Category Archives: Vaccinium arctostaphylos

Blueberin

Cancer: Colon, prostate, cervical., breast

Action: Anti-inflammatory, blood sugar regulation

Blueberin is isolated from Vaccinium arctostaphylos (L.).

Colon Cancer

Research has shown that diets rich in phenolic compounds such as those associated with blueberries such as blueberin may be associated with lower risks of several chronic diseases including cancer.

To probe this effect, the bioactivities of various components of blueberries were investigated and their potential anti-proliferation and apoptosis induction effects were investigated using two colon cancer cell lines, HT-29 and Caco-2. Polyphenols in three blueberry cultivars, Briteblue, Tifblue, and Powderblue, were extracted and freeze-dried. The extracts were further separated into phenolic acids, tannins, flavonols, and anthocyanins using an HLB cartridge and LH20 column. The phenolic acid fraction showed relatively lower bioactivities with 50% inhibition at 1000 µg/mL. The greatest anti-proliferation effect among all four fractions was from the anthocyanin fractions. Both HT-29 and Caco-2 cell growth was significantly inhibited by >50% by the anthocyanin fractions at concentrations of 15−50 µg/mL. Anthocyanin fractions also resulted in 2−7 times increase in DNA fragmentation, indicating the induction of apoptosis. The effective dosage levels are close to the reported range of anthocyanin concentrations in rat plasma. These findings suggest that blueberry intake may reduce colon cancer risk (Yi, 2005).

Prostate Cancer; AR+, AR-

The role of polyphenol fractions from both wild and cultivated blueberry fruit was probed in the inhibitory effects on the proliferation of LNCaP, an androgen-sensitive prostate cancer cell line, and DU145, a more aggressive androgen insensitive prostate cancer cell line. When 20µg/ml of a wild blueberry polyphenol fraction was added to LNCaP media, growth was inhibited to 11% of control with an IC50 of 13.3µg/ml. Two similar polyphenol-rich fractions from cultivated blueberries at the same concentration inhibited LNCaP growth to 57% and 26% of control with an IC50 of 22.7 and 5.8µg/ml, respectively. Differences in cell growth inhibition of LNCaP and DU145 cell lines by blueberry fractions rich in polyphenols indicate that blueberry proanthocyanidins have an effect primarily on androgen-dependent growth of prostate cancer cells. Possible molecular mechanisms for growth inhibition are reviewed (Schmidt, 2006).

Prostate Cancer

The mechanism(s) by which three flavonoid-enriched fractions from lowbush blueberry (Vaccinium angustifolium) down-regulate matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells were investigated. Regulation of MMPs is crucial to regulate extracellular matrix (ECM) proteolysis which is important in metastasis. Findings indicate that blueberry flavonoids may use multiple mechanisms in down-regulating MMP activity in these cells (Matchett, 2005).

Cervical Cancer, Breast Cancer

Blueberin, extracted with hexane, 50% hexane/ethyl acetate, ethyl acetate, ethanol, and 70% acetone/water at ambient temperature was tested for in vitro anti-cancer activity on cervical and breast cancer cell lines. Ethanol extracts strongly inhibited CaSki and SiHa cervical cancer cell lines and MCF-7 and T47-D breast cancer cell lines. An unfractionated aqueous extract of raspberry and the ethanol extract of blueberry significantly inhibited mutagenesis by both direct-acting and metabolically activated carcinogens (Wedge et al., 2001).

Anti-inflammatory

The reduction of fasting glucose was correlated with the reduction of serum CRP in the Blueberin group whereas in the Placebo group CRP levels were not significantly reduced. Furthermore, the Blueberin also significantly reduced the levels of plasma enzymes ALT, AST and GGT, indicating that, in addition to anti-diabetes effects, the Blueberin also possess pharmacologically relevant anti-inflammatory properties (Abidov et al., 2006).

References

Abidov M, Ramazanov A, Jimenez Del Rio M, Chkhikvishvili I. (2006). Effect of Blueberin on fasting glucose, C-reactive protein and plasma aminotransferases, in female volunteers with diabetes type 2: double-blind, placebo controlled clinical study. Georgian Med News, (141):66-72.

Matchett MD, MacKinnon, L, Sweeney MI, Gottschall-Pass KT, Hurta, RAR. (2006). Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. The Journal of Nutritional Biochemistry. doi: 10.1016/j.jnutbio.2005.05.014.

Schmidt BM, Erdman Jr JW, Lila MA. (2006). Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Letters, 231(2):240-246. doi: 10.1021/jf049238n.

Wedge DE, Meepagala KM, Magee JB, et al. (2001). Anti-carcinogenic Activity of Strawberry, Blueberry, and Raspberry Extracts to Breast and Cervical Cancer Cells. Journal of Medicinal Food, 4(1):49-51. doi: 10.1089/10966200152053703.

Yi W, Fischer J, Krewer G, Akoh C. (2005). Phenolic Compounds from Blueberries Can Inhibit Colon Cancer Cell Proliferation and Induce Apoptosis. J. Agric. Food Chem, 53(18):7320–7329. doi: 10.1021/jf051333o.