Category Archives: all

Acteoside

Cancer: Melanoma; metastasis

Ohno et al. (2009) suggests that acteoside injection, isolated from Plantago lanceolata showed suppressive effect on lung metastasis of B16 melanoma cells. Male C57BL/6 mice were injected intravenously with 2 x 10(5) of B16 melanoma cells, while acetoside at a dose of 50 mg/kg was administered intraperitoneally every other day from 13 d before B16 melanoma cell injection until all mice had succumbed to the metastatic tumor burden in the lung.

Administration of acteoside prolonged survival time significantly and the average survival time was 63.3 +/- 3.4d compared with 52.1 +/- 2.5d in control mice.

Reference

Ohno, T., Inoue, M., Ogihara, Y., Saracoglu, I. (2012) Anti-metastatic activity of acteoside, a phenylethanoid glycoside. Biological & Pharmaceutical Bulletin, 25(5):666-8. doi: 10.1248/bpb.25.666

Acetyl-keto-beta-boswellic acid (AKBA)

Cancer: Colorectal, prostate, gastric

Action: Anti-cancer

Apoptotic

Acetyl-keto-beta-boswellic acid (AKBA), a triterpenoid isolated from Boswellia carterri Birdw and Boswellia serrata, has been found to inhibit tumor cell growth and to induce apoptosis. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation, and independent of Fas/Fas ligand interaction in colon cancer HT-29 cells (Liu et al., 2002).

Colon Cancer

Although there is increasing evidence showing that boswellic acid might be a potential anti-cancer agent, the mechanisms involved in its action are unclear. It has been shown that acetyl-keto-beta-boswellic acid (AKBA) inhibits cellular growth in several colon cancer cell lines. Cell cycle analysis by flow cytometry showed that cells were arrested at the G1 phase after AKBA treatment.

These results demonstrate that AKBA inhibits cellular growth in colon cancer cells. These findings may have implications for the use of boswellic acids as potential anti-cancer agents in colon cancer (Liu et al., 2006).

AKBA significantly inhibited human colon adenocarcinoma growth, showing arrest of the cell-cycle in G1-phase and induction of apoptosis. AKBA administration in mice effectively delayed the growth of HT-29 xenografts without signs of toxicity (Yuan et al., 2013).

Gastric Cancer

AKBA exhibited anti-cancer activity in vitro and in vivo. With oral application in mice, AKBA significantly inhibited gastric cancer cells line SGC-7901 and MKN-45 xenografts without toxicity.

This effect might be associated with its roles in cell-cycle arrest and apoptosis induction. The results also showed activation of p21(Waf1/Cip1) and p53 in mitochondria and increased cleaved caspase-9, caspase-3, and PARP and Bax/Bcl-2 ratio after AKBA treatment. Upon AKBA treatment, β-catenin expression in nuclei was inhibited, and membrane β-catenin was activated (Zhang et al., 2013).

Prostate

The apoptotic effects and the mechanisms of action of AKBA were studied in LNCaP and PC-3 human prostate cancer cells. AKBA induced apoptosis in both cell lines at concentrations above 10 microg/mL. AKBA-induced apoptosis was correlated with the activation of caspase-3 and caspase-8 as well as with poly(ADP)ribose polymerase (PARP) cleavage.

AKBA treatment increased the levels of CAAT/enhancer binding protein homologous protein (CHOP) and activated a DR5 promoter reporter but did not activate a DR5 promoter reporter with the mutant CHOP binding site. These results suggest that AKBA induces apoptosis in prostate cancer cells through a DR5-mediated pathway, which probably involves the induced expression of CHOP (Lu et al., 2008).

References

Liu J-J, Nilsson A, Oredsson S, et al. (2002). Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 23(12): 2087–2093. doi:10.1093/carcin/23.12.2087.

 

 

Liu JJ, Huang B, Hooi SC. (2006). Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol, 148(8):1099-107.

 

Lu M, Xia L, Hua H, Jing Y. (2008). Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res, 68(4):1180-6. doi: 10.1158/0008-5472.CAN-07-2978.

 

Yuan Y, Cui SX, Wang Y, et al. (2013). Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta, 1830(10):4907-16. doi: 10.1016/j.bbagen.2013.06.039.

 

Zhang YS, Xie JZ, Zhong JL, et al. (2013) Acetyl-11-keto-β-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/β -catenin signaling pathway. Biochim Biophys Acta, 1830(6):3604-15. doi: 10.1016/j.bbagen.2013.03.003.

Acetoside

Cancer: Lung cancer, melanoma

Action: Anti-metastatic

Acetoside is isolated from Stachys sieboldii (Miq), Arctostaphylos uva-ursi [(L.) Spreng, Cistanche deserticola (Ma).

Anti-metastatic; Lung Cancer

The anti-metastatic effect of acteoside, a phenylethanoid glycoside widely distributed in the plant kingdom, was examined with respect to lung metastasis using a mouse model injected with B16 melanoma cells intravenously. Administration of acteoside prolonged survival time significantly and the average survival time was 63.3 +/- 3.4d compared with 52.1 +/- 2.5d in control mice. This result suggests that acteoside showed suppressive effect on lung metastasis of B16 melanoma cells (Ohno et al., 2009).

Melanoma

Acteoside showed an inhibitory effect on tyrosinase activity and melanin synthesis in both cell-free assay systems and cultured B16F10 melanoma cells. Acteoside decreased levels of tyrosinase, tyrosinase-related protein-1 (TRP-1) and microphthalmia-associated transcription factor (MITF) proteins, whereas it increased ERK phosphorylation. Acteoside suppressed melanogenesis induced by α-melanocyte-stimulating hormone and showed UV-absorbing effects (Son et al., 2011). Acteoside also inhibited production of both melanin and cyclic AMP in cells stimulated by 1 micromol/l forskolin, an adenyl cyclase activator. Acteoside showed anti-oxidant activity in a cell-free DPPH (1-diphenyl-2-picrylhydroazyl) assay and inhibited generation of intracellular reactive oxygen species (Song & Sim., 2009).

References

Ohno T, Inoue M, Ogihara Y, Saracoglu I. (2012). Anti-metastatic activity of acteoside, a phenylethanoid glycoside. Biological & Pharmaceutical Bulletin, 25(5):666-8. doi: 10.1248/bpb.25.666


Song HS, Sim SS. (2009). Acteoside inhibits alpha-MSH-induced melanin production in B16 melanoma cells by inactivation of adenyl cyclase. J Pharm Pharmacol, 61(10):1347-51. doi: 10.1211/jpp/61.10.0011.


Son YO, Lee SA, Kim SS, et al. (2011). Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation. J Pharm Pharmacol, 63(10):1309-19. doi: 10.1111/j.2042-7158.2011.01335.x.