1002/mnfr.201200549.

Psoralen and Bakuchiol

Cancer: Breast

Action: Estrogen modulator

The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China (Lim et al., 2009).

Estrogen Modulator

The estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions, including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL, showed significant activity in activating either ERalpha or ERbeta, whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta.

The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. These data suggest that both ER subtype-selective and non-selective activities in compounds derived from PCL indicated that PCL could be a new source for selective estrogen-receptor modulators (Xin et al., 2010).

Breast Cancer

The in vitro anti-tumor activity of bakuchiol was examined, compared with tamoxifen. The result of biological activities showed that bakuchiol could inhibit human breast cancer and the IC50 values were 2.89 x 10(-5) mol L(-1) and 8.29 x 10(-3) mol L(-1) against the cells line T-47D and MDA-MB-231 respectively (Chen et al., 2010).

In vitro inhibitory effects of various concentrations of psoralen (25, 12. 5, 6. 25 and 3. 125 µg/mL respectively) on MCF-7 cells with estrogen-receptor (ER) positive and on MDA-MB-231 cells with ER negative were carried out. Psoralen had no inhibitory effect on the growth of MDA-MB-231 cells, but cell apoptosis was increased at early stage. There were 1,053 genes with differential expression in MCF-7 cells assessed by cDNA chips. Of the expression of 1,053 genes, the expression of 657 genes was down-regulated and that of 456 gene was up-regulated.

Psoralen has certain inhibitory effect on the proliferation of ER-positive MCF-7 cells, and its inhibitory mechanism on the growth of breast cancer is probably related to the arrest of the cell at G2 phase by the drug (Tan et al., 2009).

References

Chen HL, Feng HJ, Li YC. (2010). Vitro anti-tumor activity and synthesis of the key intermediate of bakuchiol. Yao Xue Xue Bao, 45(4):467-70.


Lim SH, Ha TY, Kim SR, et al. (2009). Ethanol extract of Psoralea corylifolia L. and its main constituent, bakuchiol, reduce bone loss in ovariectomised Sprague-Dawley rats. Br J Nutr., 101(7):1031-1039


Tan M, Sun J, Zhao H, et al. (2009). Comparative Study on the Anti-tumor Effects of Psoralen on Human Breast Cancer Cell Line MCF-7 and MDA-MB-231 in Vitro. Guang Zhou Zhong Yi Yao Da Xue Xue Bao, 26(4): 359-362.


Xin D, Wang H, Yang J, et al. (2010). Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine, 17(2):126-31. doi: 10.1016/j.phymed.2009.05.015.

Piperine

Cancer: Breast, prostate

Action: Autophagy inhibitor, anti-proliferative effect

Breast Cancer Stem Cells

Mammosphere formation assays were performed after curcumin, piperine and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging and percent of ALDH+ cells, by 50% at 5 µM and completely at 10 µM concentration in normal and malignant breast cells. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer-preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer-preventive agent efficacy and Wnt signaling assessment a mechanistic biomarker for use in human clinical trials (Kakarala et al., 2010).

HER-2 Overexpressing Breast Cancer

Results showed that piperine strongly inhibited proliferation and induced apoptosis of HER2-overexpressing breast cancer cells through caspase-3 activation and PARP cleavage. Furthermore, piperine inhibited HER2 gene expression at the transcriptional level.   Piperine pre-treatment enhanced sensitization to paclitaxel killing in HER2-overexpressing breast cancer cells. Our findings suggest that piperine may be a potential agent for the prevention and treatment of human breast cancer with HER2 overexpression (Do et al., 2013).

Prostate Cancer

Piperine treatment resulted in a dose-dependent inhibition of the proliferation of prostate cancer DU145, PC-3 and LNCaP cell lines. Cell-cycle arrest at G₀/G₁ was induced and cyclin D1 and cyclin A were down-regulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell-cycle arrest in the former two cell lines than the latter one. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell-cycle arrest and autophagy (Ouyang et al., 2013).

References

Do MT, Kim HG, Choi JH, et al. (2013). Anti-tumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem, 141(3):2591-9. doi: 10.1016/j.foodchem.2013.04.125.


Kakarala M, Brenner DE, Korkaya H, et al. (2010). Targeting breast stem cells with the cancer-preventive compounds curcumin and piperine. Breast Cancer Res Treat, 122(3): 777–785.


Ouyang DY, Zeng LH, Pan H, et al. (2013). Piperine inhibits the proliferation of human prostate cancer cells via induction of cell-cycle arrest and autophagy. Food Chem Toxicol, 60:424-30. doi: 10.1016/j.fct.2013.08.007.

Pinosylvin

Cancer: Colorectal, lung

Action: Anti-cancer, anti-inflammatory and anti-oxidant, chemo-preventive, anti-metastatic effect

Pinosylvin is a naturally occurring chemo-preventive trans-stilbenoid mainly found in plants of the Pinus genus (Pinus (L.) and Gnetum cleistostachyum (C. Y. Cheng)).

Anti-cancer, Anti-inflammatory and Anti-oxidant

Stilbenes are small molecular weight (approximately 200-300 g/mol), naturally occurring compounds and are found in a wide range of plant sources, aromatherapy products, and dietary supplements. These molecules are synthesized via the phenylpropanoid pathway and share some structural similarities to estrogen. Upon environmental threat, the plant host activates the phenylpropanoid pathway and stilbene structures are produced and subsequently secreted. Stilbenes act as natural protective agents to defend the plant against viral and microbial attack, excessive ultraviolet exposure, and disease. Stilbene compounds, piceatannol, pinosylvin, rhapontigenin, and pterostilbene possess potent anti-cancer, anti-inflammatory and anti-oxidant activities (Roupe et al., 2006).

Colorectal

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, has exhibited a potential cancer chemo-preventive activity. The anti-proliferative activity of pinosylvin was investigated in human colorectal HCT 116 cancer cells.

Pinosylvin was also found to attenuate the activation of proteins involved in focal adhesion kinase (FAK)/c-Src/extracellular signal-regulated kinase (ERK) signaling, and phosphoinositide 3-kinase (PI3K)/Akt/ glycogen synthase kinase 3β (GSK-3β) signaling pathway. Subsequently, pinosylvin suppressed the nuclear translocation of β-catenin, one of downstream molecules of PI3K/Akt/GSK-3β signaling, and these events led to the sequential down-regulation of β-catenin-mediated transcription of target genes including BMP4, ID2, survivin, cyclin D1, MMP7, and c-Myc. These findings demonstrate that the anti-proliferative activity of pinosylvin might be associated with the cell-cycle arrest and down-regulation of cell proliferation regulating signaling pathways in human colorectal cancer cells (Park et al., 2013).

Anti-metastatic

Pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibits a potential cancer chemo-preventive activity and also inhibits the growth of various human cancer cell lines via the regulation of cell-cycle progression. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. Park et al. (2012) found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems.

The analysis of tumor in lung tissues indicated that the anti-metastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.

References

Park EJ, Park HJ, Chung HJ, et al. (2012). Anti-metastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem, 23(8):946-52. doi: 10.1016/j.jnutbio.2011.04.021.


Park EJ, Chung HJ, Park HJ, et al. (2013). Suppression of Src/ERK and GSK-3/ β-catenin signaling by pinosylvin inhibits the growth of human colorectal cancer cells. Food Chem Toxicol, 55:424-33. doi:10.1016/j.fct.2013.01.007.


Roupe KA, Remsberg CM, Yá–ez JA, Davies NM. (2006). Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol, 1(1):81-101.

Piceatannol

Cancer: Esophageal, colorectal, breast

Action: Anti-inflammatory, anti-oxidative

Piceatannol, a naturally occurring analogue of resveratrol found in certain plants and berries of the Vaccinium genus, including Picea abies [(L.) H.Karst.], Aiphanes horrida [(Jacq.) Burret], Gnetum cleistostachyum (C. Y. Cheng), Vaccinium arboretum (Marshall), Vaccinium angustifolium (Aiton) and Vaccinium corymbosum (L.). It was previously identified as the active ingredient in herbal preparations in folk medicine. Piceatannol is an anti-inflammatory, immunomodulatory, and anti-proliferative stilbene that has been shown to interfere with the cytokine signaling pathway. It is isolated from various types of berries, grapes, rhubarb and sugar cane.

It has been shown that a diet containing freeze-dried black raspberries (BRB) inhibits the development of chemically-induced cancer in the rat esophagus. To provide insights into possible mechanisms by which BRB inhibit esophageal carcinogenesis, an ethanol (EtOH) extract of BRB was evaluated, and two component anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O−rutinoside) in BRB, for their effects on growth, apoptosis, and gene expression in rat esophageal epithelial cell lines. The EtOH extract and both anthocyanins selectively caused significant growth inhibition and induction of apoptosis in a highly tumorigenic cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149).

The growth-inhibitory and pro-apoptotic effects were enhanced by the daily addition of the EtOH extract and the anthocyanins to the medium.

Esophageal Cancer

This differential effect may have been related to the relative amounts of anthocyanins in the extract vs.when they were added individually to the medium. It was hence concluded that the selective effects of the EtOH extract on the growth and apoptosis of highly tumorigenic rat esophageal epithelial cells in vitro may be due to preferential uptake and retention of its component anthocyanins, and this may also be responsible for the greater inhibitory effects of freeze-dried whole berries on tumor cells in vivo (Schwartz et al., 2009).

Colorectal

The effects of piceatannol on growth, proliferation, differentiation and cell-cycle distribution profile of the human colon carcinoma cell line Caco-2 were investigated. Growth of Caco-2 and HCT-116 cells was analyzed by crystal violet assay, which demonstrated dose- and time-dependent decreases in cell numbers. Treatment of Caco-2 cells with piceatannol reduced proliferation rate. No effect on differentiation was observed.

Determination of cell-cycle distribution by flow cytometry revealed an accumulation of cells in the S phase. Immunoblotting demonstrated that cyclin-dependent kinases (cdk) 2 and 6, as well as cdc2 were expressed at steady-state levels, whereas cyclin D1, cyclin B1 and cdk 4 were down-regulated. The abundance of p27Kip1 was also reduced, whereas the protein level of cyclin E was enhanced. Cyclin A levels were enhanced only at concentrations up to 100 µmol/L. These changes also were observed in studies with HCT-116 cells. On the basis of our findings, piceatannol can be considered to be a promising chemo-preventive or anti-cancer agent (Wolter et al., 2002).

Anti-inflammatory

Treatment of human myeloid cells with piceatannol suppressed TNF-induced DNA binding activity of NF-κB. In contrast, stilbene or rhaponticin (another analog of piceatannol) had no effect, suggesting the critical role of hydroxyl groups. The effect of piceatannol was not restricted to myeloid cells, as TNF-induced NF- κB activation was also suppressed in lymphocyte and epithelial cells. Piceatannol also inhibited NF-κB activated by H2O2, PMA, LPS, okadaic acid, and ceramide.

Piceatannol abrogated the expression of TNF-induced NF-κB-dependent reporter gene and of matrix metalloprotease-9, cyclooxygenase-2, and cyclin D1. When examined for the mechanism, it was found that piceatannol inhibited TNF-induced IκBα phosphorylation, p65 phosphorylation, p65 nuclear translocation, and IκBα kinase activation, but had no significant effect on IκBα degradation. Piceatannol inhibited NF-κB in cells with deleted Syk, indicating the lack of involvement of this kinase.

Overall, these results clearly demonstrate that hydroxyl groups of stilbenes are critical and that piceatannol, a tetrahydroxystilbene, suppresses NF- κB activation induced by various inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation (Ashikawa et al., 2002).

There are multiple lines of evidence supporting that inflammation is causally linked to carcinogenesis. Abnormal up-regulation of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in the prostaglandin biosynthesis, has been implicated in carcinogenesis. Trans-3,4,3',5'-tetrahydroxystilbene (piceatannol), a naturally occurring hydroxylated stilbene with potent anti-inflammatory and anti-oxidative activities, has been shown to inhibit the proliferation of several cancer cells by inducing apoptosis or blocking cell-cycle progression. The effect of piceatannol was examined on the activation of the nuclear transcription factor NF-κB, one of the major transcription factors that regulate pro-inflammatory COX- 2 gene transcription, in human mammary epithelial (MCF-10A) cells treated with the tumor promoter 12-O-tetradecanoylphorbol- 13-acetate (TPA).

When pre-treated to MCF-10A cells, piceatannol markedly inhibited TPA-induced NF-κB DNA binding to a greater extent than resveratrol and oxyresveratrol, stilbene analogs structurally related to piceatannol. Piceatannol also inhibited TPAinduced phosphorylation and degradation of IκBα as well as nuclear translocation of the phosphorylated form of p65, the functionally active subunit of NF-κB. Likewise, TPA-induced expression of COX-2 was abrogated by piceatannol pre-treatment. The thiol reducing agent dithiothreitol abolished the inhibitory effects of piceatannol on NF-κB DNA binding activity, suggesting that piceatannol may directly modify NF-kB (Liu et al., 2009).

Breast Cancer

Piceatannol (trans-3,4,3′,5′-tetrahydroxystilbene; PIC) exhibits immunosuppressive and anti-tumorigenic activities in several cell lines, and it was found that PIC inhibited migration and anchorage-independent growth of human mammary epithelial cells (MCF-10A) treated with the prototypic tumor promoter, 12-O-tetradecanoylphorbol-13-aceate (TPA). PIC treatment suppressed the TPA-induced activation of NF-κB and expression of cyclooxygenase-2 (COX-2) in MCF-10A cells. It was speculated that an electrophilic quinone formed as a consequence of oxidation of PIC bearing the catechol moiety may directly interact with critical cysteine thiols of IKKβ, thereby inhibiting its catalytic activity.

Results show that direct modification of IKKβ by PIC, presumably at the cysteine 179 residue, blocks NF-κB activation signaling and COX-2 induction in TPA-treated MCF-10A cells and also migration and transformation of these cells (Son et al., 2010).

References

Ashikawa K, Majumdar S, Banerjee S, et al. (2002). Piceatannol inhibits TNF-induced NF- κB activation and NF- κ B-mediated gene expression through suppression of IκBα kinase and p65 phosphorylation. The Journal of Immunology, 169(11):6490-7.


Liu D, Kim DH, Park JM. (2009). Piceatannol Inhibits Phorbol Ester-Induced NF- κ B Activation and COX-2 Expression in Cultured Human Mammary Epithelial Cells. Nutrition and Cancer, 61(6):855–63. doi: 10.1080/01635580903285080.


Schwartz SJ and Stoner GD. (2009). Black Raspberry Components Inhibit Proliferation, Induce Apoptosis, and Modulate Gene Expression in Rat Esophageal Epithelial Cells. Nutrition and Cancer, 61(6):816–26. doi: 10.1080/01635580903285148


Son PS, Park SA, Na HK, et al. (2010). Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF- κ B activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKK β as a potential target. Carcinogenesis, 31(8):1442-1449. doi: 10.1093/carcin/bgq099.


Wolter F, Clausnitzer A, Akoglu B and Stein J. (2001). Down-regulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell-cycle arrest in colon cancer cell lines. J. Nutr, 132(2):298-302.

Phytosterols

Phytosterols (PSs) are a group of plant-derived steroid alcohols, with wide occurrence in vegetables and fruits. They are integral components of plant cell membranes, having stabilizing effects on phospholipids bilayer, just like cholesterol in animal cell membranes. Structural resemblance of PSs with cholesterol enables them to displace low-density lipoprotein (LDL) cholesterol in the human intestine. (Woyengo et al., 2009).

Protective effects of PSs against cardiovascular diseases (CVDs), colon and breast cancer developments have been widely documented. Several reports have been published on the potential dietary intake of common PSs, such as β-sitosterol, stigmasterol and campesterol, and their safety concerns.The ability of PSs to reduce cholesterol levels and risks associated with heart problems has made them a class of favorite food supplements.

Nowadays functional foods supplemented with PSs have become an alternative and healthy tool to lower LDL-cholesterol levels in a natural way. However, excessive use of PSs has been observed to develop premature coronary artery disease in phytosterolemic patients, high risk of atherosclerotic CVDs, myocardial infarction and even impaired endothelial functions (Choudhary & Tran, 2011).

Phytosterols may inhibit lung, stomach, ovarian and breast cancers

Results show that phytosterol more strongly inhibits the growth of cancer cells, which at a given proportion of cholesterol to phospholipids in membranes, have more unsaturated fatty acids within phospholipids molecules (Hąc-Wydro, 2013).

References

Choudhary SP, Tran LS. (2011). Phytosterols: perspectives in human nutrition and clinical therapy. Current Medicinal Chemistry, 18(29), 4557-4567.


Hąc-Wydro K. (2013). The effect of β -sitosterol on the properties of cholesterol/phosphatidylcholine/ganglioside monolayers–the impact of monolayer fluidity. Colloids Surf B Biointerfaces, 110:113-9. doi: 10.1016/j.colsurfb.2013.04.041.


Woyengo TA, Ramprasath VR, Jones P JH. (2009). Anti-cancer effects of phytosterols. European Journal of Clinical Nutrition, 63(7):813–20. doi:10.1038/ejcn.2009.29.

Pheophorbide

Cancer: Liver, lung, uterine sarcoma

Action: MDR

MDR

Pheoborbide is isolated from Scutellaria barbata, a Traditional Chinese Medicine native in southern China, and has been widely used for treating liver diseases.   Pheophorbide a (Pa), an active component from S. barbata, has been shown to have anti-proliferative and Multi-drug-resistant (MDR) effects on the human hepatoma cell line R-HepG2.

Significant reduction of P-glycoprotein expression on Pa-treated R-HepG2 cells was found at both transcriptional and translational levels, leading to reduction of P-glycoprotein activity. In addition, mechanistic study elucidated that Pa induced cell-cycle arrest at G2/M phase and inhibited the expressions of G2/M phase cell-cycle regulatory proteins, cyclin-A1 and cdc2 in a dose-dependent manner (Tang et al., 2007).

Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. The chemical constituents of Typhonium flagelliforme, particularly those which have anti-proliferative properties towards human cancer cell lines, have been investigated. Purification of the chemical constituents by various chromatographic procedures was guided by the anti-proliferative activity. Four pheophorbide related compounds, namely pheophorbide-a, pheophorbide-a', pyropheophorbide-a and methyl pyropheophorbide-a were identified in the most active fraction, D/F19.

These constituents exhibited anti-proliferative activity against cancer cells and activity increased following photoactivation. However, anti-proliferative activity exhibited by D/F19 alone, relative to the combined effect of pheophorbides and their subfractions, suggests some form of synergistic action between the constituents. The inhibitory effect of D/F19 and the pheophorbides was apoptotic in the absence of light. Most of the chemical constituents identified in this plant have not been reported previously (Lai, Mas, Nair, Mansor, & Navaratnam, 2010).

Prolonged cancer chemotherapy is associated with the development of multi-drug resistance (MDR), which is a major cause of treatment failure. Photodynamic therapy (PDT) has been applied as anti-cancer therapy and a means of circumventing MDR. The anti-proliferative effect of pheophorbide a-mediated photodynamic therapy (Pa-PDT) has been demonstrated in several human cancer cell lines, including the uterine sarcoma cell line, MES-SA.

Combined therapy using Pa-PDT and Dox, a common chemotherapeutic drug, was found to be synergistic in the cell line, MES-SA/Dx5. Both activity and expression of MDR1 and P-gp were reduced by Pa-PDT treatment and such reductions were attenuated by α-tocopherol, the scavenger of reactive oxygen species (ROS), suggesting that the effect of Pa-PDT was mediated by the generation of intracellular ROS (Cheung et al., 2013).

References

Cheung KK, Chan JY, Fung KP. (2013). Anti-proliferative effect of pheophorbide a-mediated photodynamic therapy and its synergistic effect with doxorubicin on multiple drug-resistant uterine sarcoma cell MES-SA/Dx5. Drug Chem Toxicol, 36(4):474-83. doi: 10.3109/01480545.2013.776584.


Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V. (2010). Chemical constituents and in vitro anti-cancer activity of Typhonium flagelliforme (Araceae).


Journal of Ethnopharmacology, 127(2), 486-94. doi: 10.1016/j.jep.2009.10.009.


Tang PM, Chan JY, Zhang DM, et al. (2007). Pheophorbide a, an active component in Scutellaria barbata, reverses P-glycoprotein-mediated Multi-drug resistance on a human hepatoma cell line R-HepG2. Cancer Biol Ther, 6(4):504-9.

Phenolics

Cancer: Prostate

Action: Chemo-preventive, anti-oxidant, modulate insulin-like growth factor-I (IGF-I)

Natural phenolic compounds play an important role in cancer prevention and treatment. Phenolic compounds from medicinal herbs and dietary plants include phenolic acids, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others. Various bioactivities of phenolic compounds are responsible for their chemo-preventive properties (e.g. anti-oxidant, anti-carcinogenic, or anti-mutagenic and anti-inflammatory effects) and also contribute to their inducing apoptosis by arresting cell-cycle, regulating carcinogen metabolism and ontogenesis expression, inhibiting DNA binding and cell adhesion, migration, proliferation or differentiation, and blocking signaling pathways. A review by Huang et al., (2010) covers the most recent literature to summarize structural categories and molecular anti-cancer mechanisms of phenolic compounds from medicinal herbs and dietary plants (Huang, Cai, & Zhang., 2010).

Phenolics are compounds possessing one or more aromatic rings bearing one or more hydroxyl groups with over 8,000 structural variants, and generally are categorized as phenolic acids and analogs, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, quinones, and others based on the number of phenolic rings and of the structural elements that link these rings (Fresco et al., 2006).

Phenolic Acids

Phenolic acids are a major class of phenolic compounds, widely occurring in the plant kingdom.   Predominant phenolic acids include hydroxybenzoic acids (e.g. gallic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, and syringic acid) and hydroxycinnamic acids (e.g. ferulic acid, caffeic acid, p-coumaric acid, chlorogenic acid, and sinapic acid). Natural phenolic acids, either occurring in the free or conjugated forms, usually appear as esters or amides.

Due to their structural similarity, several other polyphenols are considered as phenolic acid analogs such as capsaicin, rosmarinic acid, gingerol, gossypol, paradol, tyrosol, hydroxytyrosol, ellagic acid, cynarin, and salvianolic acid B (Fresco et al., 2006; Han et al., 2007).

Gallic acid is widely distributed in medicinal herbs, such as Barringtonia racemosa, Cornus officinalis, Cassia auriculata, Polygonum aviculare, Punica granatum, Rheum officinale, Rhus chinensis, Sanguisorba officinalis, and Terminalia chebula as well as dietary spices, for example, thyme and clove. Other hydroxybenzoic acids are also ubiquitous in medicinal herbs and dietary plants (spices, fruits, vegetables).

For example, Dolichos biflorus, Feronia elephantum, and Paeonia lactiflora contain hydroxybenzoic acid; Cinnamomum cassia, Lawsonia inermis, dill, grape, and star anise possess protocatechuic acid; Foeniculum vulgare, Ipomoea turpethum, and Picrorhiza scrophulariiflora have vanillic acid; Ceratostigma willmottianum and sugarcane straw possess syringic acid (Cai et al., 2004; Shan et al., 2005; Sampietro & Vattuone, 2006; Stagos et al., 2006; Surveswaran et al., 2007).

Ferulic, caffeic, and p-coumaric acid are present in many medicinal herbs and dietary spices, fruits, vegetables, and grains (Cai et al., 2004). Wheat bran is a good source of ferulic acids. Free, soluble-conjugated, and bound ferulic acids in grains are present in the ratio of 0.1:1:100. Red fruits (blueberry, blackberry, chokeberry, strawberry, red raspberry, sweet cherry, sour cherry, elderberry, black currant, and red currant) are rich in hydroxycinnamic acids (caffeic, ferulic, p-coumaric acid) and p-hydroxybenzoic, ellagic acid, which contribute to their anti-oxidant activity (Jakobek et al., 2007).

Chlorogenic acids are the ester of caffeic acids and are the substrate for enzymatic oxidation leading to browning, particularly in apples and potatoes. Chlorogenic acid is a major phenolic acid from medicinal plants especially in the species of Apocynaceae and Asclepiadaceae (Huang et al., 2007).

Salvianolic acid B is a major water-soluble polyphenolic acid extracted from Radix salviae miltiorrhizae, which is a common herbal medicine clinically used as an anti-oxidant agent for thousands of years in China. There are 9 activated phenolic hydroxyl groups that may be responsible for the release of active hydrogen to block lipid peroxidation reaction. Rosmarinic acid is an anti-oxidant phenolic compound, which is found in many dietary spices such as mint, sweet basil, oregano, rosemary, sage, and thyme.

Gossypol, a polyphenolic aldehyde, derived from the seeds of the cotton plant (genus Gossypium, family Malvaceae), has contraceptive activity and can cause hypokalemia in some men. Gingerol, a phenolic substance, is responsible for the spicy taste of ginger.

Polyphenols

Polyphenols are a structural class of mainly natural, organic chemicals characterized by the presence of large multiples of phenol structural units. The number and characteristics of these phenol structures underlie the unique physical, chemical, and biological (metabolic, toxic, therapeutic, etc.) properties of particular members of the class. They may be broadly classified as phenolic acids, flavonoids, stilbenes, and lignans (Manach et al., 2004).

Initial evidence on cancer came from epidemiologic studies suggesting that a diet that includes regular consumption of fruits and vegetables (rich in polyphenols) significantly reduces the risk of many cancers.

Polyphenolic cancer action can be attributed not only to their ability to act as anti-oxidants but also to their ability to interact with basic cellular mechanisms. Such interactions include interference with membrane and intracellular receptors, modulation of signaling cascades, interaction with the basic enzymes involved in tumor promotion and metastasis, interaction with oncogenes and oncoproteins, and, finally, direct or indirect interactions with nucleic acids and nucleoproteins. These actions involve almost the whole spectrum of basic cellular machinery – from the cell membrane to signaling cytoplasmic molecules and to the major nuclear components – and provide insights into their beneficial health effects (Kampa et al., 2007).

Polyphenols and Copper

Anti-cancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as anti-oxidants, but can be pro-oxidants in the presence of copper ions. Through multiple assays, Khan et al. (2013) show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition.

Since the concentration of copper is significantly elevated in cancer cells, their results strengthen the idea that an important anti-cancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this pro-oxidant chemo-preventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.

IGF-1; Prostate Cancer

The ability of polyphenols from tomatoes and soy (genistein, quercetin, kaempferol, biochanin A, daidzein and rutin) were examined for their ability to modulate insulin-like growth factor-I (IGF-I)–induced in vitro proliferation and apoptotic resistance in the AT6.3 rat prostate cancer cell line. IGF-I at 50 µg/L in serum-free medium produced maximum proliferation and minimized apoptosis. Genistein, quercetin, kaempferol and biochanin A exhibited dose-dependent inhibition of growth with a 50% inhibitory concentration (IC50) between 25 and 40 µmol/L, whereas rutin and daidzein were less potent with an IC50 of >60 µmol/L. Genistein and kaempferol potently induced G2/M cell-cycle arrest.

Genistein, quercetin, kaempferol and biochanin A, but not daidzein and rutin, counteracted the anti-apoptotic effects of IGF-I. Human prostate epithelial cells grown in growth factor-supplemented medium were also sensitive to growth inhibition by polyphenols. Genistein, biochanin A, quercetin and kaempferol reduced the insulin receptor substrate-1 (IRS-1) content of AT6.3 cells and prevented the down-regulation of IGF-I receptor β in response to IGF-I binding.

Several polyphenols suppressed phosphorylation of AKT and ERK1/2, and more potently inhibited IRS-1 tyrosyl phosphorylation after IGF-I exposure. In summary, polyphenols from soy and tomato products may counteract the ability of IGF-I to stimulate proliferation and prevent apoptosis via inhibition of multiple intracellular signaling pathways involving tyrosine kinase activity (Wang et al., 2003).

Flavonoids

Flavonoids have been linked to reducing the risk of major chronic diseases including cancer because they have powerful anti-oxidant activities in vitro, being able to scavenge a wide range of reactive species (e.g. hydroxyl radicals, peroxyl radicals, hypochlorous acid, and superoxide radicals) (Hollman & Katan, 2000).

Flavonoids are a group of more than 4,000 phenolic compounds that occur naturally in plants (Ren et al., 2003). These compounds commonly have the basic skeleton of phenylbenzopyrone structure (C6-C3-C6) consisting of 2 aromatic rings (A and B rings) linked by 3 carbons that are usually in an oxygenated central pyran ring, or C ring (12). According to the saturation level and opening of the central pyran ring, they are categorized mainly into flavones (basic structure, B ring binds to the 2 position), flavonols (having a hydroxyl group at the 3 position), flavanones (dihydroflavones) and flavanonols (dihydroflavonols; 2–3 bond is saturated), flavanols (flavan-3-ols and flavan-3,4-diols; C-ring is 1-pyran), anthocyanins (anthocyanidins; C-ring is 1-pyran, and 1–2 and 3–4 bonds are unsaturated), chalcones (C-ring is opened), isoflavonoids (mainly isoflavones; B ring binds to the 3 position), neoflavonoids (B ring binds to the 4-position), and biflavonoids (dimer of flavones, flavonols, and flavanones) (Iwashina, 2000; Cai et al., 2004; Cai et al., 2006; Ren et al., 2003)

Tannins

Tannins are natural, water-soluble, polyphenolic compounds with molecular weight ranging from 500 to 4,000, usually classified into 2 classes: hydrolysable tannins (gallo- and ellagi-tannins) and condensed tannins (proanthocyanidins) (Cai et al., 2004).

The former are complex polyphenols, which can be degraded into sugars and phenolic acids through either pH changes or enzymatic or nonenzymatic hydrolysis. The basic units of hydrolysable tannins of the polyster type are gallic acid and its derivatives (Fresco et al., 2006). Tannins are commonly found combined with alkaloids, polysaccharides, and proteins, particularly the latter (Han et al., 2007).

Stilbenes

Stilbenes are phenolic compounds displaying 2 aromatic rings linked by an ethane bridge, structurally characterized by the presence of a 1,2-diarylethene nucleus with hydroxyls substituted on the aromatic rings. They are distributed in higher plants and exist in the form of oligomers and in monomeric form (e.g. resveratrol, oxyresveratrol) and as dimeric, trimeric, and polymeric stilbenes or as glycosides.

The well-known compound, trans-resveratrol, a phytoalexin produced by plants, is the member of this chemical famil most abundant in the human diet (especially rich in the skin of red grapes), possessing a trihydroxystilben skeleton (Han et al., 2007). There are monomeric stilbenes in 4 species of medicinal herbs, that is, trans-resveratrol in root of Polygonum cuspidatum, Polygonum multiflorum, and P. lactiflora; piceatannol in root of P. multiflorum; and oxyresveratrol in fruit of Morus alba (Cai et al., 2006).

It was reported that dimeric stilbenes and stilbene glycosides were identified from these species (Xiao et al., 2002). In addition, 40 stilbene oligomers were isolated from 6 medicinal plant species (Shorea hemsleyana, Vatica rassak, Vatica indica, Hopea utilis, Gnetum parvifolium, and Kobresia nepalensis). Other stilbenes that have recently been identified in dietary sources, such as piceatannol and its glucoside (usually named astringin) and pterostilbene, are also considered as potential chemo-preventive agents. These and other in vitro and in vivo studies provide a rationale in support of the use of stilbenes as phytoestrogens to protect against hormone-dependent tumors (Athar et al., 2007).

Curcuminoids

Curcuminoids are ferulic acid derivatives, which contain 2 ferulic acid molecules linked by a methylene with a β -diketone structure in a highly conjugated system. Curcuminoids and ginerol analogues are natural phenolic compounds from plants of the family Zingiberaceae. Curcuminoids include 3 main chemical compounds: curcumin, demethoxycurcumin, and bisdemethoxycurcumin (Cai et al., 2006). All 3 curcuminoids impart the characteristic yellow color to turmeric, particularly to its rhizome, and are also major yellow pigments of mustard. Curcuminoids containing Curcuma longa (turmeric) and ginerol analogues containing Zingiber officinale (ginger) are not only used as Chinese traditional medicines but also as natural color agents or ordinary spices.

In addition, curcuminoids with anti-oxidant properties have been isolated from various Curcuma or Zingiber species, such as the Indian medicinal herb Curcuma xanthorrhiza.

Coumarins

Coumarins are lactones obtained by cyclization of cis-ortho-hydroxycinnamic acid, belonging to the phenolics with the basic skeleton of C6+ C3. This precursor is formed through isomerization and hydroxylation of the structural analogs trans-hydroxycinnamic acid and derivatives. Coumarins are present in plants in the free form and as glycosides. In general, coumarins are characterized by great chemical diversity, mainly differing in the degree of oxygenation of their benzopyrane moiety.

In nature, most coumarins are C7-hydroxylated (Fresco et al., 2006; Cai et al., 2006). Major coumarin constituents included simple hydroxylcoumarins (e.g. aesculin, esculetin, scopoletin, and escopoletin), furocoumarins and isofurocoumarin (e.g. psoralen and isopsoralen from Psoralea corylifolia), pyranocoumarins (e.g. xanthyletin, xanthoxyletin, seselin, khellactone, praeuptorin A), bicoumarins, dihydro-isocoumarins (e.g. bergenin), and others (e.g. wedelolactone from Eclipta prostrata) (Shan et al., 2005).

Plants, fruits, vegetables, olive oil, and beverages (coffee, wine, and tea) are all dietary sources of coumarins; for example, seselin from fruit of Seseli indicum, khellactone from fruit of Ammi visnaga, and praeuptorin A from Peucedanum praeruptorum (Sonnenberg et al., 1995). In previous studies, it was found that coumarins occurred in the medicinal herbs Umbelliferae, Asteraceae, Convolvulaceae, Leguminosae, Magnoliaceae, Oleaceae, Rutaceae, and Ranunculaceae, such as simple coumarins from A. annua, furocoumarins (5-methoxyfuranocoumarin) from Angelica sinensis, pyranocoumarins from Citrus aurantium, and isocoumarins from Agrimonia pilosa. Coumarins have also been detected in some Indian medicinal plants (e.g. Toddalia aculeata, Murraya exotica, Foeniculum vulgare, and Carum copticum) and dietary spices (e.g. cumin and caraway). In addition, coumestans, derivatives of coumarin, including coumestrol, a phytoestrogen, are found in a variety of medicinal and dietary plants such as soybeans and Pueraria mirifica (Chansakaow et al., 2000).

Lignans

Lignans are also derived from cis-o-hydroxycinnamic acid and are dimers (with 2 C6-C3 units) resulting from tail–tail linkage of 2 coniferl or sinapyl alcohol units (Cai et al., 2007). Lignans are mainly present in plants in the free form and as glycosides in a few (Fresco et al., 2006). Main lignan constituents are lignanolides (e.g. arctigenin, arctiin, secoisolariciresinol, and matairesinol from Arctium lappa), cyclolignanolides (e.g. chinensin from Polygala tenuifolia), bisepoxylignans (e.g. forsythigenol and forsythin from Forsythia suspensa), neolignans (e.g. magnolol from Cedrus deodara and Magnolia officinalis), and others (e.g. schizandrins, schizatherins, and wulignan from Schisandra chinensis; pinoresinol from Pulsatilla chinensis; and furofuran lignans from Cuscuta chinensis) (Surveswaran et al., 2007).

The famous tumor therapy drug podophyllotoxin (cyclolignanolide) was first identified in Podophyllum peltatum, which Native Americans used to treat warts, and also found in a traditional medicinal plant Podophyllum emodi var. chinense (Efferth et al., 2007). Two new lignans (podophyllotoxin glycosides) were isolated from the Chinese medicinal plant, Sinopodophyllum emodi (Zhao et al., 2002). Different lignans (e.g. cubebin, hinokinin, yatein, and isoyatein) were identified from leaves, berries, and stalks of Piper cubeba L. (Piperaceae), an Indonesian medicinal plant (Elfahmi et al., 2007).

Milder et al. (2005) established a lignan database from Dutch plant foods by quantifying lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol in 83 solid foods and 26 beverages commonly consumed in The Netherlands. They reported that flaxseed (mainly secoisolariciresinol), sesame seeds, and Brassica vegetables (mainly pinoresinol and lariciresinol) contained unexpectedly high levels of lignans. Sesamol, sesamin, and their glucosides are also good examples of this type of compound, which comes from sesame oil and sunflower oil.

Quinones

Natural quinones in medicinal plants fall into 4 categories: anthraquinones, phenanthraquinones, naphthoquinones, and benzoquinones (Cai et al., 2004). Anthraquinones are the largest class of natural quinones and occur more widely in medicinal and dietary plants than other natural quinones (Cai et al., 2006). The hydroxyanthraquinones normally have 1 to 3 hydroxyl groups on the anthraquinone structure. Previous investigation found that quinones were distributed in 12 species of medicinal herbs from 9 families such as Polygalaceae, Rubiaceae, Boraginaceae, Labiatae, Leguminosae, Myrsinaceae, and so forth (Surveswaran et al., 2007).

For example, high content benzoquinones and derivatives (embelin, embelinol, embeliaribyl ester, embeliol) are found in Indian medicinal herb Embelia ribes; naphthoquinones (shikonin, alkannan, and acetylshikonin) come from Lithospermum erythrorhizon and juglone comes from Juglans regia; phenanthraquinones (tanshinone I, II A, and II B ) were detected in Salvia miltiorrhiza; denbinobin was detected in Dendrobium nobile; and many anthraquinones and their glycosides (e.g. rhein, emodin, chrysophanol, aloe-emodin, physcion, purpurin, pseudopurpurin, alizarin, munjistin, emodin-glucoside, emodin-malonyl-glucoside, etc.) were identified in the rhizomes and roots from P. cuspidatum (also in leaves), P. multiflorum, and R. officinale in the Polygalaceae and Rubia cordifolia in the Rubiaceae (Surveswaran et al., 2007; Huang et al., 2008). In addition, some naphthoquinones were isolated from maize (Zea mays L.) roots (Luthje et al., 1998).

References:

Athar M, Back JH, Tang XW, et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharm, 224:274–283.


Cai YZ, Luo Q, Sun M and Corke H. (2004). Anti-oxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74:2157–2184.


Cai YZ, Sun M, Xing J, Luo Q and Corke H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci, 78:2872–2888.


Chansakaow S, Ishikawa T, Seki H, et al. (2000). Identification of deoxymiroestrol as the actual rejuvenating principle of 'Kwao Keur', Pueraria mirifica. J. Nat. Prod, 63(2):173–5. doi:10.1021/np990547v.


Efferth T, Li P CH, Konkimalla V and Kaina B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends Mol Med, 13:353–361.


Elfahmi, Ruslan K, Batterman S, et al. (2007). Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem Syst Ecol, 35:397–402.


Fresco P, Borges F, Diniz C and Marques M PM. (2006). New insights on the anti-cancer properties of dietary polyphenols. Med Res Rev, 26:747–766.


Han XZ, Shen T and Lou HX. (2007). Dietary polyphenols and their biological significance. Int J Mol Sci, 8:950–988


Hollman P and Katan M B. (2000). Flavonols, flavones, and flavanols—nature, occurrence, and dietary burden. J Sci Food Agric, 80:1081–1093.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2007). A potential anti-oxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot, 61:14–30.


Huang WY, Cai YZ, Xing J, Corke H and Sun M. (2008). Comparative analysis of bioactivities of four Polygonum species. Planta Med, 74:43–49.


Huang WH, Cai YZ, Zhang Y. (2010). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1):1–20 doi: 10.1080/01635580903191585


Iwashina T. (2000). The structure and distribution of the flavonoids in plants. J Plant Res, 113:287–299.


Jakobek L, Seruga M, Novak I and Medvidovic-Kosanovic M. (2007). Flavonols, phenolic acids, and anti-oxidant activity of some red fruits. Deut Lebensm-Runsch, 103:369–378.


Kampa M, Nifli AP, Notas G, Castanas E. (2007). Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol, 159:79-113.


Khan HY, Zubair H, Faisal M, et al. (2013). Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemo-preventive action. Mol Nutr Food Res. doi: 10.1002/mnfr.201300417.


Luthje S, Van Gestelen P, Cordoba-Pedregosa MC, et al. (1998). Quinones in plant plasma membranes—a missing link?. Protoplasma, 205:43–51.


Manach C, Scalbert A, Morand C, RŽmŽsy C, JimŽnez L. (2004). Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727–47.


Milder I, Arts I, van de Putte B, Venema DP and Hollman P. (2005). Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Brit J Nutr, 93:393–402.


Ren WY, Qiao ZH, Wang HW, Zhu L and Zhang L. (2003). Flavonoids: promising anti-cancer agents. Med Res Rev, 23:519–534.


Sampietro DA and Vattuone MA. (2006). Sugarcane straw and its phytochemicals as growth regulators of weed and crop plants. Plant Growth Regul, 48: 21–27.


Shan B, Cai YZ, Sun M and Corke H. (2005). Anti-oxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53:7749–7759.


Sonnenberg H, Kaloga M, Eisenbac N and Fromming KK. (1995). Isolation and characterization of an angular-type dihydropyranocoumaringlycoside from the fruits of Ammi visnaga (L) Lam (Apiaceae). Zeitschrift Natur C-A J BioSci, 50: 729–731.


Stagos D, Kazantzoglou, G, Theofanidou, D, Kakalopoulou, G, Magiatis, P. (2006). Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat Res-Gen Tox En, 609:165–175.


Surveswaran S, Cai YZ, Corke H and Sun M. (2007). Systematic evaluation of natural phenolic anti-oxidants from 133 Indian medicinal plants. Food Chem, 102:938–953.


Wang SH, DeGroff VL, Clinton SK. (2003). Tomato and Soy Polyphenols Reduce Insulin-Like Growth Factor-I–Stimulated Rat Prostate Cancer Cell Proliferation and Apoptotic Resistance In Vitro via Inhibition of Intracellular Signaling Pathways Involving Tyrosine Kinase. J. Nutr, 133(7):2367-2376


Xiao K, Xuan LJ, Xu YM, Bai D, Zhong DX. (2002). Dimeric stilbene glycosides from Polygonum cuspidatum. Eur J Org Chem, 3:564–568.


Zhao C, Nagatsu A, Hatano K, Shirai N, Kato S. (2003). New lignan glycosides from Chinese medicinal plant, Sinopodophyllum emodi. Chem Pharm Bull, 51:255–261.

Periplocin

Cancer: Lung, colorectal, leukemia

Action: Apoptosis-inducing, cytostatic effect

Apoptosis

The anti-tumor component of Cortex periplocae is periplocin. Periplocin is one of the cardenolides isolated from cortex periplocae which is used for treatment of rheumatoid arthritis and reinforcement of bones and tendons in traditional medicine.

Periplocin has been reported to inhibit many cell lines, including MCF-7, TE-13, QG-56, SMMC-7721, T24, Hela, K562, TE-13 and Eca-109 cells. Studies have shown that periplocin reduces the expression of survivin, an inhibitor of apoptosis. It also releases caspases-3 and -7 from complexes and thereby increases their activities, ultimately inducing tumor cell apoptosis (Zhao et al., 2009).

Lung Cancer

The anti-tumor activity of periplocin was investigated in lung cancer cells both in vitro and in vivo, and its anti-cancer mechanism was explored. Periplocin inhibited the growth of lung cancer cells and induced their apoptosis in a time- and dose-dependent manner by cell-cycle arrest in G0/G1 phase. Periplocin exhibited anti-tumor activity both in human (A549) and mouse (LL/2) lung cancer xenograft models. Immunohistochemical analysis revealed that intratumoral angiogenesis was significantly suppressed.

Furthermore, anti-cancer activity mediated by periplocin was associated with decreased level of phosphorylated AKT and ERK both in vitro and in vivo, which are important for cell growth and survival. Moreover, periplocin induced apoptosis by down-regulating Bcl-2 and up-regulating Bax, leading to activation of caspase-3 and caspase-9.

These findings suggest that periplocin could inhibit the growth of lung cancer both in vitro and in vivo, which could be attributed to the inhibition of proliferation and the induction of apoptosis signaling pathways, such as AKT and ERK. These observations provide further evidence on the anti-tumor effect of periplocin, and it may be of importance to further explore its potential role as a therapeutic agent for cancer (Lu et al., 2010).

Colorectal Carcinomas

The Wnt/beta-catenin signaling pathway plays an important role in the development and progression of human cancers, especially in colorectal carcinomas. Periplocin extracted from cortex periplocae (CPP) significantly inhibited the proliferation of SW480 cells in a time-and dose-dependent manner (P<0.01). CPP (0.5 microg/mL) also caused G0/G1 cell-cycle arrest of SW480 cells and induced cell apoptosis (P<0.05). Compared to untreated control cells, after the treatment with CPP, the protein levels of beta-catenin in total cell lysates, cytosolic extracts, and nuclear extracts were reduced (P<0.01); the binding activity of the TCF complex in nucleus to its specific DNA binding site was suppressed; mRNAs of the downstream target genes survivin, c-myc and cyclin D1 were decreased (P<0.01) while beta-catenin mRNA remained unchanged.

CPP could significantly inhibit the proliferation of SW480 cells, which may be through down-regulating the Wnt/beta-catenin signaling pathway (Du et al., 2009).

Pro-apoptotic and Cytostatic Effect/Leukemia

Cardenoliddes are steroid glycosides which are known to exert cardiotonic effects by inhibiting the Na(+)/K(+)-ATPase. Several of these compounds have been shown also to possess anti-tumor potential. The aim of the present work was the characterization of the tumor cell growth inhibition activity of four cardenolides, isolated from Periploca graeca L., and the mechanisms underlying such an effect.

The pro-apoptotic and cytostatic effect of the compounds was tested in U937 (monocytic leukemia) and PC3 (prostate adenocarcinoma). Characterization of apoptosis and cell-cycle impairment was obtained by cytofluorimetry and WB. Periplocymarin and periplocin were the most active compounds, periplocymarin being more effective than the reference compound ouabain. The reduction of cell number by these two cardenolides was due in PC3 cells mainly to the activation of caspase-dependent apoptotic pathways, while in U937 cells to the induction of cell-cycle impairment without extensive cell death. Interestingly, periplocymarin, at cytostatic but non-cytotoxic doses, was shown to sensitize U937 cells to TRAIL. Taken together, these data outline that cardiac glycosides are promising anti-cancer drugs and contribute to the identification of new natural cardiac glycosides to obtain chemically modified non-cardioactive/low toxic derivatives with enhanced anti-cancer potency (Bloise et al., 2009).

References

Bloise E, Braca A, De Tommasi N, Belisario MA. (2009). Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother Pharmacol, 64(4):793-802. doi: 10.1007/s00280-009-0929-5.


Du YY, Liu X, Shan BE. (2009). Periplocin extracted from cortex periplocae induces apoptosis of SW480 cells through inhibiting the Wnt/beta-catenin signaling pathway. Ai Zheng, 28(5):456-60.


Lu ZJ, Zhou Y, Song Q, et al. (2010). Periplocin inhibits growth of lung cancer in vitro and in vivo by blocking AKT/ERK signaling pathways. Cell Physiol Biochem, 26(4-5):609-18. doi: 10.1159/000322328.


Zhao LM, Ai J, Zhang Q, et al. (2009). Periplocin (a sort of ethanol from Cortex periplocae) induces apoptosis of esophageal carcinoma cells by influencing expression of related genes. Tumor (Chin), 29:1025-1030.